
Algorithmica (2011) 61:51–74
DOI 10.1007/s00453-010-9437-6

On Optimally Partitioning a Text to Improve Its
Compression

Paolo Ferragina · Igor Nitto · Rossano Venturini

Received: 22 February 2010 / Accepted: 19 July 2010 / Published online: 7 August 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper we investigate the problem of partitioning an input string T

in such a way that compressing individually its parts via a base-compressor C gets
a compressed output that is shorter than applying C over the entire T at once. This
problem was introduced in Buchsbaum et al. (Proc. of 11th ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 175–184, 2000; J. ACM 50(6):825–851, 2003) in
the context of table compression, and then further elaborated and extended to strings
and trees by Ferragina et al. (J. ACM 52:688–713, 2005; Proc. of 46th IEEE Sym-
posium on Foundations of Computer Science, pp. 184–193, 2005) and Mäkinen and
Navarro (Proc. of 14th Symposium on String Processing and Information Retrieval,
pp. 229–241, 2007). Unfortunately, the literature offers poor solutions: namely, we
know either a cubic-time algorithm for computing the optimal partition based on
dynamic programming (Buchsbaum et al. in J. ACM 50(6):825–851, 2003; Gian-
carlo and Sciortino in Proc. of 14th Symposium on Combinatorial Pattern Matching,
pp. 129–143, 2003), or few heuristics that do not guarantee any bounds on the ef-
ficacy of their computed partition (Buchsbaum et al. in Proc. of 11th ACM-SIAM
Symposium on Discrete Algorithms, pp. 175–184, 2000; J. ACM 50(6):825–851,
2003), or algorithms that are efficient but work in some specific scenarios (such as
the Burrows-Wheeler Transform, see e.g. Ferragina et al. in J. ACM 52:688–713,
2005; Mäkinen and Navarro in Proc. of 14th Symposium on String Processing and

The first author has been supported in part by a Yahoo! Research grant, by the MIUR-PRIN project
“Mad Web”, and by the MIUR-FIRB project “Linguistica 2006”.

P. Ferragina (�) · I. Nitto
Dipartimento di Informatica, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
e-mail: ferragina@di.unipi.it

I. Nitto
e-mail: nitto@di.unipi.it

R. Venturini
ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
e-mail: rossano.venturini@isti.cnr.it

mailto:ferragina@di.unipi.it
mailto:nitto@di.unipi.it
mailto:rossano.venturini@isti.cnr.it

52 Algorithmica (2011) 61:51–74

Information Retrieval, pp. 229–241, 2007) and achieve compression performance that
might be worse than the optimal-partitioning by a Ω(logn/ log logn) factor. There-
fore, computing efficiently the optimal solution is still open (Buchsbaum and Gian-
carlo in Encyclopedia of Algorithms, pp. 939–942, 2008). In this paper we provide
the first algorithm which computes in O(n log1+ε n) time and O(n) space, a partition
of T whose compressed output is guaranteed to be no more than (1 + ε)-worse the
optimal one, where ε may be any positive constant fixed in advance. This result holds
for any base-compressor C whose compression performance can be bounded in terms
of the zero-th or the k-th order empirical entropy of the text T . We will also discuss
extensions of our results to BWT-based compressors and to the compression booster
of Ferragina et al. (J. ACM 52:688–713, 2005).

Keywords Data compression · Dynamic programming · Compression boosting ·
Table compression · Empirical entropy · Burrows-Wheeler transform · Arithmetic
and Huffman coding

1 Introduction

Reorganizing data in order to improve the performance of a given compressor C is
a recent and important paradigm in data compression (see e.g. [5, 12]). The basic
idea consist of permuting the input string T to form a new string T ′ which is then
partitioned into substrings T ′ = T ′

1T
′
2 . . . T ′

h that are finally compressed individually
by the base compressor C. The goal is to find the best instantiation of the two steps
Permuting+Partitioning so that the compression of the individual substrings T ′

i min-
imizes the total length of the compressed output. This approach (hereafter abbrevi-
ated as PPC) is clearly at least as powerful as the classic data compression approach
that applies C to the entire T : just take the identity permutation and set h = 1. The
question is whether it can be more powerful than that!

Intuition leads to think favorably about it: by grouping together objects that are
“related”, one can hope to obtain better compression even using a very weak compres-
sor C. Surprisingly enough, this intuition has been sustained by convincing theoreti-
cal and experimental results only recently. These results have investigated the PPC-
paradigm under various angles by considering: different data formats (strings [12],
trees [13], tables [5], etc.), different granularities for the items of T to be permuted
(chars, node labels, columns, blocks [1, 24], files [7, 30], etc.), different permutations
(see e.g. [7, 19, 31, 32]), different base compressors to be boosted (0-th order com-
pressors, gzip, bzip2, etc.). Among these plethora of proposals, we survey below
the most notable examples which are useful to introduce the problem we attack in
this paper, and refer the reader to the cited bibliography for other interesting results.

The PPC-paradigm was introduced in [4], and further elaborated upon in [5]. In
these papers T is a table formed by fixed size columns, and the goal is to permute the
columns in such a way that individually compressing contiguous groups of them gives
the shortest compressed output. The authors of [5] showed that the PPC-problem in
its full generality is MAX-SNP hard, devised a link between PPC and the classical
asymmetric TSP problem, and then resorted known heuristics to find approximate so-
lutions based on several measures of correlations between the table’s columns. For the

Algorithmica (2011) 61:51–74 53

grouping they proposed either an optimal but very slow approach, based on Dynamic
Programming (shortly DP), or some very simple and fast algorithms which however
did not have any guaranteed compression bounds. Nonetheless, experiments showed
that these heuristics achieve significant improvements over the classic gzip, when it
is applied on the serialized original T (row- or column-wise). Also, they showed that
the combination of the TSP-heuristic with the DP-optimal partitioning is better, but
it is too slow to be used in practice even on short files because of the DP-cubic time
complexity.1

When T is a text string, the most famous instantiation of the PPC-paradigm has
been obtained by combining the Burrows and Wheeler Transform [6] (shortly BWT)
with a context-based grouping of the input symbols, which are finally compressed
via proper zero-th order-entropy compressors (like MTF, RLE, Huffman, Arithmetic,
or their combinations, see e.g. [33]). Here the PPC-paradigm takes the name of com-
pression booster [12] because the net result it produces is to boost the performance
of the base compressor C from zero-th order-entropy bounds to k-th order entropy
bounds, simultaneously over all k ≥ 0. In this scenario the permutation acts on single
symbols, and the partitioning/permuting steps deploy the context (substring) follow-
ing each symbol in the original string in order to identify “related” symbols which
must be therefore compressed together. Recently [19] investigated whether do ex-
ist other permutations of the symbols of T which admit effective compression and
can be computed/inverted fast. Unfortunately they found a connection between table
compression and the BWT, so that many natural similarity-functions between con-
texts turned out to induce MAX-SNP hard permuting problems! Interesting enough,
the BWT seems to be the unique highly compressible permutation which is fast to
be computed and achieves effective compression bounds. Several other papers have
given an analytic account of this phenomenon [16, 22, 26, 27] and have shown, also
experimentally [15], that the partitioning of the BW-transformed data is a key step for
achieving effective compression ratios. Optimal partitioning is actually even more
mandatory in the context of labeled-tree compression where a BWT-inspired trans-
form, called XBW-transform in [13, 14], allows to produce permuted strings with a
strong clustering effect. Starting from these premises, [18] attacked the computation
of the optimal partitioning of T via a DP-approach, which turned to be very costly;
then [12] (and subsequently many other authors, see e.g. [13, 16, 26]) proposed so-
lutions which are not optimal but, nonetheless, achieve interesting k-th order-entropy
bounds. This is indeed a subtle point which is frequently neglected when dealing
with compression boosters, especially in practice, and for this reason we detail it
more clearly in Sect. 8, in which we show an infinite class of strings for which the
compression achieved by the classic booster is far from the optimal partitioning by a
multiplicative factor Ω(logn/ log logn).

Finally, there is another scenario in which the computation of the optimal partition
of an input string for compression boosting can be successful and occurs when T is a
single (possibly long) file on which we wish to apply classic data compressors, such

1Page 836 of [5] says: “computing a good approximation to the TSP reordering before partitioning con-
tributes significant compression improvement at minimal time cost. [. . .] This time is negligible compared
to the time to compute the optimal, contiguous partition via Dynamic Programming.”

