
Franco Maria Nardini

Query Log Mining to Enhance
User Experience in Search Engines

2011

UNIVERSITÀ DI PISA
Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
Ingegneria dell'Informazione

Ph.D. Thesis

Università di Pisa

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
Ingegneria dell’Informazione

Ph.D. Thesis

Query Log Mining to Enhance
User Experience in Search Engines

Candidate:

Franco Maria Nardini

Supervisors:

Prof. Eng. Luca Simoncini

Dr. Fabrizio Silvestri

2011

SSD ING-INF/05

Sommario

Il Web rappresenta la più grande collezione di documenti che l’uomo abbia mai

costruito. La sua importanza e le sue dimensioni crescono giorno dopo giorno. I

motori di ricerca Web sono lo strumento attraverso il quale gli utenti cercano nel

Web le informazioni di cui necessitano. Il servizio tipicamente offerto da un motore

di ricerca prevede che, a fronte dell’invio di una query testuale che rappresenta il

bisogno informativo dell’utente, sia restituita una lista di documenti considerati

altamente rilevanti per la query inviata. Tutte le interazioni che gli utenti svolgono

con un motore di ricerca Web sono registrate in archivi chiamati query logs. Con

il nome query log mining si fa riferimento ad un insieme di tecniche che hanno

lo scopo di estrarre “conoscenza” dai query log dei motori di ricerca Web che

sia successivamente fruibile per altri scopi. Questa conoscenza è, infatti, il primo

strumento di miglioramento del motore di ricerca stesso e, quindi, dell’esperienza

di ricerca degli utenti. In accordo con questa visione, in questa tesi di dottorato

si studia il fenomeno dell’invecchiamento dei modelli di conoscenza derivati dai

query log e si individuano soluzioni atte a risolvere questo fenomeno. Inoltre, si

propongono nuovi algoritmi di raccomandazione di query che, mantenendo i mo-

delli aggiornati evitano l’invecchiamento della base di conoscenza associata. Un

terzo contributo consiste nello studio di un algoritmo efficiente per la raccomanda-

zione di query che sia particolarmente efficace per la produzione di suggerimenti

per query rare. Infine, viene studiato il problema della diversificazione dei risultati

dei motori di ricerca. In particolare, viene definita una metodologia basata su co-

noscenza estratta dai query log per identificare quando e come i risultati dei motori

di ricerca devono essere diversificati. A questo proposito viene inoltre proposto un

algoritmo efficiente per diversificare risultati di motori di ricerca Web.

Abstract

The Web is the biggest repository of documents humans have ever built. Even

more, it is increasingly growing in size every day. Users rely on Web search en-

gines (WSEs) for finding information on the Web. By submitting a textual query

expressing their information need, WSE users obtain a list of documents that are

highly relevant to the query. Moreover, WSEs tend to store such huge amount

of users activities in query logs. Query log mining is the set of techniques aim-

ing at extracting valuable knowledge from query logs. This knowledge represents

one of the most used ways of enhancing the users search experience. According

to this vision, in this thesis we firstly prove that the knowledge extracted from

query logs suffer aging effects and we thus propose a solution to this phenomenon.

Secondly, we propose new algorithms for query recommendation that overcome

the aging problem. Moreover, we study new query recommendation techniques for

efficiently producing recommendations for rare queries. Finally, we study the prob-

lem of diversifying Web search engine results. We define a methodology based on

the knowledge derived from query logs for detecting when and how query results

need to be diversified and we develop an efficient algorithm for diversifying search

results.

Acknowledgments

I strongly desire to thank a long list of people for helping me in achieving this result.

Firstly, I would like to thank my supervisors Fabrizio Silvestri and Luca Simoncini.

I am particularly grateful to Fabrizio Silvestri whose advises started from my M.Sc.

thesis and continued during my Ph.D. helping me in finding interesting problems

and their solutions, always encouraging me to ask the best to myself.

I also would like to thank all my co-authors with which I share part of the

results of this thesis: Ranieri Baraglia, Daniele Broccolo, Gabriele Capannini,

Lorenzo Marcon, Raffaele Perego from ISTI-CNR, Ophir Frieder from George-

town University and Debora Donato, Carlos Castillo from Yahoo! Research Labs

in Barcelona.

I am also very grateful to the colleagues of the High Performance Computing

Laboratory of the ISTI-CNR in Pisa for the precious ideas, discussions, tips, and

moments we had since I was a Master student there.

I can not forget my colleagues with which I shared the room C-64 at ISTI-CNR:

Gabriele Capannini, Gabriele Tolomei and Diego Ceccarelli for the wonderful “life”

experiences spent in our room and all around the world.

I also would like to thank my family and all my friends. The achievement of

this important result would not have been possible without the continuous support

of them, which always encouraged me in any moment, and helped me whenever

I needed it. A warm thank to a special woman, Serena, whose support during all

these years was very precious, and with which I have shared all the pains and

successes I have been living so far.

VI

A Fosco . . .

. . . luce d’un alba d’Ottobre.

Contents

1 Introduction . 1

1.1 Contributions of the Thesis . 1

1.2 Outline . 3

2 Web Search Engines . 5

2.1 Architecture of a Web Search Engine . 6

3 Query Log Mining . 11

3.1 A Characterization of Web Search Engine Queries 14

3.2 Time Analysis of the Query Log . 19

3.3 Search Sessions . 24

3.4 Time-series Analysis of the Query Log . 31

3.5 Some Applications of Query Log Mining . 34

3.5.1 Query Expansion . 34

3.5.2 Query Recommendation . 37

3.6 Privacy Issues in Query Logs . 43

4 The Effects of Time on Query Flow Graph-based Models for

Query Suggestion . 45

4.1 Introduction . 45

4.2 Related Work . 46

4.3 The Query Flow Graph . 47

4.4 Experimental Framework . 48

4.5 Evaluating the Aging Effect . 50

4.6 Combating Aging in Query-Flow Graphs . 55

4.7 Distributed QFG Building . 59

4.7.1 Divide-and-Conquer Approach . 59

4.8 Summary . 60

Contents

5 Incremental Algorithms for Effective and Efficient Query

Recommendation . 63

5.1 Introduction . 63

5.1.1 Main Contributions . 64

5.2 Related Work . 65

5.3 Incremental algorithms for query recommendation 67

5.3.1 Static solutions . 67

5.3.2 Incremental algorithms . 69

5.4 Quality Metrics . 72

5.5 Experiments . 74

5.5.1 Experimental Setup . 74

5.5.2 Correlation of Metrics . 74

5.5.3 Results . 74

5.6 Summary . 81

6 Generating Suggestions for Queries in the Long Tail with an

Inverted Index . 85

6.1 Introduction . 85

6.2 Related Work . 87

6.3 An Efficient Algorithm for the Query Shortcuts Problem 90

6.3.1 The Search Shortcuts Problem . 90

6.3.2 The Search Shortcuts Generation Method 92

6.4 Assessing Search Shortcuts Quality . 94

6.4.1 Experimental Settings . 96

6.4.2 TREC queries statistics . 97

6.4.3 Search Shortcuts metric . 98

6.4.4 Suggestions Quality on TREC topics . 99

6.5 Summary . 104

6.6 Acknowledgements . 105

7 Efficient Diversification of Web Search Results 107

7.1 Introduction . 107

7.2 Related Work . 109

7.3 Diversification using Query Logs . 110

7.3.1 Mining Specializations from Query Logs 111

7.4 Efficiency Evaluation . 116

7.5 Testing Effectiveness . 119

7.5.1 Evaluation based on Query Log Data . 121

7.6 A Search Architecture Enabling Efficient Diversification of Search

Results . 123

7.7 Summary . 126

8 Conclusions and Future Work . 127

X

Contents

References . 131

XI

List of Figures

2.1 The typical structure of a Web search engine. From [141]. 7

2.2 The typical structure of a distributed web search engine. From [141]. 8

3.1 An example of the AOL query log [116]. 13

3.2 A tag cloud of the 250 most frequent words in the AOL query

log [116]. Picture has been generated using wordle.net. From [141]. . 14

3.3 Query popularity of the first 1,000 queries in the Excite [105] (a),

and ii) AltaVista [100] (b) logs. 17

3.4 Query terms of the first 20 queries in the Excite [105] (a), and

AltaVista [100] (b) logs. 18

3.5 Distribution of query samples across general topic categories for

two different query logs: Excite [105] (a), and AOL [27] (b). 19

3.6 Terms popularity of i) the first 1,000 queries in the Excite [105],

and ii) AltaVista [100] logs. 20

3.7 Distances (in number of queries) between subsequent submissions

of the same query for the AltaVista and Excite log. 21

3.8 Frequencies of query submitted to the AOL search engine during

the day [116]. 21

3.9 Percentage of the query stream covered by selected categories over

hours in a day [27]. 23

3.10 Average percentage of the query stream coverage and

KL-divergence for each category over hours in a day [27]. 23

3.11 Percentage of single query sessions [83]. 26

3.12 Probability of pushing the next button for three query logs [66]. 26

3.13 Summary of the categorization of 4,960 queries analyzed in [99]. 27

3.14 Graphical depiction of transition types defined in [37]. 28

3.15 The difference of using DTW against a simple linear mapping for

comparing two time series. [2]. 32

List of Figures

3.16 An example of the users’ search behavior represented by means of

a Query Flow Graph [35]. 41

4.1 Queries in F3. The set of top 1,000 queries in M3 compared with

the same set projected on M1. Query identifiers are assigned

according to frequencies in M3. The circled area in the plot

highlights the zone from where F3 was drawn. 51

4.2 Histogram showing the number of queries (on the y axis) having a

certain number of useful recommendations (on the x axis). Results

are evaluated automatically. 54

4.3 Histogram showing the total number of queries (on the y axis)

having at least a certain number of useful recommendations (on

the x axis). For instance the third bucket shows how many queries

have at least three useful suggestions. 55

4.4 Histogram showing the number of queries (on the y axis) having a

certain number of useful recommendations (on the x axis). Results

are evaluated automatically. 57

4.5 Histogram showing the total number of queries (on the y axis)

having at least a certain number of useful recommendations (on

the x axis). For instance the third bucket shows how many queries

have at least three useful suggestions. 59

4.6 Example of the building of a two months query flow graph with a

parallel approach. 60

5.1 TermBased vs. QueryOverlap, TermBased vs. LinkOverlap 75

5.2 ResultsMetric vs. QueryOverlap, ResultsMetric vs. LinkOverlap 76

5.3 Coverage for AssociationRules, IAssociationRules, CoverGraph,

and ICoverGraph as a function of the time. 77

5.4 QueryOverlap, and LinkOverlap for AssociationRules, and

IAssociationRules as a function of the time. 79

5.5 QueryOverlap, and LinkOverlap for CoverGraph, and ICoverGraph

as a function of the time. 80

5.6 Omega for AssociationRules, CoverGraph, and IAssociationRules,

ICoverGraph. 81

5.7 LinkOmega for AssociationRules, CoverGraph, and

IAssociationRules, ICoverGraph. 82

5.8 Syntax-based metrics for AssociationRules, CoverGraph, and

IAssociationRules, ICoverGraph as a function of the model

dimensions. 83

6.1 Popularity of final queries in satisfactory sessions. 93

XIV

List of Figures

6.2 Histogram showing the total number of TREC queries (on the y

axis) having at most a certain frequency (on the x axis) in the

training log. For instance, the third bar shows that 23 TREC

queries out of 50 occur at most ten times in the training log. 98

6.3 Distribution of the number of sessions vs. the quality of the top-10

recommendations produced by the three algorithms. 99

6.4 Coverage of the subtopics associated with the 50 TREC

diversity-track queries measured by means of an user-study on the

top-10 suggestions provided by the Cover Graph (CG), Search

Shortcuts (SS), and Query Flow Graph (QFG) algorithms. 100

6.5 Effectiveness measured on the TREC query subtopics among the

top-10 suggestions returned by the Cover Graph (CG), Search

Shortcuts (SS), and Query Flow Graph (QFG) algorithms. 101

6.6 Average effectiveness of the top-10 suggestions provided by the

Cover Graph (CG), Search Shortcuts (SS), and Query Flow Graph

(QFG) algorithms for groups of TREC queries arranged by their

frequency (freq.) in the training log. 102

7.1 Average utility per number of specializations referring to the AOL

and MSN query logs. 123

7.2 A sketch of the WSE architecture enabling diversification. 125

XV

List of Tables

3.1 Features of the most important query logs that have been studied

in the latest years. The dash sign (–) means that the feature in the

relative column was non-disclosed. 13

3.2 List of the fifty most co-occurring terms (term1–term2, frequency)

in the Excite log [150]. 19

3.3 Comparative statistics for Excite Web queries [147]. 22

3.4 Comparison of categories breakdown (in %) for Excite Web queries

(from 1997 to 2001), and Altavista (2002) [83]. 22

3.5 Query classification on the basis of user survey [43]. 25

4.1 Number of nodes and edges for the graphs corresponding to the

two different training segments. 49

4.2 Some examples of recommendations generated on different QFG

models. Queries used to generate recommendations are taken from

different query sets. For each query we present the most important

recommendations with their assigned relative scores. 52

4.3 Model aging statistics varying the model type and the temporal

window. Results were manually assessed. 52

4.4 Recommendation statistics obtained by using the automatic

evaluation method on a set of 400 queries drawn from the most

frequent in the third month. 54

4.5 Time needed to build a Query Flow Graph from scratch and using

our incremental approach (from merging two QFG representing an

half of data). 56

4.6 Manual assessment of the number of useful recommendations

generated for some time-related queries on the three different models. 57

4.7 Some examples of recommendations generated on different QFG

models. Queries used to generate recommendations are taken from

different query sets. 58

List of Tables

4.8 Recommendation statistics obtained by using the automatic

evaluation method on a relatively large set of 400 queries drawn

from the most frequent in the third month. 58

4.9 Time needed to build a two-months data-graph using our

incremental approach and splitting the query log in four parts. 61

6.1 An example of the coverage evaluating process involving the TREC

dataset. For the 8th TREC query appraisal , one of the assessors

evaluates the coverage of suggestions generated by SS, QGF, and

CG. The subtopics covered by each suggestion are reported in bold

between parentheses. Suggestions not covering any of the subtopics

are emphasized. 96

6.2 An example of eight TREC queries with their relative frequency in

the training log. 97

6.3 Query suggestions provided by Search Shortcuts, Cover Graph,

and Query Flow Graph for some TREC diversity-track query topics. 103

7.1 Time complexity of the three algorithms considered. 118

7.2 Execution time (in msec.) of OptSelect, xQuAD, and IASelect by

varying both the size of the initial set of documents to diversify

(|Rq|), and the size of the diversified result set (k = |S|). 119

7.3 Values of α-NDCG, and IA-P for OptSelect, xQuAD, and IASelect

by varying the threshold c. 122

XVIII

List of Algorithms

1 IAssociationRules . 70

2 ICoverGraph . 70

3 AmbiguousQueryDetect(q,A, f(), s) . 112

4 OptSelect(q, Sq, Rq, k) . 118

1

Introduction

The Web is the biggest repository of information that humans have ever built. It

grows very quickly in size and importance every day. These unique characteristics

carry many new challenges for Web researchers, which include high data dimen-

sionality, highly volatile and constantly evolving contents. For these reasons it has

become increasingly necessary to create new and improved approaches to tradi-

tional data mining techniques that can be suitably applied to the Web. The idea

of “automatically identifying interesting and valuable information” has become a

very relevant problem when processing large quantities of data.

In this thesis we focus our efforts on analyzing and extracting valuable knowl-

edge from the behavior of Web search engine users. As we will discuss throughout

this work, queries are crucial to understand how users interact with search engines.

Much of this information is provided implicitly by users and recorded in search

engine query logs. Implicit user feedback provide a unique insight into actual user

needs on the Web. The intuition is that queries and their clicked results implicitly

reveal the opinion of users about specific documents, i.e. they constitute a form of

the so called wisdom of the crowds [14].

1.1 Contributions of the Thesis

We are going to illustrate four new contributions in two important fields of Web

information retrieval and query log mining: query recommendation and Web search

engine results diversification.

The Effects of Time on Query Flow Graph-based Models for Query Suggestion

This chapter based on [23, 24] presents a study of the effects of time on recommen-

dations generated using Query Flow Graphs [35] (QFGs). These models aggregate

information contained in a query log by providing a markov-chain representation

of the query reformulation process followed by multiple users. We show how to

extend QFG-based recommendation models to evolving data. Furthermore, we

1. Introduction

show that the interests of search engine users change over time and new topics

may become popular, while other that focused for some time the attention of the

crowds can suddenly loose importance. The knowledge extracted from query logs

can thus suffer an aging effect, and the models used for recommendations rapidly

become unable to generate useful and interesting suggestions. We show how to

overcome the time-expensiveness problem of building new fresh QFG from scratch

by introducing an incremental algorithm for updating an existing QFG. The so-

lution proposed allows the recommendation model to be kept always updated by

incrementally adding fresh knowledge and deleting the aged one.

Incremental Algorithms for Effective and Efficient Query Recommendation

In Chapter 4 we prove that the knowledge extracted from historical usage data

can suffer an aging effect. Starting from this result, this chapter based on [41]

now presents a study of the effects of incremental model updates on the effec-

tiveness of two query recommendation algorithms. We introduce a new class of

query recommender algorithms that update incrementally the model on which

recommendations are drawn. Starting from two state-of-the-art algorithms, we

design two new query recommender systems that continuously update their mod-

els as queries are issued. The two incremental algorithms differ from their static

counterparts by the way in which they manage and use data to build the model.

In addition, we propose an automatic evaluation mechanism based on four new

metrics to assess the effectiveness of query recommendation algorithms. The exper-

imental evaluation conducted by using a large real-world query log shows that the

incremental update strategy for the recommendation model yields better results

for both coverage and effectiveness due to the “fresh” data that are added to the

recommendation models. Furthermore, this improved effectiveness is accomplished

without compromising the efficiency of the query suggestion process.

Generating Suggestions for Queries in the Long Tail with an Inverted Index

This chapter based on [42] presents a very efficient solution for generating effective

suggestions to Web search engine users based on the model of Search Shortcut [22].

Our original formulation of the problem allows the query suggestion generation

phase to be re-conducted to the processing of a full-text query over an inverted

index. The current query issued by the user is matched over the inverted index,

and final queries of the most similar satisfactory sessions are efficiently selected

to be proposed to the user as query shortcuts. The way a satisfactory session

is represented as a virtual document, and the IR-based technique exploited, al-

lows our technique to generate in many cases effective suggestions even to rare

or not previously seen queries. An additional contribution regards a new evalua-

tion methodology used, based on a publicly-available test collection provided by a

highly reputed organization such as the NIST. The proposed methodology is objec-

tive and very general, and it would grant researchers the possibility of measuring

2

1.2 Outline

the performance of their solution under exactly the same conditions, with the same

dataset and the same evaluation criterium. On the basis of the above evaluation

methods conducted by means of a user-study, and by using an automatic evalu-

ation approach based on a previously defined metric we show that the proposed

method remarkably outperforms its competitors in all the tests conducted.