54 Algorithmica (2011) 61:51–74

as gzip, bzip2, ppm, etc. [33]. Note that how much redundancy can be detected
and exploited by these compressors depends on their ability to “look back” at the
previously seen data. However, such ability has a cost in terms of memory usage and
running time, and thus most compression systems provide a facility that controls the
amount of data that may be processed at once—usually called the block size. For ex-
ample the classic tools gzip and bzip2 have been designed to have a small memory
footprint, up to few hundreds KBs. More recent and sophisticated compressors, like
ppm [33] and the family of BWT-based compressors [15], have been designed to use
block sizes of up to a few hundreds MBs. But using larger blocks to be compressed
at once does not necessarily induce a better compression ratio! As an example, let
us take C as the simple Huffman or Arithmetic coders and use them to compress the
text T = 0n/21n/2: There is a clear difference whether we compress individually the
two halves of T (achieving an output size of about O(logn) bits) or we compress T

as a whole (achieving n + O(logn) bits). The impact of the block size is even more
significant as we use more powerful compressors, such as the k-th order entropy en-
coder ppm which compresses each symbol according to its preceding k-long context.
In this case take the string T = (2k0)

n
2(k+1) (2k1)

n
2(k+1) drawn from the ternary alphabet

Σ = 0,1,2; observe that if we divide T in two halves and compress them individually
via a k-order compressor, the output size is about O(logn) bits, but if we compress
the entire T at once by that k-order compressor then the output size turns to be much
longer, i.e. n

k+1 + O(logn) bits. Therefore the choice of the block size has an impact
that cannot be underestimated and, additionally, it is made even more problematic by
the fact that it is not necessarily the same along the whole file we are compressing be-
cause it depends on the distribution of the repetitions within it. This problem is even
more challenging when T is obtained by concatenating a collection of files via any
permutation of them: think to the serialization induced by the Unix tar command,
or other more sophisticated heuristics like the ones discussed in [7, 29–31]. In these
cases, the partitioning step looks for homogeneous groups of contiguous files which
can be effectively compressed together by the base-compressor C. More than before,
taking the largest memory-footprint offered by C to group the files and compress
them at once is not necessarily the best choice because real collections are typically
formed by homogeneous groups of dramatically different sizes (e.g. think to a Web
collection and its different kinds of pages, see e.g. [10]). Again, in all those cases
we could apply the optimal DP-based partitioning approach of [5, 18], but this would
take more than cubic time (in the overall input size |T |) thus resulting unusable even
on few MBs of input data!

In summary the efficient computation of an optimal partitioning of the input text
for compression boosting is an important and still open problem of data compression
(see [3]). The goal of this paper is to make a step forward by providing the first
efficient approximation algorithm for this problem, formally stated as follows.

Let C be the base compressor we wish to boost, and let T [1, n] be the input string
we wish to partition and then compress by C. So, we are assuming that T has been
(possibly) permuted in advance, and we are concentrating only on the last two steps
of the PPC-paradigm. Now, given a partition P of the input string into contiguous
substrings, say T = T1T2 . . . Th, we denote by Cost(P) the cost of this partition
and measure it as

∑h
i=1 |C(Ti)|, where |C(α)| is the length in bit of the string α

Algorithmica (2011) 61:51–74 55

compressed by C. The problem of optimally partitioning T according to the base-
compressor C consists then of computing the partition Popt that achieves the mini-
mum cost, namely Popt = minP Cost(P), and thus the shortest compressed output.2

As we mentioned above Popt might be computed via a Dynamic-Programming
approach [5, 18]. Define E[j] as the cost of the optimum partitioning of T [1, j − 1],
and set E[1] = 0. Then, for each j > 1, we can compute E[j] as the min1≤i<j E[i]+
|C(T [i, j − 1])|. At the end E[n + 1] gives the cost of Popt, which can be explicitly
determined by standard back-tracking over the DP-array E. Unfortunately, this solu-
tion requires to run C over Θ(n2) substrings of average length Θ(n), for an overall
Θ(n3) time cost in the worst case which is clearly unfeasible even on small input
sizes n.

In order to overcome this computational bottleneck we make two crucial observa-
tions: (1) instead of applying C over each substring of T , we use an entropy-based
estimation of C’s compressed output that can be computed efficiently and incremen-
tally by suitable dynamic data structures; (2) we relax the requirement for an exact
solution to the optimal partitioning problem, and aim at finding a partition whose cost
is no more than (1 + ε) worse than Popt, where ε may be any positive constant fixed
in advance. Item (1) takes inspiration from the heuristics proposed in [4, 5], but it is
executed in a more principled way because our entropy-based cost functions reflect
the real behavior of modern compressors, and our dynamic data structures allow the
efficient estimation of those costs without their re-computation from scratch at each
substring (as instead occurred in [4, 5]). For item (2) it is convenient to resort to a
well-known reduction from solutions of dynamic programming recurrences to Single
Source Shortest path (SSSP) computation over weighted DAGs (see e.g. [8]). In our
case, the solution for the optimal partitioning problem can be rephrased as a SSSP-
computation over a weighted DAG consisting of n nodes and O(n2) edges whose costs
are derived from item (1). By exploiting some interesting structural properties of this
graph, we are able to restrict the computation of that SSSP to a subgraph consisting
of O(n log1+ε n) edges only. The technical part of this paper (see Sect. 4) will show
that we can build this graph on-the-fly as the SSSP-computation proceeds over the
DAG via the proper use of time-space efficient dynamic data structures. The final re-
sult will be to show that we can (1 + ε)-approximate Popt in O(n log1+ε n) time and
O(n) space, for both zero-th order compressors (like Huffman and Arithmetic [33],
Sect. 5) and k-th order compressors (like ppm [33], Sect. 6). We will also extend
these results to the class of BWT-based compressors, when T is a collection of texts,
by introducing a poly-logarithmic slowdown (Sect. 7), as well as to the compression
booster of [12] (Sect. 8).

We point out that the result on zero-th order compressors is interesting in its own
from both the experimental side, since Huffword compressor is the standard choice
for the storage of Web pages [33], and from the theoretical side since it can be applied
to the compression booster of [12] to obtain a fast approximation of the optimal
partition of BWT(T) in O(n log1+ε n) time. This latter result improves the algorithm
of [12] both in time complexity, since that takes O(nσ) time, and in compression ratio

2We are assuming that C(α) is a prefix-free encoding of α, so that we can concatenate the compressed
output of many substrings and still be able to recover them via a sequential scan.

56 Algorithmica (2011) 61:51–74

(for details see Sect. 8). The case of a large alphabet (namely, σ = Ω(polylog(n)))
is particularly interesting whenever we consider either a word-based BWT [28] or the
XBW-transform over labeled trees [12]. Finally, we mention that our results apply also
to the practical case in which the base compressor C has a maximum (block) size B

of data it can process at once (see above the case of gzip, bzip2, etc.). In this
situation the time performance of our solution is O(n log1+ε(B logσ)).

The map of the paper is as follows. Section 2 introduces some basic notation and
terminology. Section 3 presents a general technique to efficiently approximate the so-
lutions of Dynamic Programming Recurrences provided that a special (but common)
property holds for them. Here we first use the reduction from the problem of solv-
ing Dynamic Programming Recurrences to the problem of computing a SSSP over
a proper weighted DAG. Then, we show how to prune that graph in order to signif-
icantly reduce the number of its edges in a way that the shortest path distances are
almost preserved. We present this strategy in a general form since we believe that
it could be used to speed up other algorithms based on the dynamic programming
paradigm. In Sect. 4 we show how to use this technique to solve the optimal parti-
tioning problem. The subsequent sections address the problem of incrementally and
efficiently computing the edge costs of the weighted DAG as they are needed by the
SSSP-computation, distinguishing the two cases of zero-th order estimators (Sect. 5)
and k-th order estimators (Sect. 6), and the situation in which the base compressor
C is a BWT-based compressor and T is a collection of files (Sect. 7). Finally, Sect. 8
focuses on the application of our methods to the compression-boosting technique
of [12].

2 Background and Notations

2.1 Empirical Entropy and Compressive Estimates

The empirical entropy has been established by several papers [12, 23, 27] as a popular
complexity measure for strings. While the classic notion of Shannon’s entropy is a
function of the source generating the input, the empirical entropy depends only on
the specific input string. For this reason, it is naturally used to provide worst-case
estimates on the output-size of compression algorithms.

In the rest of this paper, we will always denote with T [1, n] the input string, whose
symbols are drawn from the alphabet Σ of size σ . For each c ∈ Σ , we let nc be the
number of occurrences of c in T . The zero-th order empirical entropy of T is defined
as H0(T) = 1

|T |
∑

c∈Σ nc log n
nc

, where it is assumed that all logarithms are taken to
the base 2 and 0 log 0 = 0. It is well known that H0 is the maximum compression one
can achieve using a uniquely decodable code in which a fixed codeword is assigned
to each alphabet symbol. In particular, the so-called zero-th order statistical com-
pressors (such as Huffman or Arithmetic [33]) achieve an output size which is very
close to this bound. However, they require to know information about frequencies
of input symbols (called the model of the source). Those frequencies can be either
known in advance (static model) or computed by examining the input text (semistatic

Algorithmica (2011) 61:51–74 57

model).3 In both cases the model must be stored in the compressed file to be used by
the decompressor. In the following we will bound the compressed size achieved by
zero-th order compressors over T by |C0(T)| ≤ λ|T |H0(T) + f0(|T |, σ) bits, where
λ is a positive constant and f0(|T |, σ) is a function including the extra costs of en-
coding the source model and/or other inefficiencies of C. We will assume that the
function f0(|T |, σ) can be computed in constant time given n = |T | and σ . As an
example, for Huffman f0(n,σ) = O(σ logσ) + n bits and λ = 1, and for Arithmetic
f0(n,σ) = O(σ logn) bits and λ = 1.