Efficient Diversification of Web Search Results

This chapter based on [51, 50] presents a general framework for query result diver-

sification comprising: i) an efficient and effective methodology, based on state-of-

the-art query recommendation algorithms, to detect ambiguous queries that would

benefit from diversification, and to devise all the possible common specializations

to be included in the diversified list of results along with their probability distri-

bution, ii) OptSelect: a new diversification algorithm which re-ranks the original

results list on the basis of the mined specializations, iii) a Web search architecture

based on additive Machine Learned Ranking (MLR) systems extended with a new

module computing the diversity score of each retrieved document. A novel formu-

lation of the query result diversification problem has been proposed and motivated.

It allows the diversification problem to be modeled as a maximization problem.

The approach is evaluated by using the metrics and the datasets provided for

the TREC 2009 Web Track’s Diversity Task. Our experimental results show that

our approach is both efficient and effective. In terms of efficiency, our approach

performs two orders of magnitude faster than its competitors and it remarkably

outperforms its competitors in all the tests.

1.2 Outline

This thesis is organized as follows: Chapter 2 presents an overview of Web search

engines, the main components constituting them and their interactions, Chapter 3

presents a survey of the major state-of-the-art contributions concerning the ex-

traction and the use of valuable knowledge extracted from Web search engines’

query logs. We particularly focus on discussing statistical properties of different

query logs and on highlighting the main techniques aiming at enhancing the user

experience and the effectiveness in WSEs. Chapter 4 is devoted to the analysis of

the effects of time on the recommendations produced by a state-of-the-art query

suggestion techniques called Query Flow Graph. In Chapter 5 we introduce new

incremental query recommender techniques capable of taking the recommender

model updated without the need of rebuilding it from scratch every a fixed pe-

riod of time. In Chapter 6 an efficient and effective technique for producing query

recommendation is introduced and evaluated. Chapter 7 presents a general frame-

work for efficient query result diversification based on knowledge extracted from

query logs. Finally, in Chapter 8 we present some conclusions and discuss future

work proposals.

3

2

Web Search Engines

The World Wide Web, (WWW) and commonly known as the Web, is a system of

interlinked hypertext documents accessed via the Internet. It has been proposed in

1989 by Tim Berners-Lee. Its implementation follows a client–server model. Users

relies on a program (called the Web browser) to connect to a remote machine (the

Web server) where the data are stored. Web browsers work by sending requests to

remote servers for information and then interpreting the returned documents writ-

ten in HTML and laying out the text and graphics on the user’s computer screen

on the client side. The Web relies on the structure of its hypertext documents.

In the latest years the Web is enormously increased in size and importance.

With billions of pages, users could spend a lot of time surfing the Web, following

links from one page to another. So, where does an user start? Searching the Web

requires skills, luck and a little bit of art.

Web Search Engines (WSEs) are the primary way users access the contents of

the Web. By using a WSE, users are able to look for some information they might

need either for work or for leisure: news about the latest football match, or about

the last confidence vote of the Parliament.

Search engine directories, such as Yahoo!1, are good at identifying general in-

formation. Like a card catalog in a library, they classify websites into categories,

such as accounting firms, English universities and natural history museums. The

results of a user search will be a list of websites related to the user’s search terms.

What if an user want specific information, such as “biographical information

about Leonardo da Vinci?”. Web indexes are the right things to use. By querying

such indexes, users obtain a ranked list of Web documents that are highly related

with their information needs.

Web search engines are part of a broader class of software systems, namely

Information Retrieval (IR) Systems. Basically, IR systems were born in the early

1960s due to two major application needs: i) the need to allow searching through

1 http://www.yahoo.com/

http://www.yahoo.com/

2. Web Search Engines

digital libraries, and ii) the need for computer users to search through the data

they were collecting in their own digital repositories.

An IR system is basically a software whose main purpose is to return a list of

documents in response to a user query. This description makes IR systems similar

to DB systems. Indeed, the most important difference between DB and IR systems

is that DB systems return objects that exactly match the user query, whereas IR

systems have to cope with natural language that makes it simply impossible for

an IR system to return perfect matches. As an example: what does meta refer to?

A meta character? The meta key in computer keyboards? Every single query may

mean different things to different users. Furthermore, polysemy also comes into

play. The spanish meaning of the word meta is goal. A Web search engine is thus

an IR system on a very large scale.

The first systems similar to modern web search engines started to operate

around 1994. World Wide Web Worm (WWWW) [107] created by Oliver McBryan

at the University of Colorado, and the AliWeb search engine [97] created by Martijn

Koster in 1994, are the two most famous examples. Since then many examples of

such systems have been around the Web: AltaVista, Excite, Lycos, Yahoo!, Google,

ASK, MSN. Nowadays, searching is considered one of the most useful application

on the Web.

In a paper overviewing the challenges in modern Web search engines’ design,

Baeza-Yates et al. [10] state:

The main challenge is hence to design large-scale distributed systems that

satisfy the user expectations, in which queries use resources efficiently,

thereby reducing the cost per query.

Therefore, the two key performance indicators in this kind of applications, in order,

are: (i) the quality of returned results (e.g. handle quality diversity and fight spam),

and (ii) the speed with which results are returned.

2.1 Architecture of a Web Search Engine

A search engine is one of the most complicated software a company may develop.

Consisting of tens of interdependent modules, it represents a big challenge in to-

day’s computer engineering world. Many papers and books sketch the architecture

of web search engines. For example Barroso et al. [25] present the architecture of

Google as it was in 2003. Other search engines are believed to have similar architec-

tures. A Web search engine consists in three major applications [40, 103]: crawling,

indexing, and query processing. Figure 2.1 shows the way the three applications

interact and how the main modules of a web search engine are connected.

Web search engines get their data from different sources: the Web, image and

video repositories (e.g. Flickr, or YouTube), etc. Crawling is the process responsi-

ble for finding new or modified pages on the Web and is made by several software

6

2.1 Architecture of a Web Search Engine

computer engineering world.

Many papers and books sketch the architecture of web search engines. For example Barroso et

al. [26] present the architecture of Google as it was in 2003. Other search engines are believed to

have similar architectures. When a user enters a query, the user’s browser builds a URL (for example

http://www.google.com/search?q=foundations+trends+IR). The browser, then, looks up on a

DNS directory for mapping the URL main site address (i.e. www.google.com) into a particular

IP address corresponding to a particular data-center hosting a replica of the entire search system.

The mapping strategy is done accordingly to different objectives such as: availability, geographical

proximity, load and capacity. The browser, then, sends a HTTP request to the selected data-center,

and thereafter, the query processing is entirely local to that center. After the query is answered by

the local data-center, the result is returned in the form of a HTML page, to the originating client.

Figure 1.1 shows they way the main modules of a web search engine are connected.

!"#$%&'()*$++)(&

!"#$%&

'()"*+,"-.&

/01(2(-&

!",$(-$#&

!"#$%&

.)(/0(#&

1"#$%&

.)(/0(#&

1"#$%&

2)*34$"-&

#$+*(15-)(+&
678	&

:;$&!"#$%&

:;$&<(0/=$(&

>3$(?&'()*$++)(&

'$03+04&

'(*5%,&'(01(-+04&

Fig. 1.1: The typical structure of a web search engine. Note that throughout the text IR core, index

server, and query server are all terms that are used interchangeably.

Web search engines get their data from different sources: the web (primarily), Image and video

repositories (e.g. Flickr, or YouTube), etc. In particular, in the case of web content, a crawler

scours through hypertext pages searching for new documents, and detecting stale, or updated

content. Crawlers store the data into a repository of content (also known as web document cache),

and structure (the graph representing how web pages are interconnected). The latter being used,

mainly, as a feature for computing static document rank scores (e.g. PageRank [148], or HITS [115]).

3

Fig. 2.1. The typical structure of a Web search engine. From [141].

agents called crawlers or spiders. In general, a crawler starts from a list of URLs,

called seeds; then for each page, copies the page into the repository. Furthermore,

the crawler fetches all URLs in the page and adds them to the list of the URLs

to visit, called the crawl frontier. In particular, a crawler scours through hyper-

text pages searching for new documents, and detecting stale, or updated content.

Crawlers store the data into a repository of content (also known as Web document

cache), and structure (the graph representing how Web pages are interconnected).

The latter being used, mainly, as a feature for computing static document rank

scores (e.g. PageRank [115], or HITS [94]). In modern Web search engines, crawlers

continuously run and download pages from the Web updating incrementally the

content of the document cache.

The textual (i.e., hyper-textual) content is indexed to allow fast retrieval oper-

ations (i.e., query requests). The index (built by the Indexer) usually comprises of

several different archives storing different facets of the index. The format of each

archive is designed for enabling a fast retrieval of information needed to resolve

queries. Indexes to support such text-based retrieval can be implemented using

any of the access methods traditionally used to search over classical text docu-

ment collections. Examples include suffix arrays, inverted indexes or inverted files,

and signature files. In Web domain, inverted indexes are the index structure used.

7

2. Web Search Engines

An inverted index is made by a dictionary D of terms. In the following, let D be

the data structure, and V = {t1, t2, · · · , tm} the vocabulary i.e., the set of m terms

of the whole document collection. For each term, we have a list that records in

which documents the term occurs. This list is called posting list and its elements

(postings) contain the IDs of the documents containing the term (and often the

position of the match in the document).

Usually in real systems the design is tailored to distribute requests through

query servers to avoid peaking server response time [25]. In real-world search en-

gines, the index is distributed among a set of query servers coordinated by a broker.

Figure 2.2 shows the interactions taking place among query servers and the broker.

The broker, accepts a query an user and distributes it to the set of query servers.

The index servers retrieve relevant documents, compute scores, rank results and

return them back to the broker which renders the result page and sends it to the

user. The broker is usually the place where the activities of users (queries, clicked

results, etc.) are stored in files called query logs. A module dedicated to analyze

past queries is also usually available within the architecture components.
8 Introduction

Fig. 1.3 The typical structure of a distributed web search engine.

retrieve relevant documents, compute scores, rank results and return

them back to the broker which renders the result page and sends it to

the user. Figure 1.3 shows the interactions taking place among query

servers and the broker.

The broker is usually the place where queries are grabbed and stored

in the query logs. A module dedicated to analyze past queries is also

usually available within the architecture components.

1.2.1 The Index

An Inverted File index on a collection of web pages consists of several

interlinked components. The principal ones are the lexicon, i.e.,

the list of all the index terms appearing in the collection, and the

corresponding set of inverted lists, where each list is associated with

a distinct term of the lexicon. Each inverted list contains, in turn, a

set of postings. Each posting collects information about the occurrences

of the corresponding term in the collection’s documents. For the sake

of simplicity, in the following discussion we consider that each posting

Fig. 2.2. The typical structure of a distributed web search engine. From [141].

Searching is the goal of a Web search engine. When a user enters a query,

the user’s browser builds a URL (for example http://www.google.com/search?q=

franco+maria+nardini). The browser, then, looks up on a DNS directory for map-

ping the URL main site address (i.e., www.google.com) into a particular IP address

corresponding to a particular data-center hosting a replica of the entire search

system. The mapping strategy is done accordingly to different objectives such as:

availability, geographical proximity, load and capacity. The browser, then, sends

an HTTP request to the selected data-center, and thereafter, the query processing

is entirely local to that center. The typical interaction between a user and a WSE

8

http://www.google.com/search?q=franco+maria+nardini
http://www.google.com/search?q=franco+maria+nardini
www.google.com

2.1 Architecture of a Web Search Engine

thus starts with the formulation of a query q, representing the user’s information

need. Note that the information need is different from the query: the first is the

topic about which the user desires to know more, while the second is what the user

conveys to the computer in an attempt to communicate the information need. A

query consists of a list of r terms

q = t1, t2, . . . , tr

Once the user has submitted her query q, document indexes are accessed to

retrieve a single, uncategorized list with the most k relevant items appearing first

search(q) = {d1, d2, · · · , dk}

where k usually is ten.

Sorting documents by relevance requires computing for each document a rele-

vance score with respect to the query. Formally, each relevance of each document

di is evaluated through a scoring function

score(q, di) = si si ∈ R+ ∪ {0}

that returns a score si. The highest is the score, the highest is the relevance of the

document di for the query q.

There are several methods for computing scoring function. A popular scor-

ing function is Okapi BM25 [128], based on a bag of words model : the rank of

a document is given by the query terms appearing into it, without taking into

consideration the relationships between the query terms within the documents.

After documents are sorted by relevance, the top-k results are returned in the

form of an HTML page to the user.

9

3

Query Log Mining

The uncertainty in users’ intent is a key problem in Web search engines and, differ-

ently from smaller scale IR systems, Web IR systems can rely on the availability of

a huge amount of usage information contained within past queries to solve it. Pre-

viously submitted queries represent, in fact, a very important mean for enhancing

effectiveness and efficiency of Web search systems.

Query log mining is concerned with all the techniques aiming at discovering

interesting patterns from query logs of Web search engines with the purpose of

enhancing an online service provided through the Web. It can be seen as a branch

of the more general Web Analytics [80] scientific discipline. According to the Web

Analytics Association,

“Web Analytics is the measurement, collection, analysis and reporting of

Internet data for the purposes of understanding and optimizing Web us-

age” [8].

It can be also seen as a special type of Web usage mining [151]. Web usage

mining, in fact, refers to the discovery of user access patterns from Web usage

logs. Furthermore, query log mining is not only concerned with the search service

(from which queries usually come from) but also with more general services like,

for instance, search-based advertisement, or web marketing in general [81].

Query logs keep track of information regarding interaction between users and

the search engine. They record the queries issued to a search engine and also a

lot of additional information such as the user submitting the query, the pages

viewed and clicked in the result set, the ranking of each result, the exact time at

which a particular action was done, etc. In general, a query log is comprised by

a large number of records 〈qi, ui, ti, Vi, Ci〉 where for each submitted query qi, the

following information is recorded: i) the anonymized identifier of the user ui, ii)

the timestamp ti, iii) the set Vi of documents returned by the WSE, and iv) the

set Ci of documents clicked by ui.

3. Query Log Mining

From query log information it is possible to derive Search Sessions, sets of user

actions recorded in a limited period of time. The concept can be further refined

into: i) Physical Sessions, ii) Logical Sessions, and iii) Supersessions.

Physical Sessions: a physical session is defined as the sequence of queries is-

sued by the same user before a predefined period of inactivity. A typical timeout

threshold used in web log analysis is t0 = 30 minutes. [118, 155].

Logical Sessions: a logical session [16] or chain [122] is a topically coherent se-

quence of queries. A logical session is not strictly related to timeout constraints

but collects all the queries that are motivated by the same information need (i.e.,

planning an holiday in a foreign country, gathering information about a car to buy

and so on). A physical session can contain one or more logical session. Jones et

al. [92] introduced the concepts of mission and goal to consider coherent informa-

tion needs at different level of granularity, being a goal a sub-task of a mission

(i.e., booking the flight is one of the goal in the more general mission of organizing

an holiday).

Supersessions: we refer to the sequence of all queries of a user in the query log,

ordered by timestamp, as a supersession. Thus, a supersession is a concatenation

of sessions.

Sessions are, thus, sequences of queries submitted by the same user in the same

period of time. This data can be used to devise typical query patterns, used to

enable advanced query processing techniques. Click-through data (representing a

sort of implicit relevance feedback information) is another piece of information that

is generally mined by search engines. In particular, every single kind of user action

(also, for instance, the action of not clicking on a query result) can be exploited

to derive aggregate statistics which are very useful for the optimization of search

engine effectiveness. How query logs interact with search engines has been studied

in many papers. Good starting point references are [141, 9, 135].

An important key issue in query log mining is the pre-processing of logs in order

to produce a good basis of data to be mined. An important step in usage analysis is

thus the data preparation. This step includes: data cleaning, session identification,

merging logs from several applications and removing requests for robots. This

techniques aims to remove irrelevant items, so that the resulting associations and

statistics reflects accurately the interactions of users with the search engine.

Very few query logs have been released to the public community in the last

years due to their commercial importance and to privacy issues. Starting from 1997

the query logs that have been released to the public are: Excite (1997), AltaVista

(1998–1999), AOL (2003–2004), AOL (2006), MSN (2006). Table 3.1 resumes the

most important features of the query logs that have been examined in the latest

years.

The most famous query log is undoubtedly AOL. The AOL data-set contains

about 20 million queries issued by about 650, 000 different users, submitted to

12

Query Log Name Public Period # Queries # Sessions # Users

Excite (1997) Y Sep 1997 1,025,908 211,063 ∼410,360

Excite Small (1997) Y Sep 1997 51,473 – ∼18,113

Altavista N
Aug 2, 1998

993,208,159 285,474,117 –
Sep 13, 1998

Excite (1999) Y Dec 1999 1,025,910 325,711 ∼540,000

Excite (2001) Y May 2001 1,025,910 262,025 ∼446,000

Altavista (public) Y Sep 2001 7,175,648 – –

Tiscali N Apr 2002 3,278,211 – –

TodoBR Y
Jan 2003

22,589,568 – –
Oct 2003

TodoCL N
May 2003

– – –
Nov 2003

AOL (big) N
Dec 26, 2003 ∼100,000,000 – ∼50,000,000
Jan 01, 2004

Yahoo! N
Nov 2005

– – –
Nov 2006

AOL (small) Y
Mar 1, 2006 ∼20,000,000 – ∼650,000

May 31, 2006

Microsoft RFP 2006 Y
Spring 2006 ∼15,000,000 – –
(one month)

Table 3.1. Features of the most important query logs that have been studied in the latest
years. The dash sign (–) means that the feature in the relative column was non-disclosed.

the AOL search portal over a period of three months from 1st March, 2006 to

31st May, 2006. After the controversial discussion related to users’ privacy issues

followed to its initial public delivery, AOL has withdrawn the query log from their

servers and is not offering it for download anymore.
1.1 Web Search Engines 5

Fig. 1.1 A fragment of the AOL query log [160].

How query logs interact with search engines has been studied in

many papers. For a general overview, [12, 20] are good starting point

references.

In this paper, we review some of the most recent techniques deal-

ing with query logs and how they can be used to enhance web search

engine operations. We are going to summarize the basic results con-

cerning query logs: analyses, techniques used to extract knowledge,

most remarkable results, most useful applications, and open issues and

possibilities that remain to be studied.

The purpose is, thus, to present ideas and results in the most

comprehensive way. We review fundamental, and state-of-the-art tech-

niques. In each section, even if not directly specified, we review and ana-

lyze the algorithms used, not only their results. This paper is intended

for an audience of people with basic knowledge of computer science. We

also expect readers to have a basic knowledge of Information Retrieval.

Everything not at a basic level is analyzed and detailed.