The distinctive feature of zero-th order compressors is that the input symbols are
independently encoded, thus no advantage is taken of the potential statistical depen-
dencies between consecutive symbols. Such dependencies are exploited by higher
order compressors to achieve considerably better compression. In order to analyze
the performances of these compressors it is necessary to refine the notion of en-
tropy by taking into account of the correlations among a symbol and its context,
that is the sequence of symbols immediately preceding it. For any substring u of
length k, we denote by uT the string of single symbols following the occurrences of
u in T , taken from left to right. For example, if T = mississippi and u = si,
we have uT = sp since the two occurrences of si in T are followed by the sym-
bols s and p, respectively. The k-th order empirical entropy of T is defined as
Hk(T) = 1

|T |
∑

u∈Σk |uT |H0(uT). This quantity provides a lower bound to any com-
pressor that encodes each symbol with a codeword depending on the symbol itself
and on the k immediately preceding symbols.

Example 1 Let T = mississippi. For k = 1 it is iT = mssp, sT = isis, pT =
ip. Hence,

H1(T) = 4

11
H0(mssp) + 4

11
H0(isis) + 2

11
H0(ip) = 6

11
+ 4

11
+ 2

11
= 12

11
.

Not surprisingly, we have that Hk(T) ≥ Hk+1(T) for any k ≥ 0. Recently (see
e.g. [12, 13, 16, 20, 23, 26, 27] and references therein) several authors have pro-
vided upper bounds in terms of Hk(T) for sophisticated compressors, such as
gzip [23], bzip2 [12, 22, 27], and ppm. These bounds have the form |C(T)| ≤
λ|T |Hk(T) + fk(|T |, σ), which is indeed a generalization of the one above used for
zero-order compressors (with k = 0) where λ is a positive constant and fk(|T |, σ)

is a function including the extra-cost of encoding the source model and/or other in-
efficiencies of C. We will say that C is a k-th order compressor, for a particular
choice of k, whenever its output-length can be closely approximated by an entropy-
based bound having the form above. The smaller are λ and fk(), the better is the
compressor C. As an example, the bound of the compressor in [26] has λ = 1 and
f (|T |, σ) = O(σk+1 log |T | + |T | logσ log log |T |

log |T |).
In our approach, we will use entropy-based upper bounds for the estimation of

|C(T [i, j])|. Clearly, this will not be enough to achieve a fast DP-based algorithm

3The frequencies can be also learned and deployed in the compression process as the input text is scanned
(dynamic model [33]). This case will be dealt with in Sect. 9.

58 Algorithmica (2011) 61:51–74

Fig. 1 Burrows-Wheeler
Transform of the word
mississippi. The last
column of the conceptual matrix
is the transformed string
ipsm$pissii

$mississipp i
i$mississip p
ippi$missis s
issippi$mis s
ississippi$ m
mississippi $
pi$mississi p
ppi$mississ i
sippi$missi s
sissippi$mi s
ssippi$miss i
ssissippi$m i

for our optimal-partitioning problem. We cannot re-compute from scratch those esti-
mates for every substring T [i, j] of T , being them Θ(n2) in number. So we will show
some structural properties of our problem (Sect. 4) and introduce novel technicalities
(Sects. 5–6) that will allow us to compute Hk(T [i, j]) only on a reduced subset of
T ’s substrings, taking O(n log1+ε n) time and O(n) space overall.

2.2 The Burrows-Wheeler Transform

The Burrows-Wheeler transform of an input text T (BWT(T) for short [6]) is com-
puted via three steps: (1) append to the end of T a special symbol $ smaller than
any other symbol in Σ ; (2) form a conceptual matrix M whose rows are the cyclic
shifts of the string T $, sorted in lexicographic order; (3) construct the transformed
text BWT(T) by taking the last column of M . See Fig. 1 for an example.

The Burrows-Wheeler transform is a permutation of T $, and in [6] Burrows and
Wheeler proved that it is possible to recover T from BWT(T) in O(|T |) time. The
property that makes the BWT a powerful text compression tool is the following: for
each substring u of T , the symbols preceding u in T form a substring of BWT(T).
This is a consequence of the fact that all the rows of the conceptual matrix prefixed
by u appear consecutively in the lexicographic order. Thus, when applied to input ex-
hibiting higher order correlations (such as natural language texts), the BWT is likely
to generate a locally homogeneous string, consisting of the concatenation of sev-
eral substrings made up of few distinct symbols. To take advantage of this property,
compressors based on the BWT process the string BWT(T) using a technique called
Move-To-Front encoding [2] (MTF). MTF encodes each symbol with the number of
distinct symbols encountered since its previous occurrence. The produced string has
the same length as BWT(T) and, if BWT(T) is locally homogeneous, the MTF-string
mainly consists of small integers which can be highly compressed by means of sim-
ple statistical encoders like Huffman or Arithmetic coding, possibly preceded by the
run-length encoding (RLE) of runs of equal integers. The combination of the steps
BWT, MTF and RLE followed by a zero-th order statistical compressor is the well-
known Block-Sorting compression algorithm [9], which is at the basis of powerful
text compressors such as bzip2.

Algorithmica (2011) 61:51–74 59

Our approach to the optimal partitioning problem can be clearly applied to
bzip2-like compressors. However, since their entropy-based estimates may result
far from the real output-size (see e.g. [15]), we introduce in Sect. 7 a novel approach
that computes efficiently the exact output-size of most BWT-based compressors, thus
avoiding the use of (entropy-based) estimators for it.

2.3 Textual Compression Boosting

Compression Boosting is a technique that improves the compression performance of
a wide class of (poor) data compressors. The works of [12, 18] tackled the question
of compression boosting by using an instantiation of the PPC-paradigm in which the
permuting step is implemented via the BWT. The net result was a tool for boosting
the performance of a simple zero-th order base compressor C from bounds in H0 to
bounds in Hk , simultaneously over all k ≥ 0. In particular, the booster of [12] returns
a compressor which has essentially the same time/space complexity of the boosted
(base-)compressor. All the boosting techniques proposed in the literature start from
the next lemma, which links together the Burrows-Wheeler Transform, the empirical
entropy and the optimal partitioning problem:

Lemma 1 [18] For any string S and any positive integer k, there exists a partition
Ŝ1Ŝ2 . . . Ŝf of the string BWT(S) such that |S|Hk(S) = ∑f

i=1 |Ŝi |H0(Ŝi).

This lemma suggests a new compression algorithm, denoted hereafter by BWTC
OPT ,

which compresses the input text T via the following three basic steps:

(1) Compute BWT(T);
(2) Optimally partition BWT(T) with respect to the base compressor C;
(3) Separately compress with C each piece of the partition, and finally concatenate

the results in output.

The next result is a consequence of Lemma 1:

Theorem 1 [18] Let C be a compressor such that |C(x)| ≤ λ|x|H0(x) + μ|x| + c,
where λ, μ and c are non-negative values. Then, for all k ≥ 0, the output-size in
bits of the compressor BWTC

OPT applied to the string T is bounded by λ|T |Hk(T) +
μ|T | + O(cσk).

For instance, if C is the classic Huffman encoder, we have λ = μ = 1 and
c = O(σ logσ) and therefore |BWTC

OPT(T)| ≤ |T |Hk(T)+|T |+O(σk+1 logσ). The-
orem 1 thus reduces the problem of boosting a base compressor C to that of comput-
ing an optimal partitioning of the BW-transformed text, as required in step (2). Up to
now, no efficient procedure is known for implementing this task. Ferragina et al. [12]
(and subsequently many other authors, see e.g. [13, 16, 26]) proposed a partition-
ing technique which is not optimal but, nonetheless, achieves the k-th order entropy
bound stated in Theorem 1. The main idea of [12] is to focus on a restricted family of
partitions of the BWT. Let ST denote the suffix tree of the input text T $. Any node u

of ST has implicitly associated a substring of T $, given by the concatenation of the

60 Algorithmica (2011) 61:51–74

edge labels on the downward path from the root of ST to u. In that implicit associ-
ation, the leaves of ST correspond to the suffixes of T $. Assume that the suffix tree
edges are sorted lexicographically. Since each row of the BWT matrix is prefixed by
one suffix of T $ and rows are lexicographically sorted, the i-th leaf (counting from
the left) of the suffix tree corresponds to the i-th row of the BWT matrix. Associate to
the i-th leaf of ST the i-th symbol of BWT(T).

For any suffix tree node u, let T̂ 〈u〉 denote the substring of BWT(T) obtained by
concatenating, from left to right, the symbols associated to the leaves descending
from node u. Of course T̂ 〈root(ST)〉 = BWT(T). A subset L of ST’s nodes is called
a leaf cover if every leaf of the suffix tree has a unique ancestor in L. Any leaf cover
L = {u1, . . . , up} naturally induces a partition of the leaves of ST, and because of
the relationship between ST and the BWT matrix, this induces a partition of BWT(T)

given by {T̂ 〈u1〉, . . . , T̂ 〈up〉}. For any leaf cover L, define its cost as the compression
cost of the partition it induces on BWT(T), namely

∑
u∈L |C(T̂ 〈u〉)|. The optimal leaf

cover is the one achieving the minimum cost.
The main contribution of [12] was to show that:

Theorem 2 The optimal leaf cover can be computed in time O(nσ) with a simple
bottom-up visit of ST and, applying BWTC

OPT on that partition, the final compressed
output satisfies Theorem 1.