Before going on, it is important to make clear that all the analyses

and results reported were not reproduced by the author. We only report

Fig. 3.1. An example of the AOL query log [116].

13

3. Query Log Mining

Figure 3.1 shows a fragment of the AOL query log. Each row of this query log

consist of records collecting five fields: i) the ID referring to the user issuing the

query, ii) the issued query, iii) the time the query was issued to the search engine,

iv) the position of the clicked result in the results page, and v) the host of the

clicked document.

Topics covered by queries contained in search engines are the most disparate.

Figure 3.2 highlights the 250 most frequent terms in the AOL query log by means

of a tag cloud. The dimension of each term in the tag cloud is directly related

to its frequency in the log. The more a term is big in the tag cloud, the more

the term is frequent in the log. As an example,“google” and “free” are the two

most frequent terms in the log. Other very frequent words are: “yahoo”, “new”,

“county”, “pictures”, “http”.
1.3 Fun Facts about Queries 11

Fig. 1.5 A cloud of the 250 most frequent queried terms in the AOL query log [160]. Picture

has been generated using http://www.wordle.net.

and independently from a partition of the whole collection. The sec-

ond phase collects global statistics computed over the whole inverted

index. One of the most valuable advantages of document partitioning

is the possibility of easily performing updates. In fact, new documents

may simply be inserted into a new partition to independently index

separately from the others [169].

Since the advent of web search engines, a large number of papers

have been published describing different architectures for search

engines, and search engine components [10, 25, 47, 33, 96, 97, 147,

150, 153, 204]. Many other papers [13, 14, 100, 101] enumerate the

major challenges search engine developers must address in order to

improve their ability to help users in finding information they need.

Interested readers shall find in the above referenced papers many inter-

esting insights. Needless to say, you shall not find any particular details,

in this survey, about the real structure of a search engine. Usually, this

kind of information is highly confidential and it is very unlikely that

search companies will ever disclose them.

1.3 Fun Facts about Queries

Due to their “commercial importance”, finding query logs has always

been a difficult task. The very first publicly available query log dates

Fig. 3.2. A tag cloud of the 250 most frequent words in the AOL query log [116]. Picture
has been generated using wordle.net. From [141].

Furthermore, the queries submitted by users to search engines and thus con-

tained in query logs are sometimes incredible. Just to give an idea, from the AOL

query log user #2386968 submitted the query “why is my husband so talkative

with my female friends”. Another funny example is the query submitted by the

user #427326 looking for “where is my computer?”.

3.1 A Characterization of Web Search Engine Queries

In this section we aim at presenting a characterization of query logs by showing

how queries are distributed over time. In particular, we analyze topic-popularity,

term-popularity, differences with respect to the past, variations of topics during

day hours, etc.

14

3.1 A Characterization of Web Search Engine Queries

Some important efforts have been spent in the past to study how people in-

teracted with small scale IR systems1 [79, 67, 139, 146]. The nature of query logs

coming from large scale Web search engines is different with respect to small scale

IR systems. As an example, Web search engine queries unlikely contain more than

three terms while small IR systems, i.e. commonly used for digital libraries or legal

document retrieval, receive queries with a number of query terms ranging from 7

to 15 depending on the experience of the users. Search operators (like quotes, “+”,

“-”, etc.) are rarely used on the web.

The characteristics of query logs coming from some of the most popular Web

search engines have been deeply studied [27, 28, 82, 83, 84, 86, 96, 106, 112, 114,

116, 147, 148, 169]. Typical statistics that can be drawn from query logs are: query

popularity, term popularity, average query length, distance between repetitions of

queries or terms.

The first contribution in analyzing query logs comes from Silverstein et al. [140].

Authors propose an exhaustive analysis by examining a large query log of the

AltaVista search engine containing about a billion queries submitted in a period

of 42 days. The study shows some interesting results including the analysis of the

query sessions for each user, and the correlation among the terms of the queries.

Similarly to other works, authors show that the majority of the users (in this case

about 85%) visit the first page of results only. They also show that 77% of the

users’ sessions end up just after the first query. The query log analyzed contains a

huge number of queries and account to 285 million users. Furthermore, the results

shown in the paper are considered precise and general due to the high number of

queries and users analyzed.

Jansen et al. [84] analyze a log consisting of 51,473 queries submitted by 18,113

Excite users. The query log is anonymized. As the information are completely

decontextualized, no user profiling can be carried out on this query log. The log

from which experiments are carried out is publicly available to scholars.

Lempel and Moran [100], and Fagni et al. [66] study the content of a publicly

available AltaVista log. The log consist of 7,175,648 queries issued to AltaVista

during the summer of 2001. No information referring the number of users logged is

released. This second AltaVista log covers a time period almost three years after

the first studies presented by Jansen et al. and Silverstein et al. Furthermore, the

log is smaller than the first one. Indeed it represents a good picture of search

engine users.

On average web search engines queries are quite short. The average length

of a query in the Excite log (1998) is 2.35 terms. Furthermore, less than 4% of

the queries contains more than 6 terms. In the case of the AltaVista log, the

average query length is slightly greater: 2.55. These numbers are deeply different

compared with classical IR systems where the length of a query ranges from 7

to 15 terms. A possible explanation of this phenomenon is that, for instance,

1 The IR systems whose studies were referring do not directly deal with Web users.

15

3. Query Log Mining

the Web is a medium used by different people from different part of the world

looking for disparate information, while past IR systems were instead manually

used by professionals and librarian looking for very focused information thus trying

to precisely formulate their information needs. That studies highlight that users

querying search engines, i.e. web IR systems, are different from people that used

classical IR systems.

The distribution of query popularity, and term popularity have been shown

to follow a power-law. This means that the number of occurrences y of a query

or a term is proportional to x−α, where x is the popularity rank, and α is a real

parameter measuring how popularity decreases against the rank. In a formula,

y = Kx−α, where K is a real positive constant corresponding to the query with

the highest popularity. Power-law distributions have the form of a straight line

when plotted on a log-log scale.

Markatos [105] is the first to show that query popularity follows a power-law

with an exponent α = 2.4. He analyzes the Excite query log and plots the occur-

rence of the first 1,000 most popular queries. Figure 3.3 shows that the popularity

follows the usual linear trend in a log-log scale. Furthermore, the plot reveals that

the most popular query is submitted 2,219 times while the 1,000-th most popular

query is submitted only 27 times. Later studies confirmed the previous power-law

trend in two other query logs: i) AltaVista [100] and Yahoo! [15].

Tables in Figure 3.4 detail the top-20 queries for the Excite [105] and Al-

taVista [100] logs, respectively. Many queries in both logs refer to sex and sexually

explicit topics while many others can be somewhat related to the same topics as

well. Furthermore, there are some unexpected outcomes in query logs. For instance,

the most frequent query in the Excite query log is the empty query. This request

accounts for 5% of the queries. Authors in [84] give a possible explanation of this

phenomenon. It could be due both i) to possible errors in typing queries in the

search box or ii) to how Excite react to user actions. As an example, Excite result

pages had a link pointing to a “More Like This” function that, if clicked, returned

pages related to the ones selected. Excite count that behavior as an empty query

thus raising the empty query count.

Many different topics can be found in query logs. It can be easily seen in

Figure 3.4. A very first result in categorizing queries is [147]. Authors show the

percentage of queries submitted for each topic to the Excite search engine in 1997.

Categorizing queries into topics is not a trivial task. Recent papers showing tech-

niques for assigning labels to each query [74, 137, 163, 30, 31, 45] adopts a set of

multiple classifiers subsequently refining the classification phase.

Classification of the Excite queries made by Spink et al. in [147] shows that

in no ways is pornography a major topic of web queries, even though the top

ranked query terms may indicate this. Only one in about six web queries have

been classified as about sex (“XXX”). Web users look interested on a wide range

of different topics. Commerce, including travels, employment, and a number of

16

3.1 A Characterization of Web Search Engine Queries20 The Nature of Queries

(a) (b)

(c)

Fig. 2.2 Plots displaying query popularity for various query logs. (a) The 1,000 most pop-
ular queries in the Excite Log [144]; (b) Query popularity of Altavista queries [129] and (c)
Query popularity of Yahoo! queries [15].

reports in a graph like the one shown in Figure 2.2(a) that the popu-

larity follows the usual linear trend in a log-log scale. We can see from

the plot that the most popular query is submitted 2,219 times, while

the 1,000th most popular query is submitted 27 times [144]. A power-

law trend is confirmed also in other studies and other query logs, such

as the AltaVista [129] (Figure 2.2(b)), and Yahoo! [15] (Figure 2.2(c))

logs.

Figures 2.3(a), and 2.3(b) detail the 20 top queries for the Excite

and Altavista logs, respectively.2 As one would probably have guessed,

many queries in both logs refer to sex and sexually explicit topics

2 Provisioning of the same information for the Yahoo! log is not possible due to privacy and
restriction policies.

(a)
20 The Nature of Queries

(a) (b)

(c)

Fig. 2.2 Plots displaying query popularity for various query logs. (a) The 1,000 most pop-
ular queries in the Excite Log [144]; (b) Query popularity of Altavista queries [129] and (c)
Query popularity of Yahoo! queries [15].

reports in a graph like the one shown in Figure 2.2(a) that the popu-

larity follows the usual linear trend in a log-log scale. We can see from

the plot that the most popular query is submitted 2,219 times, while

the 1,000th most popular query is submitted 27 times [144]. A power-

law trend is confirmed also in other studies and other query logs, such

as the AltaVista [129] (Figure 2.2(b)), and Yahoo! [15] (Figure 2.2(c))

logs.

Figures 2.3(a), and 2.3(b) detail the 20 top queries for the Excite

and Altavista logs, respectively.2 As one would probably have guessed,

many queries in both logs refer to sex and sexually explicit topics

2 Provisioning of the same information for the Yahoo! log is not possible due to privacy and
restriction policies.

(b)

Fig. 3.3. Query popularity of the first 1,000 queries in the Excite [105] (a), and ii)
AltaVista [100] (b) logs.

economic topics are also high in the list. Furthermore, about 10% of the queries

are about health and the sciences.

Authors of [30, 27] show similar results on a different query log. The log is made

up of billions of web queries constituting the total query traffic for six months

of AOL. Categories are different, and results (in terms of category percentages

breakdown) are quite different. The difference is due to the different period of

time in which the analysis was conducted: while the Excite log refers to queries

issued in 1997, the AOL log is younger as it consists of queries issued in 2003.

Furthermore, porn queries fell considerably.

Terms are distributed according to a power-law as well (in particular a double-

pareto log-normal distribution). In fact, the curve of term distribution fall sharply

denoting that the most frequent terms are much more frequent that the rest of

17

3. Query Log Mining 2.1 Basic Statistics 21

query freq.

Empty Query 2,586
sex 229
chat 58
lucky number generator 56
p**** 55
porno 55
b****y 55
nude beaches 52
playboy 46
bondage 46
porn 45
rain forest restaurant 40
f****ing 40
crossdressing 39
crystal methamphetamine 36
consumer reports 35
xxx 34
nude tanya harding 33
music 33
sneaker stories 32

query freq.

christmas photos 31,554
lyrics 15,818
cracks 12,670
google 12,210
gay 10,945
harry potter 7,933
wallpapers 7,848
pornografia 6,893
“yahoo com” 6,753
juegos 6,559
lingerie 6,078
symbios logic 53c400a 5,701
letras de canciones 5,518
humor 5,400
pictures 5,293
preteen 5,137
hypnosis 4,556
cpc view registration key 4,553
sex stories 4,521
cd cover 4,267

(a) (b)

Fig. 2.3 The most popular queries out of the Excite and publicly available Altavista Logs.
Potentially offending terms have been replaced by similar terms containing asterisks (‘*’).
Query have not previously filtered to remove stop-words and terms in queries have not been
reordered. (a) Excite; (b) Altavista.

(“XXX”). While, unsurprisingly, many others can be somewhat related

to XXX as well. As often happens, there are some unexpected outcomes

in query logs. For instance, rather surprisingly the most frequent query

in the case of the Excite log is the empty query! They account for more

than 5% of the queries. Authors of [108] try to explain this strange

fact. Probably, the most obvious reason is that users often wrongly

type queries in the search box. This phenomenon could also be due to

how search engines react to user actions. For instance, Excite had a

link pointing to a “More Like This” function that, if clicked, returned

pages related to the one selected. Excited counted that as an empty

query thus raising the empty query count. Therefore, the frequency of

empty query in this logs, could, more likely, identify the usage of the

“More Like This” feature of Excite.

As it can be seen from tables in Figure 2.3 many different topics are

represented in query logs. Figure 2.4(a), from [208], shows the percent-

age of queries submitted for each topic to the Excite search engine in

Fig. 3.4. Query terms of the first 20 queries in the Excite [105] (a), and AltaVista [100]
(b) logs.

the terms. Figure 3.6 shows log-log plots of the term popularity distribution in the

case of two query logs: Excite [105], and AltaVista [100].

An interesting statistics obtained from query logs is how terms co-occur.

In [150], a follow-up of the work presented in [84], Spink et al. present the first

fifty most frequently co-occurrent terms. Figure 3.2 shows how terms co-occur

in queries without reflecting topic popularity. The majority of term pairs concern

non-XXX topics while in the same analysis they found that XXX queries are highly

represented. This highlight that, for some topics, people use more terms to search

for precise information, while for other topics the same user need can be satisfied

by short queries.

Queries repeat themselves. Since many queries are seen only a few times, one

could expect that in the majority of the cases the distance between subsequent

submissions of the same query would be very large. Figure 3.7 shows the distance,

in terms of queries, with which queries are submitted again.

Differently from what is expected, the majority of queries have distances that

are less than 1000 queries. A possible explanation is the bursty nature of query

logs: a large number of people start looking for a topic at the same time. This

observation is very important: the bursty nature of queries is a feature that is

extensively used in many techniques for enhancing both effectiveness and efficiency

of web search engines.

18

3.2 Time Analysis of the Query Log22 The Nature of Queries

Topic Percentage

Entertainment or recreation 19.9%
Sex and pornography 16.8%
Commerce, travel, employment, or economy 13.3%
Computers or Internet 12.5%
Health or sciences 9.5%
People, places, or things 6.7%
Society, culture, ethnicity, or religion 5.7%
Education or humanities 5.6%
Performing or fine arts 5.4%
Non-English or unknown 4.1%
Government 3.4%

(a)

Topic Percentage

Entertainment 13%
Shopping 13%
Porn 10%
Research & learn 9%
Computing 9%
Health 5%
Home 5%
Travel 5%
Games 5%
Personal & Finance 3%
Sports 3%
US Sites 3%
Holidays 1%
Other 16%

(b)

Fig. 2.4 Distribution of query samples across general topic categories for two different query
logs. Excite 2.4a, and AOL 2.4b. (a) Excite [208]; (b) AOL [34].

1997. Categorizing queries into topics is not a simple task. There are

papers showing techniques for assigning labels to each query. Recent

papers on the topic [36, 37, 49, 92, 192, 224] adopt a set of multiple

classifiers subsequently refining the classification phase. Due to space

limitations we cannot provide here a complete and detailed analysis of

query classification literature. Interested readers can refer to the liter-

ature for a thorough analysis of this subject.

Classification of the Excite queries made by Spink et al. [208] shows

that in no way is pornography a major topic of web queries, even though

the top ranked query terms may indicate this. Only one in about six web

queries have been classified as about sex. Web users look interested on a

(a)

22 The Nature of Queries

Topic Percentage

Entertainment or recreation 19.9%
Sex and pornography 16.8%

Commerce, travel, employment, or economy 13.3%

Computers or Internet 12.5%

Health or sciences 9.5%

People, places, or things 6.7%
Society, culture, ethnicity, or religion 5.7%

Education or humanities 5.6%
Performing or fine arts 5.4%

Non-English or unknown 4.1%

Government 3.4%

(a)

Topic Percentage

Entertainment 13%

Shopping 13%

Porn 10%

Research & learn 9%

Computing 9%

Health 5%

Home 5%

Travel 5%

Games 5%

Personal & Finance 3%

Sports 3%

US Sites 3%

Holidays 1%
Other 16%

(b)

Fig. 2.4 Distribution of query samples across general topic categories for two different query

logs. Excite 2.4a, and AOL 2.4b. (a) Excite [208]; (b) AOL [34].

1997. Categorizing queries into topics is not a simple task. There are

papers showing techniques for assigning labels to each query. Recent

papers on the topic [36, 37, 49, 92, 192, 224] adopt a set of multiple

classifiers subsequently refining the classification phase. Due to space

limitations we cannot provide here a complete and detailed analysis of

query classification literature. Interested readers can refer to the liter-

ature for a thorough analysis of this subject.

Classification of the Excite queries made by Spink et al. [208] shows

that in no way is pornography a major topic of web queries, even though

the top ranked query terms may indicate this. Only one in about six web

queries have been classified as about sex. Web users look interested on a

(b)

Fig. 3.5. Distribution of query samples across general topic categories for two different
query logs: Excite [105] (a), and AOL [27] (b).

2
.1

B
a
sic

S
ta

tistics
25

Table 2.2. List of the fifty most co-occurring terms in the Excite log (term1 — term2 frequency) [212].

and-and 6,116 of-and 690 or-or 501 women-nude 382 sex-pics 295
of-the 1,901 pictures-of 637 sex-pictures 496 pics-nude 380 north-carolina 295
pics-free 1,098 how-to 627 nude-pictures 486 of-department 365 free-teen 293
university-of 1.018 and-the 614 for-sale 467 united-states 361 free-porn 290
new-york 903 free-pictures 637 and-not 456 of-history 332 and-nude 289
sex-free 886 high-school 571 and-sex 449 adult-free 331 and-pictures 286
the-in 809 xxx-free 569 the-to 446 of-in 327 for-the 284
real-estate 787 and-free 545 the-the 419 university-state 324 new-jersey 280
home-page 752 adult-sex 508 princess-diana 410 sex-nudes 312 of-free 273
free-nude 720 and-or 505 the-on 406 a-to 304 chat-rooms 267

Table 3.2. List of the fifty most co-occurring terms (term1–term2, frequency) in the
Excite log [150].

3.2 Time Analysis of the Query Log

Queries are issued on several different topics [116] depending also on the historical

period [147]. Query logs can be analyzed at different levels of time granularity.

19

3. Query Log Mining
24 The Nature of Queries

(a)

(b)

(c)

Fig. 2.5 Plots displaying the number of requests for terms in various query logs. (a) Excite;

(b) Altavista and (c) Yahoo! (from [15]).

(a)

24 The Nature of Queries

(a)

(b)

(c)

Fig. 2.5 Plots displaying the number of requests for terms in various query logs. (a) Excite;

(b) Altavista and (c) Yahoo! (from [15]).

(b)

Fig. 3.6. Terms popularity of i) the first 1,000 queries in the Excite [105], and ii) Al-
taVista [100] logs.

On a daily granularity level of analysis, some of the topics are most popular in an

hour than in another [27, 28].