The key contribution of Sect. 8 is to show that the partition of BWT(T) obtained via
the optimal leaf-covering is not optimal but, nonetheless, achieves the nice k-th order-
entropy bounds stated in Theorem 1. This is indeed a subtle point that we sustain by
proposing an infinite class of strings for which the compression cost of any leaf-cover
partition is far from the optimal one by a multiplicative factor Ω(logn/ log logn).

3 Approximating Dynamic Programming Solutions

In this section we will show how to efficiently approximate the solution of a Dynamic
Programming Recurrence whenever its cost function satisfies a special (but indeed
common!) property. We present this strategy in a general form since we believe that
it could be used to speed up other algorithms based on the dynamic programming
paradigm.

Let us consider a generic one-dimensional Dynamic Programming Recurrence of
the form:

E[j] = min
1≤i<j

(E[i] + w(i, j)) (1)

where E[1] is equal to some constant c and w() is a real-valued cost function4 de-
fined over the integer values 1 ≤ i < j ≤ n. This type of dynamic programming re-
currences has been extensively studied in the past since they have a large number of

4In this subsection we assume that w() can be evaluated in constant time. This is a strong assumption since
in many cases the efficient computation of its value is a difficult task that may require even sophisticated
techniques. In fact, most of this paper is devoted to solve efficiently this task.

Algorithmica (2011) 61:51–74 61

applications or can be used as a building block to solve more complex recurrences
(see [17] and references therein). It is known that the näive algorithm that computes
E[] in quadratic time is optimal, if we do not make any assumption on the properties
of the cost function w(). However, if w() satisfies some special properties then speed
ups are possible. For example, if the cost function satisfies the so-called quadrangle
inequality (or its inverse) then the Recurrence 1 can be solved in linear time. The
quadrangle inequality is defined as:

w(i0, j0) + w(i1, j1) ≤ w(i0, j1) + w(i1, j0)

for any quadruple of indexes 1 ≤ i0 < i1 < j0 < j1 ≤ n. Unfortunately, the quad-
rangle inequality is not much common and, in particular, it does not hold for the
DP-recurrences arising in our optimal-partitioning problem.

So in this paper we make a step forward by showing that it is possible to compute
an (1 + ε)-approximation of the optimal solution to Recurrence 1 in O(n log1+ε L)

time and O(n) space whenever the cost function w() is monotone. Here ε is an arbi-
trary positive parameter fixed in advance, L is the largest cost assigned by w() to any
pair of indexes, and the monotonicity property states that for every pair of indexes
1 ≤ i < j < n, it is

w(i, j) ≤ w(i, j + 1) and w(i + 1, j) ≤ w(i, j).

It is easy to see that w() can be monotone without satisfying the quadrangle in-
equality. In order to simplify the explanation of our solution it is convenient to resort
to a well-known reduction [8] from the problem of solving Recurrence 1 to the prob-
lem of computing a single source shortest path (SSSP) over a particular directed
acyclic graph (DAG) G . This graph G has a vertex vi for each entry of E and an
edge connecting vi to vj whose cost is w(i, j), for any pair of indexes i and j such
that i < j . Clearly we have E[n] = dG (v1, vn), where we denote with dG (vi, vj) the
shortest path distance between the vertices vi and vj . Notice that G has Θ(n2) edges,
so the reduction by itself does not improve the complexity of the näive algorithm.

In order to obtain a faster solution we design a pruning strategy that produces a
subgraph Gε such that:

1. the number of edges is significantly reduced, from Θ(n2) to O(n log1+ε L);
2. the shortest path distance in Gε between its leftmost v1 and rightmost vn vertices

increases by no more than a factor (1 + ε).

The pruned graph Gε is constructed as the subgraph of G consisting of all edges
(vi, vj) such that at least one of the following two conditions holds:

1. there exists a positive integer k such that w(vi, vj) ≤ (1 + ε)k < w(vi, vj+1);
2. j = n.

In other words, since w() is monotone, for each integer k we are keeping the edge
of G that best approximates the value (1+ ε)k from below. The edges of Gε are called
ε-maximal edges. We point out that each vertex of Gε has at most log1+ε L outgoing
(ε-maximal) edges and, thus, the total size of Gε is O(n log1+ε L).

The following lemma states simple properties of shortest-path distances over G
that will be useful in the proof of the main theorem of this subsection.

62 Algorithmica (2011) 61:51–74

Lemma 2 For any triple of indexes 1 ≤ i ≤ j ≤ q ≤ n we have:

1. dG (vi, vq) ≥ dG (vj , vq);
2. dG (vi, vj) ≤ dG (vi, vq).

Proof We prove only 1, since 2 is symmetric. It suffices by induction to prove the case
j = i + 1. Let (vi, u1)(u1, u2) . . . (uh−1, uh), with uh = vq , be a shortest path in G
from vi to vq . Since w() is monotone and by the fact that i ≤ j , it holds w(vi, u1) ≥
w(vj ,u1). Therefore the cost of the path (vj , u1)(u1, u2) . . . (uh−1, uh) is at most
dG (vi, vq), which proves the claim. �

The correctness of the pruning strategy relies on the following theorem:

Theorem 3 If the cost function w() is monotone, the shortest path in Gε from v1 to
vn has total cost upper bounded by (1 + ε) dG (v1, vn).

Proof We prove a stronger assertion: dGε
(vi, vn) ≤ (1 + ε) dG (vi, vn) for any in-

dex 1 ≤ i ≤ n. This is clearly true for i, because in that case the distance is 0.
Now let us inductively consider the shortest path π in G from vk to vn and let
(vk, vt1)(vt1, vt2) . . . (vthvn) be its edges. By the definition of ε-maximal edge, it
is possible to find an ε-maximal edge (vk, vr) with r ≥ t1, such that w(vk, vr) ≤
(1+ ε) w(vk, vt1). By Lemma 2, dG (vr , vn) ≤ dG (vt1 , vn); and by induction we know
that dGε

(vr , vn) ≤ (1 + ε) dG (vr , vn).
We are interested in upper bounding the cost of the shortest path in Gε from vk

to vn. By definition, this cost is smaller than the cost of any other path in Gε that
connects these two vertices: so let us take the path starting with the edge (vk, vr)

(which is ε-maximal) and then proceed with the shortest path in Gε from vr to vn.
This path has cost w(vk, vr) + dGε

(vr , vn), which can be upper bounded by using the
previous inequalities as (1+ ε) w(vk, vt1)+ (1+ ε)dG (vr , vn) ≤ (1+ ε)(w(vk, vt1)+
dG (vt1 , vn)). The last value is exactly (1 + ε) dG (vk, vn) by definition of π . �

Combining the reduction technique of this section with the statement of Theorem 3
we immediately obtain the following corollary:

Corollary 1 If the cost function w() is monotone, for any positive value ε, the
shortest-path distance in Gε from v1 to vn is an (1 + ε)-approximation Eε[n] of E[n],
where E[n] is the solution of Recurrence 1, namely, E[n] ≤ Eε[n] ≤ (1 + ε)E[n].

Corollary 1 implies that an approximate solution to Recurrence 1 can be obtained
by performing an SSSP-computation over a graph whose size is significantly smaller
than G : namely, O(n log1+ε L) instead of Θ(n2), where L is the maximum edge
weight. However, even though the SSSP-computation over a DAG can be performed
in time proportional to its number of edges, we still have the problem of efficiently
generating the graph Gε . In fact, the obvious solution which takes G and discards the
edges not belonging to Gε takes Θ(n2) time and space. More subtly, even if we are
able to produce Gε without passing through G , we would need Ω(n log1+ε L) space
to store Gε , and this would make the space occupancy of the solution super-linear in

Algorithmica (2011) 61:51–74 63

the input size n. Therefore the generation of Gε in efficient time and space is a non
trivial task.

The remaining part of the paper is devoted to devise efficient solutions for this
problem. Our main achievement will be an algorithm to generate Gε in optimal O(n)

space and in time that depends linearly on the number of ε-maximal edges, in the
case where w() is the cost function deployed in the optimal partitioning problem.
Thus, we will finally derive the following result:

Theorem 4 If the cost function w() is monotone, we can compute in O(n log1+ε L)

time and O(n) space an (1 + ε)-approximation of E[n], where E[n] is the solution
of Recurrence 1, ε is an arbitrary positive real value fixed in advance and L is the
largest cost assigned by the cost function w().

4 Optimal Partitioning Problem

It is easy to notice that the optimal partitioning problem stated in Sect. 1 can be solved
with Recurrence 1 by setting w(i, j) = |C(T [i, j − 1])| where |C(T [i, j − 1])| de-
notes the size in bits of the substring T [i, j −1] compressed by C. The corresponding
DAG, denoted G(T), has a vertex vi for each text position i of T , plus an additional
vertex vn+1 marking the end of the text, and an edge connecting vertex vi to vertex vj

with associated the cost w(vi, vj) = |C(T [i, j −1])|. Notice that the edge lands to the
text symbol that follows the substring “compressed” by that edge. In what follows we
assume that w() is monotone, so that we can resort to our pruning strategy. This as-
sumption holds for almost any realistic compressor C, because it simply assumes that
compressing any string s by C produces an output which is longer than compress-
ing any prefix or suffix of s. As a result, we can apply Theorem 3 and thus obtain
a (1 + ε)-approximation of the optimal partition of T from the computation of the
SSSP in Gε(T) from v1 to vn+1. This can be easily done in O(|Gε(T)|) = O(n logε n)

time since Gε(T) is a DAG [8], by making a single pass over its vertices according to
their enumeration.

However, the time/space efficient construction of Gε(T) is non trivial for three
main reasons. First, the original graph G(T) contains Ω(n2) edges, so we cannot
construct Gε(T) by pruning G(T)’s edges via the explicit check of whether they are ε-
maximal or not. Second, we cannot compute the cost of an edge (vi, vj) by executing
C(T [i, j − 1]) from scratch, since this would require time linear in the substring
length, and thus Ω(n3) time over all T ’s substrings. Third, we cannot materialize
Gε(T) (i.e. its adjacency lists) because it consists of Θ(n polylog(n)) edges, and thus
its space occupancy would be super-linear in the input size n = |T |.

The rest of this section is therefore devoted to design an algorithm which over-
comes the three limitations above. The specialty of our algorithm consists of materi-
alizing Gε(T) on-the-fly, as its vertices are examined during the SSSP-computation,
spending no more than poly-logarithmic time per edge. The actual time complex-
ity per edge will depend on the entropy-based cost function we will use to estimate
|C(T [i, j − 1])| (see Sect. 2) and on the dynamic data structure we will deploy to
compute this estimation.

64 Algorithmica (2011) 61:51–74

The key tool we use to make a fast estimation of the edge costs is a dynamic
data structure built over the input text T and requiring O(|T |) space. We state the
main properties of this data structure in an abstract form, in order to set-up a general
framework for solving our problem; in the next sections we will then provide several
implementations of this data structure depending on the context of use (e.g. zero-
th order compressor, k-th order compressor, BWT-based compressor, etc.) and thus
obtain real time/space bounds for our solutions.

So let us assume to have a dynamic data structure that maintains a set of slid-
ing windows over T denoted by w1,w2, . . . ,wlog1+ε n. The sliding windows are sub-
strings of T which start at the same text position l but have different lengths: namely,
wi = T [l, ri] and r1 ≤ r2 ≤ . . . ≤ rlog1+ε n. The data structure must support the fol-
lowing three operations:

1. Remove() moves the start-position l of all windows one position to the right (i.e.
l + 1);

2. Append(wi) moves the end-position of the window wi one position to the right
(i.e. ri + 1);

3. Size(wi) computes and returns the value |C(T [l, ri])|.
The crucial point is that this data structure is enough to generate the ε-maximal

edges of G(T) via a single pass of T using O(|T |) optimal space. More pre-
cisely, let vl be the vertex of G(T) currently examined by our SSSP computa-
tion, and thus l is the current position reached by our scan of T . We maintain
the following invariant: the sliding windows correspond to all ε-maximal edges
going out from vl , that is, the edge (vl, v1+rt) is the ε-maximal edge5 satisfy-
ing w(vl, v1+rt) ≤ (1 + ε)t < w(vl, v1+(rt+1)). Initially all indexes are set to 0. To
maintain the invariant, when the text scan advances to the next position l + 1, we
call operation Remove() to increment index l and, for each t = 1, . . . , log1+ε(n),
we repeatedly call operation Append(wt) until we find the largest rt such that
Size(wt) = w(vl, v1+rt) ≤ (1 + ε)t . The key issue here is that Append and Size
are paired so that our data structure should take advantage of the rightward sliding of
rt for computing w(vl, v1+rt) efficiently. Just one symbol is entering wt to its right,
so we need to deploy this fact for making the computation of Size(wt) fast (given its
previous value). Here comes into play the second contribution of our paper that con-
sists of adopting the entropy-bounded estimates for the compressibility of a string,
mentioned in Sect. 2, to estimate indeed the edge costs Size(wt) = |C(wt)|. This
idea is crucial because we will be able to show that these functions do satisfy some
structural properties that admit a fast incremental computation, as the one required
by the execution of the instruction-pair Append+ Size.

These issues will be detailed in the following sections, here we just state that,
overall, the SSSP computation over Gε(T) takes O(n) calls to operation Remove,
and O(n log1+ε n) calls to operations Append and Size.

Theorem 5 If we have a dynamic data structure occupying O(n) space and sup-
porting operation Remove in time L(n), and operations Append and Size in

5Recall that an edge identifies a substring which ends one character before its landing position, hence the
+1 with rt .

Algorithmica (2011) 61:51–74 65

time R(n), then we can compute the shortest path in Gε(T) from v1 to vn+1 taking
O(n L(n) + (n log1+ε n) R(n)) time and O(n) space.

5 On Zero-th Order Compressors

In this section we explain how to implement the data structure of Theorem 5 when-
ever the base compressor C is a zero-th order compressor, and thus H0 is used to
provide a bound to the (compression) cost of the edges of G(T), as discussed in
Sect. 2. The key point is to show how to efficiently compute Size(wi) as the sum of
|T [l, ri]|H0(T [l, ri]) = ∑

c∈Σ nc log((ri − l + 1)/nc) plus f0(ri − l + 1, |ΣT [l,ri]|),
where nc is the number of occurrences of symbol c in T [l, ri] and |ΣT [l,ri]| denotes
the number of different symbols in the substring T [l, ri].

The first solution we are going to present is very simple and uses O(σ) space
per window, hence O(σ log1+ε n) space overall. The idea is the following: for each
window wi we keep in memory an array of counters Ai[c] indexed by symbol c in Σ .
At any step of our algorithm, the counter Ai[c] stores the number of occurrences of
symbol c in T [l, ri]. For any window wi , we also use a variable Ei that stores the
value

∑
c∈Σ Ai[c] logAi[c]. We have:

|T [l, ri]| H0(T [l, ri]) = (ri − l + 1) log(ri − l + 1) − Ei. (2)

Therefore, if we know the value of Ei , we can answer a query Size(wi) in con-
stant time. So we are left with showing how to modify the E’s value as a result of a
Remove or Append operation. This can be done as follows:

1. Remove: For each window wi , we subtract from the appropriate counter and from
the variable Ei the contribution of the symbol T [l] which has been evicted from
the window. That is, we decrease Ai[T [l]] by one, and update Ei by subtracting
(Ai[T [l]]+ 1) log(Ai[T [l]]+ 1) and then summing Ai[T [l]] logAi[T [l]]. Finally
we set l = l + 1.

2. Append(wi): We add to the appropriate counter and variable Ei the contribution
of the symbol T [ri + 1] which has been appended to window wi . That is, we
increase Ai[T [ri + 1]] by one, then we update Ei by subtracting (A[T [ri + 1]] −
1) log(A[T [ri + 1]] − 1) and summing A[T [ri + 1]] logA[T [ri + 1]]. Finally we
set ri = ri + 1.

This way, operation Remove requires constant time per window, hence
O(log1+ε n) time overall. Append(wi) takes constant time. The space required by
all counters Ai is O(σ log1+ε n). Unfortunately, this can be too much if this solution
is used as the basic-block for computing the k-th order entropy of T as we will do
in Sect. 6. In that case we would get min(σ k+1, n) log1+ε n space, which may be
superlinear in n depending on σ and k.

Therefore, the rest of this section is devoted to provide an implementation of
our dynamic data structure that takes the same query time above for the three
operations—Remove, Append and Size—but within O(n) space, thus resulting
independent from σ and k. The new solution still uses Ei ’s value for computing
Size(wi) (according to Eq. 2), but the counters Ai previously used to determine

66 Algorithmica (2011) 61:51–74

Ei are computed on-the-fly by exploiting the fact that all windows share the same
starting position l. In particular we introduce two arrays:

– An array B[1, σ] indexed by symbols, whose entry B[c] stores the number of
occurrences of symbol c in T [1, l − 1].

– An array R[1, n] indexed by text positions, whose entry R[j] stores the number of
occurrences of symbol T [j] in T [1, j].
The number of elements in both B and R is n + σ = O(n). These two arrays are

enough to evaluate the value Ei which, in turn, is enough to estimate H0 (see Eq. 2),
as operations Remove and Append are executed. Let us see how.

First of all we notice that R can be computed via a scan of T in O(n) time,
and its values are independent of Remove-Append operations. On the other hand
B[1, σ] depends on the starting position l of the windows wi but not on its ending
positions, so its content is not influenced by Append and can be trivially changed
after the Remove operation by increasing B[T [l]] of one unit. So, hereafter, we
assume to have up-to-date all values of B and R as operations Remove and Append
are executed.