Frequency of queries vary considerably during the day. Ozmutlu et al. [114]

analyze query frequency against arrival time for the Excite query log in a time

period ranging from 9AM to 5PM. Querying activity is higher during the first

hours of the day than in the afternoon. There is a sharp decrease in the number of

queries submitted going down from 679 at 9AM to 224 at 4PM. In particular, the

number of queries at 4PM is about 30% of the queries that are usually submitted at

9AM. Note that these numbers are small if compared to the activity of today’s web

20

3.2 Time Analysis of the Query Log
26 The Nature of Queries

Fig. 2.6 Distances (in number of queries) between subsequent submissions of the same query
for the Altavista and Excite log.

Differently from what is expected, the majority of queries have dis-

tances that are less than 1,000 queries. A possible reason is the inherent

bursty [121] nature of query logs: a large number of people start looking

for a topic almost at the same time. This observation is very important,

as we show in the rest of the survey that the bursty nature of queries

is a feature that is extensively used in many techniques for enhancing

both effectiveness and efficiency of web search engines.

2.2 Trends and Historical Changes in Queries

Queries are issued on several different topics [160] depending also on

the historical period [208]. Going at a daily granularity level of analysis,

some of the topics are more popular in an hour than in another [34, 35].

During the daytime frequency of querying varies considerably.

Ozmutly et al. [156] analyze query frequency against arrival time for the

Excite query log in a time period ranging from 9 a.m to 5 p.m. Table 2.3

shows how frequencies are distributed within hours of the day.

Querying activity is higher during the first hours of the day than the

afternoon. There is a sharp decrease in the number of queries submitted

going down from 679 at 9 a.m to 224 at 4 p.m. That is 30% of the

queries that are usually submitted at 9 a.m. These numbers are small if

Fig. 3.7. Distances (in number of queries) between subsequent submissions of the same
query for the AltaVista and Excite log.

search engines. Comparing these numbers with a similar statistic [116] performed

in 2006, results are completely different. Figure 3.8 shows how frequencies are

distributed within the hours of the day. At 9AM queries submitted are almost half

of those submitted at 5PM.

2.2 Trends and Historical Changes in Queries 27

Table 2.3. Number of query
arrivals with respect to hours
of the day — Excite query
set [156].

Hour of the Day frequency

9:00–10:00 679
10:00–11:00 486
11:00–12:00 437
12:00–13:00 367
13:00–14:00 358
14:00–15:00 333
15:00–16:00 304
16:00–17:00 224

Fig. 2.7 Frequency of query submitted to the AOL search engine during the day [160].

compared to the number of queries submitted to today’s search engines.

When compared to the same statistics in 2006 [160], results are com-

pletely turned upside-down. At 9 a.m queries submitted are almost half

of those submitted at 5 p.m (Figure 2.7).

Spink et al. [208] showed how time periods affect querying behavior

of users. In Table 2.4, extracted from the above mentioned paper, it

is possible to observe that querying behavior is not changed from a

statistical point of view, in a period of 4 years. The mean number of

terms per query is only slightly raised in 2001, while the number of

terms per query, the main queries per user, are basically, unchanged in

four years. Even if this study dates back to 2001, it is very likely that

the results are still valid today. Users mostly tend to look for places to

buy goods, or to look for particular sites they already know. For this

reason, the number of keywords is usually low.

Fig. 3.8. Frequencies of query submitted to the AOL search engine during the day [116].

Spink et al. [147] show how time periods affects querying behavior of users.

Table 3.3 shows how the querying behavior is not changed from a statistical point

of view, in a period of four years. The mean number of terms per query is only

slightly raised in 2001, while the number of terms per query, the mean queries per

user, are basically unchanged in four years. Even if this study dates back to 2001,

it is very likely that the results it presents are still valid today.

Obviously, the more penetrated a new technology is the more users become

skilled with using it. From Table 3.4 it is clear that users querying for “People,

Places or Things” was about 50% in 2002. Moreover, there is a clear rise of interest

21

3. Query Log Mining

28 The Nature of Queries

Table 2.4. Comparative statistics for Excite web
queries [208].

Characteristic 1997 1999 2001

Mean terms per query 2.4 2.4 2.6
Terms per query

1 term 26.3% 29.8% 26.9%
2 term 31.5% 33.8% 30.5%
3+ term 43.1% 36.4% 42.6%

Mean queries per user 2.5 1.9 2.3

Table 2.5. Comparison of categories breakdown (in %) for Excite web
queries (from 1997 to 2001), and Altavista (2002) [107].

Category 1997 1999 2001 2002

People, places, or things 6.7 20.3 19.7 49.3
Commerce, travel, employment, or economy 13.3 24.5 24.7 12.5
Computers or Internet 12.5 10.9 9.7 12.4
Health or sciences 9.5 7.8 7.5 7.5
Education or humanities 5.6 5.3 4.6 5.0
Entertainment or recreation 19.9 7.5 6.7 4.6
Sex and pornography 16.8 7.5 8.6 3.3
Society, culture, ethnicity, or religion 5.7 4.2 3.9 3.1
Government 3.4 1.6 2.0 1.6
Performing or fine arts 5.4 1.1 1.2 0.7
Non-English or unknown 4.1 9.3 11.4 0.0

As it has been shown above, users have changed their prefer-

ences and inclinations during time. Obviously, the more penetrated

a new technology is the more users become skilled and acquainted with

using it. Probably users’ understanding of the potentiality of this new

medium, the web, has made them prone to use it as a way of conducting

business.

From the data in Table 2.5 it is evident that users (at least those

of US-based search engines) querying for People, Place or Things was

accounting for nearly 50% in 2002. Moreover, there is a clear rise in

interest from users for this category: back in 1997 queries referring

to People, Place or Things accounted for less than 7%. The 25% of

users in 2002 queries for Commerce, Travel, Employment or Economy

and Computers, Internet or Technology. This percentage has seen an

“up-and-down” trend,3 varying from a minimum of about 25% and to

3 Unless due to the use of different classification algorithms for the different query logs.

Table 3.3. Comparative statistics for Excite Web queries [147].

from users for this category: in 1997 queries referring to “People, Places or Things”

accounted for less than 7%. The 25% of users in 2002 query for “Commerce,

Travel, Employment or Economy” and “Computers, Internet or Technology”. This

percentage shows an “up-and-down” trend, varying from a minimum of 25% and

to a maximum of 35%. Furthermore, “Sex and Pornography” shows a falling trend:

from 16.8% in 1997 to 3.3% in 2002.

28 The Nature of Queries

Table 2.4. Comparative statistics for Excite web
queries [208].

Characteristic 1997 1999 2001

Mean terms per query 2.4 2.4 2.6
Terms per query

1 term 26.3% 29.8% 26.9%
2 term 31.5% 33.8% 30.5%
3+ term 43.1% 36.4% 42.6%

Mean queries per user 2.5 1.9 2.3

Table 2.5. Comparison of categories breakdown (in %) for Excite web
queries (from 1997 to 2001), and Altavista (2002) [107].

Category 1997 1999 2001 2002

People, places, or things 6.7 20.3 19.7 49.3
Commerce, travel, employment, or economy 13.3 24.5 24.7 12.5
Computers or Internet 12.5 10.9 9.7 12.4
Health or sciences 9.5 7.8 7.5 7.5
Education or humanities 5.6 5.3 4.6 5.0
Entertainment or recreation 19.9 7.5 6.7 4.6
Sex and pornography 16.8 7.5 8.6 3.3
Society, culture, ethnicity, or religion 5.7 4.2 3.9 3.1
Government 3.4 1.6 2.0 1.6
Performing or fine arts 5.4 1.1 1.2 0.7
Non-English or unknown 4.1 9.3 11.4 0.0

As it has been shown above, users have changed their prefer-

ences and inclinations during time. Obviously, the more penetrated

a new technology is the more users become skilled and acquainted with

using it. Probably users’ understanding of the potentiality of this new

medium, the web, has made them prone to use it as a way of conducting

business.

From the data in Table 2.5 it is evident that users (at least those

of US-based search engines) querying for People, Place or Things was

accounting for nearly 50% in 2002. Moreover, there is a clear rise in

interest from users for this category: back in 1997 queries referring

to People, Place or Things accounted for less than 7%. The 25% of

users in 2002 queries for Commerce, Travel, Employment or Economy

and Computers, Internet or Technology. This percentage has seen an

“up-and-down” trend,3 varying from a minimum of about 25% and to

3 Unless due to the use of different classification algorithms for the different query logs.

Table 3.4. Comparison of categories breakdown (in %) for Excite Web queries (from
1997 to 2001), and Altavista (2002) [83].

Beitzel et al. [27] measure the relative popularity of different categories over

the hours in a day. Figure 3.9 shows the percentage of total query volume broken-

down to a selected group of category. Different topical categories are more or less

popular at different times of the day. As an example, while “Personal Finance”

popularity raises during the first hours of the morning between 7AM and 10AM,

“Porn” is a category whose popularity raises during late-night until 6AM.

Figure 3.10 shows a different analysis on the same categories obtained by ap-

plying KL-divergence. The reason of applying this measure is to compare in a

better way categories with a different relative level of popularity. The comparison

is, in fact, affected by popularity shift. To overcome this issue, Beitzel et al. com-

pute KL-divergence between the likelihood of receiving a query on any topic at

a particular time and the likelihood of receiving a query in a particular category.

KL-divergence measure a sort of most surprising category for a particular time

22

3.2 Time Analysis of the Query Log
30 The Nature of Queries

Fig. 2.8 Percentage of the total query stream covered by selected categories over hours in
a day [34].