Let us now show how to correctly update the value Ei after each operation Ap-
pend and Remove, given that B and R are available. Following the scheme in-
dicated in items 1 and 2 before, we notice that Append(wi) needs to compute
Ai[T [ri + 1]], which is the number of occurrences of T [ri + 1] in T [l, ri + 1]. This
is given by R[ri + 1] − B[T [ri + 1]], thus it is computable in O(1) time.

Conversely, the execution of Remove induces an update of Ei which is more
involved because it requires to evaluate the value of Ai[T [l]] for each window wi .
Similarly as before, we could compute each of these values as R[t]−B[T [l]], where
t is the last occurrence of symbol T [l] in T [l, ri]. The problem with this formula
is that we do not know the position t . We solve this issue by resorting to a doubly
linked list Lc for each symbol c. The list Lc links together the last occurrences of
c in all those windows, ordered by increasing position. Notice that a position j may
be the last occurrence of symbol T [j] for different, but consecutive, windows given
that the windows wi have increasing length. In this case we force this shared position
to occur in LT [j] just once. By construction, these lists are sufficient to derive the
value of Ai[T [l]]: for each position t ∈ LT [l] compute R[t] − B[T [l]]. Once we
have Ai[T [l]], for all windows wis, we update all Ei ’s as explained in the above
item 1. This process takes O(log1+ε n) time, because |LT [l]| ≤ log1+ε n, and uses
O(n) space, because the number of elements in all the lists Lc is bounded by the text
length.

It remains to explain how to keep lists L correctly updated after a Remove() or
an Append(wi) operation. First, notice that only one list may change because just
one symbol enters/exits the windows wi . More precisely, Remove has possibly to
remove position l from list LT [l]. This change is easy because, if that position is in
the list, given that T [l] is the last occurrence of that symbol in w1 (recall that all
the windows start at position l, and are kept ordered by increasing ending position),
thus l must be the head of LT [l]. So we find it efficiently. The change on the Ls
induced by Append(wi) is more involved. Since the ending position of wi is moved
to the right, position ri + 1 becomes the last occurrence of symbol T [ri + 1] in wi .

Algorithmica (2011) 61:51–74 67

Thus, this position must be inserted in LT [ri+1] in its correct (sorted) order, if it is not
present yet. Obviously, we can do that in O(log1+ε n) time by scanning the whole
list, but this is too much. So we show how to spend only constant time. Let p be the
rightmost occurrence of the symbol T [ri + 1] in T [0, ri].6 If p < l, then ri + 1 must
be inserted in the front of LT [ri+1] and we have done. In fact, p < l implies that there
is no occurrence of T [ri + 1] in T [l, ri] and, thus, no position can precede ri + 1 in
LT [ri+1]. Otherwise (i.e. p ≥ l), we have that p is in LT [ri+1], because it is the last
occurrence of symbol T [ri + 1] for some window wj with j ≤ i. We observe that
if wj = wi , then p must be replaced by ri + 1 which is now the last occurrence of
T [ri + 1] in wi ; otherwise ri + 1 must be inserted after p in LT [ri+1] because p is
still the last occurrence of this symbol in the window wj . We can decide which one
is the correct case by comparing p and ri−1 (i.e., the ending position of the preceding
window wi−1). In any case, the list is kept updated in constant time.

We have therefore proved the following:

Lemma 3 Let T [1, n] be a text drawn from an alphabet of size σ = poly(n). If we
estimate Size() via zero-th order entropy (as detailed in Sect. 2), then we can design
a dynamic data structure that takes O(n) space and supports the operations Remove
in R(n) = O(log1+ε n) time, and Append and Size in L(n) = O(1) time.

Combining Theorem 5 and Lemma 3 we obtain:

Theorem 6 Given a text T [1, n] drawn from an alphabet of size σ = poly(n), we can
find an (1 + ε)-optimal partition of T with respect to a zero-th order compressor in
O(n log1+ε n) time and O(n) space, where ε is any positive constant.

The case of zero-th order compressors is interesting in practice because Huffword
is one of the standard choices for the storage of Web pages [33]. In this case Σ con-
sists of the distinct words appearing in the Web-page collection, so σ is large, and thus
our technical improvement that made our solution independent on σ is particularly
relevant in this case. Section 8 will deploy this result also to obtain a fast approxima-
tion of the optimal partition of BWT(T), and thus optimize the compression booster
of [12].

6 On k-th Order Compressors

In this section we make one step further and consider the more powerful k-th order
compressors, for which do exist Hk bounds for estimating the size of their com-
pressed output (see Sect. 2). Here Size(wi) must compute |C(T [l, ri])| which is es-
timated by the k-th order compressibility of T [l, ri], namely (ri − l+1)Hk(T [l, ri])+
fk(ri − l + 1, |ΣT [l,ri]|), where ΣT [l,ri] denotes the number of different symbols
in T [l, ri].

6Notice that we can precompute and store the last occurrence of symbol T [j + 1] in T [1, j] for all j s in
linear time and space.

68 Algorithmica (2011) 61:51–74

Let us denote with Tq [1, n − q] the text whose i-th symbol T [i] is equal to the
q-gram T [i, i + q − 1]. Actually, we can remap the symbols of Tq to integers in
[1, n], because the number of distinct q-grams occurring in Tq is less than n. Thus
Tq ’s symbols take O(logn) bits and Tq can be stored in O(n) space. This remapping
takes linear time and space, whenever σ is polynomial in n, and it does not change
the zero-th order entropy of Tq .

It is well known that the k-th order entropy of a string can be expressed as the
difference between the zero-th order entropy of its k + 1-grams and its k-grams (see
definition Sect. 2). This suggests to use the solution of the previous section for com-
puting the zero-th order entropy of the appropriate substrings of Tk+1 and Tk . More
precisely, we use two instances of the data structure of Theorem 6 (one for Tk+1
and one for Tk), which are kept synchronized in the sense that, when operations are
performed on one data structure, then they are also executed on the other.

Lemma 4 Let T [1, n] be a text drawn from an alphabet of size σ = poly(n). If we
estimate Size() via k-th order entropy (as detailed in Sect. 2), then we can design a
dynamic data structure that takes O(n) space and supports the operations Remove
in R(n) = O(log1+ε n) time, and Append and Size in L(n) = O(1) time.

Combining Theorem 5 and Lemma 4 we obtain:

Theorem 7 Given a text T [1, n] drawn from an alphabet of size σ = poly(n), we
can find an (1 + ε)-optimal partition of T with respect to a k-th order compressor in
O(n log1+ε n) time and O(n) space, where ε is any positive constant.

We point out that this result applies also to the practical case in which the base
compressor C can process at once a maximum block-size B (this is the typical sce-
nario for gzip, bzip2, etc.). In this situation, we can restrict the set of ε-maximal
edges to the ones that cover no more than B vertices. Given that the maximal cost of
a B-long substring of T is O(B logσ), i.e. the case of un-compressible substring, the
total number of ε-maximal edges outgoing from a vertex is O(log1+ε(B logσ)) (see
definition in Sect. 3). Consequently, the time performance of our solution reduces to
O(n log1+ε(B logσ)) in this case.

7 On BWT-Based Compressors

As we mentioned in Sect. 2 we know entropy-bounded estimates for the output size
of BWT-based compressors. So we could apply Theorem 7 to determine the optimal
partitioning of T for such types of compressors. However, equally known [15] is that
such compression-estimates are rough in practice and thus of poor use.

In this section, we propose a solution to the optimal partitioning problem for BWT-
based compressors that introduces a Θ(σ logn) slowdown in the time complexity of
Theorem 7, but with the advantage of computing the (1 + ε)-optimal solution wrt the
real compressed size, thus without any estimation by entropy-cost functions. When
σ is small, this slowdown results negligible.

Algorithmica (2011) 61:51–74 69

In order to achieve this result, we need to address a slightly different (but yet in-
teresting) problem defined as follows. Assume that the input string T has the form
S[1]#1S[2]#2 . . . S[m]#n where each S[i] is a text (called page) drawn from an alpha-
bet Σ , and #1,#2, . . . ,#n are special symbols greater than any other symbol of Σ .
A partition of T must be page-aligned, that is it must form groups of contiguous
pages S[i]#i . . . S[j]#j , denoted also S[i, j]. Our aim is to find a page-aligned par-
tition whose compression cost (as defined in Sect. 1) is at most (1 + ε)-times the
minimum possible compression cost, for any fixed ε > 0. We notice that this prob-
lem generalizes the table partitioning problem [5], since we can assume that S[i] is a
column of the table but of variable length.

For simplicity of exposition, we assume a “simplified” Block-Sorting algorithm
that does not use the RLE encoding step.7 Our solution deploys a close analog of
Theorem 5 with the only difference that the windows w1,w2, . . . ,wm subject to the
operations Size, Append and Remove are groups of contiguous pages of the form
wi = S[l, ri].

It goes without saying that the data structure of Theorem 5 could be implemented
by using any known solution that dynamically maintains a string compressed with a
BWT-based compressor under insertions and deletions of symbols and apply it onto
the windows wi (see e.g. [11] and references therein). Unfortunately, these solutions
do not fit our context for two reasons: (1) their underlying compressor is significantly
different from the scheme above; (2) in the worst case, they would spend linear space
per window yielding a super-linear space complexity overall. Conversely, we pro-
pose in this section to evaluate the exact compressed output-size of the BWT-based
algorithm applied on each window wi by keeping the frequency distribution of the in-
tegers in the string w′

i = MTF(BWT(wi)), simultaneously over all windows wi .8 This
information is enough to compute in O(σ) time the final compressed output-size of
the BWT-based compressors because they typically use as final compression step an
Huffman or Arithmetic statistical encoder over the MTF-output [33].

Recall that BWT(T) is a permutation of T ; so we denote by active[a,b] all occur-
rences of symbols of T [a, b] within BWT(T). The next simple result will be useful:

Theorem 8 There exists a data structure that takes O(n) space and answers the
following two queries in O(logn) time:

– Prevc(I, h): locate the last active[a,b] occurrence in BWT(T)[0, h − 1] of sym-
bol c;

– Nextc(I, h): locate the first active[a,b] occurrence in BWT(T)[h + 1, n] of sym-
bol c,

where c ∈ Σ , I = [a, b] is a range of positions in T and h is a position in BWT(T).

Proof This is achieved by a straightforward reduction to a classic geometric range-
searching problem. Given a set of points P = {(x1, y1), (x2, y2), . . . , (xp, yp)} from

7The reader is invited to exercise herself to manage RLE too.
8Recall that MTF(s) turns the string s drawn from alphabet Σ , into a sequence of integers in the range
[1, σ].

70 Algorithmica (2011) 61:51–74

the set [n] × [n] (notice that n can be larger than p), such that no pair of points share
the same x- or y-coordinate, there exists a data structure [25] requiring O(p) space
and supporting the following two queries in O(logp) time:

– rangemax([l, r], h): return among the points of P contained in [l, r] × [−∞, h]
the one with maximum y-value;

– rangemin([l, r], h): return among the points of P contained in [l, r] × [h,+∞]
the one with minimum y-value.

Initially we compute the suffix array saT [1, n] and the inverse suffix array
isaT [1, n] of text T in O(n logσ) time. Then, for each symbol c ∈ Σ , we define
Pc as the set of points {(i, isaT [i + 1])| T [i] = c} and build the above geometric
range-searching structure on Pc. It is easy to see that Prevc(I, h) can be computed
in O(logn) time by calling rangemax(I, h) on the set Pc , and the same holds for
Nextc by using rangemin instead of rangemax. �

Now we are ready to introduce our solution to Theorem 5 which hinges on two
key facts (whose proofs belongs to folklore!):

1. Since the pages are separated in T by distinct separators, inserting or removing
one page into a window w does not alter the relative lexicographic order of the
original suffixes of w. Therefore we can derive BWT(w) from BWT(T) by concate-
nating w’s symbols in accordance with their order in the whole BWT(T) (see [11]
and references therein). This specifically means that we can work implicitly on
BWT(w) by making use of BWT(T) and the span of text positions covered by w.

2. If string s′ is obtained from string s by inserting or removing a symbol c into
an arbitrary position, then MTF(s′) differs from MTF(s) in at most σ integers.
More precisely, if c′ is the next occurrence in s of the newly inserted (or removed)
symbol c, then the MTF has to be updated only in the integers that correspond to
the first occurrence of some of the symbols of Σ that lie between c and c′.

As observed above, we need to estimate at each window w the frequency of the
symbols in w′ = MTF(BWT(w)). These symbols are integers in [1, σ], so we maintain
an array Fw[1, σ] for the MTF-symbol frequencies in w. The update of Fw after a
Remove() or an Append(w) operation is difficult because pages are added/removed
from the extremes of the window w and we cannot recompute MTF(BWT(w)) from
scratch at each operation. In the following we will concentrate only on Append(w)

since Remove is symmetrical.
The idea to perform Append(w), where w = S[l, r], is to conceptually insert the

symbols of the next page S[r + 1] into BWT(w) one at time from left to right. From
item 1 above, the relative order of the symbols of BWT(w) is preserved in BWT(T), so
it is more convenient to work implicitly with w’s symbols in BWT(T) by deploying
the data structure of Theorem 8 built over the whole text T . Precisely, let c be one of
the symbols of S[ri + 1] we have to logically insert in BWT(w). We can compute the
position (say, h) of this symbol in BWT(T) by deploying the inverse suffix array of T ,
which can be constructed in advance taking O(n logσ) time and O(n) space. Once
we know position h, we have to determine what changes in MTF(BWT(w)) the inser-
tion of c has produced and update Fw accordingly. From item 2 above, the insertion of

Algorithmica (2011) 61:51–74 71

symbol c changes no more than σ symbols of MTF(BWT(w)). More precisely, let hL

be the last occurrence of c before position h in BWT(w) and let hF be the first occur-
rence of c after h in BWT(w). Then the first occurrence of a symbol after h changes its
MTF-encoding if and only if it occurs both in BWT(w)[hL,h] and in BWT(w)[h,hF].
Otherwise, the new occurrence of c has no effect on the MTF-encoding of that symbol.
Notice that hL and hF can be computed with queries Prevc and Nextc in O(logn)

time by Theorem 8. In order to correctly update Fw , we need to recover for each of
the above symbols their old and new encodings. The first step consists of finding the
last active occurrence before h of each symbols in Σ using Prev queries. According
to Theorem 8 this takes O(σ logn) time per symbol of the new page S[r + 1]. Once
we have these positions, we can recover the status of the MTF list, denoted γ , before
encoding c at position h. This is simply obtained by sorting the symbols of Σ ordered
by decreasing position, in O(σ logσ) time. In the second step, for each distinct sym-
bol that occurs in BWT(w)[hL,h], we find its first occurrence in BWT(w)[h,hF] (if
any). Knowing γ and these occurrences sorted by increasing position, we can sim-
ulate the MTF algorithm to find the old and new encodings of each those symbols,
taking O(σ) time.

Overall, Append(w) takes O(σ logn) time per symbol of the page to be appended
to w. Thus we have proven the following:

Theorem 9 Given a sequence of texts of total length n and alphabet size σ =
poly(n), we can compute an (1 + ε)-approximate solution to the optimal parti-
tioning problem for a BWT-based compressor, in O(n(log1+ε n) σ logn) time and
O(n + σ log1+ε n) space.

8 A Nearly-Optimal Compression Booster

As seen in Sect. 2.3, compression boosting is one of the main applications of the
PPC-paradigm. In particular, by Theorem 1, the problem of boosting a zero-order
compressor is reducible to that of optimally partitioning the Burrows-Wheeler Trans-
form. Ferragina et al. [12] proposed an efficient algorithm (hereafter denoted by
LCOPT) that, given an input string T , finds a partition of the BWT(T) which is optimal
among those ones induced by a leaf cover of the suffix tree of T (see Sect. 2.3). This
partition can be computed in O(nσ) time and its compression cost can be bounded
in terms of effective k-th order entropy bounds (see Theorem 2). However, this is not
the best possible partition for BWT(T) given the 0-th order compressor to be boosted!

Consider an alphabet Σ = {c1, c2, . . . , cσ } and assume that c1 < c2 < . . . < cσ .
We divide Σ into l = σ/α sub-alphabets Σi of α consecutive symbols each, where
α > 0 will be defined later. For each Σi , we build a De Bruijn sequence Ti in which
each pair of symbols of Σi but one9 occurs exactly once. By construction, each se-
quence Ti has length α2. Then, we construct the text T = T1T2 . . . Tl , so that |T | = σα

and each symbol of Σ occurs exactly α times in T .

9The reason for this exception is given by the fact that the sequence we are considering is not cyclic.

72 Algorithmica (2011) 61:51–74

Let us now build BWT(T) and consider its entire BW-matrix. Its first column is
equal to (c1)

α(c2)
α . . . (cσ)α , whereas the last column L = BWT(T) can be partitioned

into substrings Lc each corresponding to the symbols of L whose row starts with c.
By construction, Lc consists of α distinct symbols and the longest common prefix
between any two suffixes of T is at most 1. Moreover, the concatenation of Lcs
strings corresponding to symbols in the same sub-alphabet is formed by at most α + 1
distinct symbols (namely, all the symbols are in the same sub-alphabet except one
which belongs to an other sub-alphabet).

Since LCOPT can partition only using prefix-close contexts (see [12]), there are just
three possible partitions: (1) the one consisting of the whole L, (2) the one consisting
of the σ substrings Lc, or (3) the one consisting of as many substrings as symbols
of L. In order to compute the cost of each possible partition for LCOPT , we have to
fix the cost of storing the various models used by C. This cost clearly depends on
the particular compressor in use. In the following we use the realistic assumption that
each model is stored by paying logσ bits for each distinct symbol. This assumption
covers the common case in which the compressor is either Huffman or Arithmetic.

1. Compressing the whole L at once costs at least σα logσ +σ logσ = Ω(σα logσ)

bits. In fact, all the symbols of Σ have the same frequency in L.
2. Compressing each string Lc costs at least |Lc| log |Lc| + |Lc| logσ = Ω(α logσ)

bits, since each Lc contains α distinct symbols that occur once (and thus are
equiprobable). The overall cost for this partition is Ω(σα logσ) bits.

3. Compressing each symbol separately has overall cost at least |L| logσ =
Ω(σα logσ) bits.

Therefore the best compression achieved by LCOPT has cost Ω(σα logσ) bits.
Let us now consider another partition which is not prefix-close and thus it is not
achievable by LCOPT . This partition subdivides L into σ/α substrings denoted
S1, S2, . . . , Sσ/α of size α2 symbols each (recall that |T | = σα). Notice that each
Si is drawn from an alphabet of size smaller than α + 1, because it spans α Lc’s that
refer to symbols c ∈ Σi , with the addition of the single symbol that precedes Ti in T .
The strings Si are compressed individually in O(α2 logα + α logσ) bits. Since there
are σ/α strings Sis, the cost of this partition is C = O(σα logα+σ logσ). Therefore,
by setting α = Θ(logσ), we have that C = O(σ logσ log logσ) bits.

Comparing the cost of LCOPT ’s partition with this one we observe that the former
is Ω(logσ/ log logσ) times larger than the latter. Since n = |T | = σα = Θ(σ logσ),
we have that logσ/ log logσ = Θ(logn/ log logn).

As a result, no algorithm is currently known that is able to boost a zero-th order
compressor by guaranteeing efficient bounds in terms of the optimal performance.
We conclude this section by observing that Theorem 6 can be applied inside the
boosting scheme of Sect. 2.3 to design a (1 + ε)-approximately optimal partition of
the BWT with respect to a zero-order base compressor. This algorithm is also faster
than the LCOPT when the alphabet is larger than Ω(polylog(n)); this case is inter-
esting whenever we consider either a word-based BWT [28] or the XBW-transform for
labeled trees [12].

Algorithmica (2011) 61:51–74 73

9 Conclusion

In this paper we have investigated the problem of partitioning an input string T in
such a way that compressing individually its parts via a base-compressor C gets a
compressed output that is shorter than applying C over the entire T at once. We have
provided the first algorithm which is guaranteed to compute in O(n log1+ε n) time
and O(n) space a partition of T whose compressed output is guaranteed to be no
more than (1 + ε)-worse the optimal one, where ε may be any positive constant. This
result has been extended to BWT-based compressors and to the compression booster
of [12].

We point out that our results can be easily extended to adaptive compressors too,
namely ones which compute the symbols’ frequencies incrementally during the com-
pression of the input text (see e.g. [21]). The typical example is adaptive Arithmetic
coding and ppm (see [33]). In these cases, the concept of adaptive empirical entropy
of T must be introduced to bound their performance. We will not detail our results
for this setting, but just mention that hold the same time/space bounds stated in The-
orems 6 and 7.

We point out that all our results are obtained by using a novel technique that per-
mits to efficiently approximate solutions of Dynamic Programming recurrences in
which the cost function satisfies a monotonicity requirement. We believe that our ap-
proximation scheme may find applications over a larger class of dynamic program-
ming problems.

As future directions of research we suggest either to investigate the design of o(n2)

algorithms for computing the exact optimal partition, and/or experiment and engineer
our solution for the Web-applications considered in [10].

Acknowledgements We thank Raffaele Giancarlo for pointing out the terminology about the PPC-
paradigm and for showing that our algorithmic solution to the text partitioning problem could be used as
a tool for approximating efficiently the interesting class of Dynamic-Programming Recurrences we have
dealt with in Sect. 3.

References

1. Bentley, J.L., McIlroy, M.D.: Data compression with long repeated strings. Inf. Sci. 135(1–2), 1–11
(2001)

2. Bentley, J.L., Sleator, D.D., Tarjan, R.E., Wei, V.K.: A locally adaptive data compression scheme.
Commun. ACM 29(4), 320–330 (1986)

3. Buchsbaum, A.L., Giancarlo, R.: Table compression. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms,
pp. 939–942. Springer, Berlin (2008)

4. Buchsbaum, A.L., Caldwell, D.F., Church, K.W., Fowler, G.S., Muthukrishnan, S.: Engineering the
compression of massive tables: an experimental approach. In: Proc. of 11th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 175–184 (2000)

5. Buchsbaum, A.L., Fowler, G.S., Giancarlo, R.: Improving table compression with combinatorial op-
timization. J. ACM 50(6), 825–851 (2003)

6. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm. Technical Report
124, Digital Equipment Corporation (1994)

7. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A.,
Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst.
26(2) (2008)

74 Algorithmica (2011) 61:51–74

8. Dasgupta, S., Papadimitriou, C., Vazirani, U.: Algorithms. McGraw-Hill Science/Engineering/Math,
New York (2006)

9. Fenwick, P.M.: The burrows-wheeler transform for block sorting text compression: principles and
improvements. Comput. J. 39(9), 731–740 (1996)

10. Ferragina, P., Manzini, G.: On compressing the textual web. In: Proc. of Third ACM Conference on
Web Search and Data Mining (WSDM) (2010)

11. Ferragina, P., Venturini, R.: The compressed permuterm index. ACM Trans. Algorithms (2010, to
appear)

12. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual compression in optimal
linear time. J. ACM 52, 688–713 (2005)

13. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees for optimal suc-
cinctness, and beyond. In: Proc. of 46th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 184–193 (2005)

14. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and searching XML data via
two zips. In: Proc. of 15th International World Wide Web Conference (WWW), pp. 751–760 (2006)

15. Ferragina, P., Giancarlo, R., Manzini, G.: The engineering of a compression boosting library: theory
vs practice in BWT compression. In: Proc. of 14th European Symposium on Algorithms (ESA’06).
LNCS, vol. 4168, pp. 756–767. Springer, Berlin (2006)

16. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees. Inf. Comput. 207,
849–866 (2009)

17. Giancarlo, R.: Dynamic programming: special cases. In: Apostolico, A., Galil, Z. (eds.) Pattern
Matching Algorithms, 2nd edn., pp. 201–236. Oxford University Press, London (1997)

18. Giancarlo, R., Sciortino, M.: Optimal partitions of strings: a new class of Burrows-Wheeler compres-
sion algorithms. In: Proc. of 14th Symposium on Combinatorial Pattern Matching (CPM). LNCS,
vol. 2676, pp.129–143. Springer, Berlin (2003)

19. Giancarlo, R., Restivo, A., Sciortino, M.: From first principles to the Burrows and Wheeler transform
and beyond, via combinatorial optimization. Theor. Comput. Sci. 387(3), 236–248 (2007)

20. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proc. of 14th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 841–850 (2003)

21. Howard, P.G., Vitter, J.S.: Analysis of arithmetic coding for data compression. Inf. Process. Manag.
28(6), 749–764 (1992)

22. Kaplan, H., Landau, S., Verbin, E.: A simpler analysis of Burrows-Wheeler-based compression.
Theor. Comput. Sci. 387(3), 220–235 (2007)

23. Kosaraju, R., Manzini, G.: Compression of low entropy strings with Lempel–Ziv algorithms. SIAM
J. Comput. 29(3), 893–911 (1999)

24. Kulkarni, P., Douglis, F., LaVoie, J.D., Tracey, J.M.: Redundancy elimination within large collections
of files. In: USENIX Annual Technical Conference, pp. 59–72 (2004)

25. Mäkinen, V., Navarro, G.: Position-restricted substring searching. In: Proc. of 7th Latin American
Symposium on Theoretical Informatics (LATIN). LNCS, vol. 3887, pp. 703–714. Springer, Berlin
(2006)

26. Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to self-indexing. In: Proc.
of 14th Symp. on String Processing and Information Retrieval (SPIRE). LNCS, vol. 4726, pp. 229–
241. Springer, Berlin (2007)

27. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–430 (2001)
28. Moffat, A., Isal, R.Y.: Word-based text compression using the Burrows-Wheeler transform. Inf.

Process. Manag. 41(5), 1175–1192 (2005)
29. Ouyang, Z., Memon, N.D., Suel, T., Trendafilov, D.: Cluster-based delta compression of a collection

of files. In: Proc. of 3rd Conference on Web Information Systems Engineering (WISE), pp. 257–268.
IEEE Comput. Soc., Los Alamitos (2002)

30. Suel, T., Memon, N.: Algorithms for delta compression and remote file synchronization. In: Say-
ood, K. (ed.) Lossless Compression Handbook. Academic Press, New York (2002)

31. Trendafilov, D., Memon, N., Suel, T.: Compressing file collections with a TSP-based approach. Tech-
nical Report TR-CIS-2004-02, Polytechnic University (2004)

32. Vo, B.D., Vo, K.-P.: Compressing table data with column dependency. Theor. Comput. Sci. 387(3),
273–283 (2007)

33. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Documents and
Images, 2nd edn. Morgan Kaufmann, Los Altos (1999)

	On Optimally Partitioning a Text to Improve Its Compression
	Abstract
	Introduction
	Background and Notations
	Empirical Entropy and Compressive Estimates
	The Burrows-Wheeler Transform
	Textual Compression Boosting

	Approximating Dynamic Programming Solutions
	Optimal Partitioning Problem
	On Zero-th Order Compressors
	On k-th Order Compressors
	On BWT-Based Compressors
	A Nearly-Optimal Compression Booster
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