Also shown in Figure 2.9 is the average percentage of the entire query

volume and distinct queries that match each category. Although the

categories that cover the largest portions of the query stream also have

the most relative popularity fluctuation, this correlation does not con-

tinue throughout all categories. Beitzel et al. [34] reach the same con-

clusion by thoroughly discussing a more through analysis on weekly

and monthly basis.

2.3 Summary

In this section, we presented an overview of the papers presenting

statistics computed over different search engine query logs sampled over

Fig. 3.9. Percentage of the query stream covered by selected categories over hours in a
day [27].

of the day. Instead of measuring the popularity as the most numerous topic, the

KL-divergence measures how popular is a query in terms of not being expected.

2.3 Summary 31

Fig. 2.9 Average percentage of query stream coverage & KL-divergence for each category
over hours in a day [34].

different periods of time. Some of the conclusions that can be drawn

are common to all of the logs considered:

• Queries contains very few terms, on average ranging between

2 and 3 terms. This means that devising good results for a

query is a very difficult task given that this very low number

of terms often contains also ambiguous terms.
• The distribution of query popularity follows a power law.

The most popular queries account for a very small fraction

of the total number of unique queries. This phenomenon, also

knows as the Long Tail [9], is pretty well known today and

seems to arise whenever we deal with social and economical

aspects of the new (internet) economy.
• Two conflicting claims have been presented. Following Spink

et al. [208] it seems that X-rated query popularity is declin-

ing. Beitzel et al. [35], instead, claim that XXX queries are

more surprising than others on certain time periods. On the

other hand, non-XXX queries do not show any particular

peaks in submission frequency. This is the reason why they

define XXX queries more frequent than others.

Fig. 3.10. Average percentage of the query stream coverage and KL-divergence for each
category over hours in a day [27].

23

3. Query Log Mining

A more recent paper shows similar results on a MSN Web search engine query

log [176]. Authors present some results that are not detailed with respect to topics,

as presented in the previous paper, yet they do not disagree with the overall results

presented in [27]. This analysis revealed that the top three categories in terms of

popularity are “pornography”, “entertainment”, and “music”. Beitzel et al. [27]

reach the same conclusion by thoroughly discussing a more through analysis on

weekly and monthly basis.

3.3 Search Sessions

After a first characterization of Web search engines’ queries, here we focus on

studying how users interact with search engine systems. What happen when a

user has submitted a query and results are shown? How can be decided if a query

has been correctly answered or if a user is satisfied by the search results? How

people change queries if those have not produced satisfying users? The answers

to these questions are very important in order to enhance the Web search engine

performances.

In one of the first paper devoted to discovery user intent behind queries [43]

Andrei Broder studies the goal a user wants to reach when submitting a query to a

search engine. In the Broder’s taxonomy a query can be either a Navigational query

– were the immediate intent is to reach a particular destination (e.g. Yahoo.com,

America Airlines home page, Don Knuth’s home page); an Informational query

– where the intent is to acquire some information assumed to be present on one

or more web pages (e.g. San Francisco or normocytic anemia); a Transactional

query – where the immediate intent is to perform some Web-mediated activity

(e.g. online music, or online flower delivery service).

Table 3.5 shows the result of a survey presented to AltaVista users to try to

determine their intents. Results in Table 3.5 are obtained by means of a series of

questions presented to users through a pop-up window opening for some randomly

chosen result pages. The survey obtained a response ratio of about 10% consisting

of about 3,190 valid returns. The “query log analysis” column in Table 3.5 is

obtained by selecting 1,000 queries at random and manually removing: i) non-

English queries, and ii) sexually oriented queries. From the remaining set, the first

400 queries are inspected. Queries that are neither transactional, nor informational,

are assumed to be informational in intent.

Results from both the survey, and manual inspection confirm what we argue

in Section 3.1: in the majority of the cases users surf the web looking for places

where to buy goods, or looking for particular sites they already know.

In order to evaluate the quality of search results it is interesting to look at how

users interact with the search engine. For instance, it is interesting to extract and

analyze user search sessions from query logs, and to derive implicit measures of

quality explicitly tailored on search engine users.

24

3.3 Search Sessions

33

Studies investigate the goals users have when using a web search

engine. As it has been shown in the previous section, web IR and “tra-

ditional” IR users are very different. Usually they tend to type less,

but still they want highly precise results.

In one of the first paper devoted to discovery user intent behind

queries, Andrei Broder [48] studies the goal a user wants to reach when

submitting a query to a search engine. Following Broder’s formulation a

query can be either a Navigational query — where the immediate intent

is to reach a particular site (e.g. Greyhound Bus, american airlines

home, or Don Knuth); an Informational query — where the intent is

to acquire some information assumed to be present on one or more

web pages (e.g. San Francisco or normocytic anemia); a Transactional

queries — where the intent is to perform some web-mediated activity

(e.g. online music, or online flower delivery service).

Table 3.1 shows the result of a survey presented to Altavista users

to try to determine their intent.

The results shown in Table 3.1 have been obtained by means of

a series of questions presented to users through a “pop-up” windows

opening for some randomly chosen result pages. The survey obtained

a response ratio of about 10% consisting of about 3,190 valid returns.

The query log analysis column in Table 3.1 corresponds to a manual

analysis of query entries. They firstly selected at random a set of 1,000

queries and removed both non-English queries, and sexually oriented

queries. From the remaining set the first 400 queries were inspected.

Queries that were neither transactional, nor navigational, were assumed

to be informational in intent.

Results from both the survey, and manual inspection confirmed

what we were arguing in the previous section: in the majority of the

cases, users surf the web looking for places where to buy goods, or

looking for particular sites they already know.

Table 3.1. Query classification on the basis of user survey.

Adapted from [48].

Type Surveyed Estimated (from Query Log)

Navigational 24.5% 20%

Informational ∼ 39% 48%

Transactional ∼ 36% 30%

Table 3.5. Query classification on the basis of user survey [43].

Queries themselves are not always enough to determine the user intent. Fur-

thermore, one of the key objectives of a search engine is to evaluate the quality

of their results. Implicit measures that are available to log analysts are: the click-

through rate – the number of clicks a query attract, time-on-page – the time spent

on the result page, and scrolling behavior – how users interact with the page in

terms of scrolling up and down; are all performance indicators search engines can

use to evaluate their quality. How are the data recorded? Toolbars and user pro-

files surveyed directly from users are the main mean through which search engine

companies record usage data diverse from those obtained by query logs.

A series of queries can be part of a single information seeking activity. Efforts

have been spent on understanding the effects of request chains on the search engine

side. The main goals of this analysis are to show how users interact with the search

engine, and how they modify queries depending on what they obtain (in terms of

results) from the search engine. Last but not least, efforts have been spent on

understanding how users use multitasking and task switching on search sessions.

A first interesting result to highlight is how users interact with the search

engine from a page request point of view. Many studies point out that users rarely

visit result pages beyond the first one. Spink et at. analyze the Excite query log

showing that about 78% of users do not go beyond the first page of results. Similar

analysis on different query logs show the same behaviors [100, 66].

Jansen and Spink [83] show the percentage of single-query session in different

query logs. The analysis is conducted on US search engines and it highlights that

the complexity of interactions is increasing as indicated by longer sessions (i.e. users

submitting more Web queries). In 2002, about 47% of AltaVista users submitted

only one query, while in 1998 it was 77%.

An important analysis is conducted by Fagni et al. [66]. Authors estimate the

probability of clicking the “next” button of a search engine result page. Figure 3.12

shows the behavior of the probability of clicking the “next” button. It increases as

the number of result page increases. The rationale of this could be that users issuing

informational queries usually go through a higher number of pages. Furthermore,

half of the users on page 2 go to page 3, and about 60-70% of users on page 3 go

to page 4.

In order to obtain the results they need, users often try to reformulate queries

(refine or modify) during their search sessions. Lau and Horvitz [99] study this

behavior by categorizing queries. They propose seven categories:

25

3. Query Log Mining

3.1 Search Sessions 35

Table 3.2. Percentage of queries in the logs as a function of the index of the page
requested [74].

Query log 1 2 3 4 5 6 7 8 9 10

Excite 77.59 8.92 3.98 2.37 1.54 1.09 0.78 0.60 0.45 0.37
Tiscali 83.20 5.50 2.86 1.74 1.23 0.74 0.54 0.41 0.32 0.26
Altavista 64.76 10.25 5.68 3.41 2.54 1.83 1.42 1.16 0.94 0.88

Fig. 3.1 Percentage of single query sessions. From [107].

three cases, the probability that a user will go after the fifth page of

results is under 0.02.

The figures shown in Table 3.2 seem to persist throughout all the

studies presented so far.

Jansen and Spink [107] show, Figure 3.1, the percentage of single-

query sessions in different query logs. In US web search engines,2 it

does not appear that the complexity of interactions is increasing as

indicated by longer sessions (i.e., users submitting more web queries).

In 2002, approximately 47% of searchers on AltaVista submitted only

one query, down from 77% in 1998.

A deeper analysis is conducted by Fagni et al. [74] where the prob-

ability of clicking the “Next” button of the search engine result page is

estimated.

2 ATW — AlltheWeb.com, AV — AltaVista, EX — Excite.

Fig. 3.11. Percentage of single query sessions [83].

36 User Interactions

Fig. 3.2 Probability of pushing the next button for three different query logs. From [74].

Figure 3.2 shows that the probability of clicking the “Next” button

increases as the number of result page increases. This may suggest that

users issuing informational queries usually go through a higher number

of pages. In particular, half the users on page 2 go to page 3, and around

60–70% of users on page 3 go to page 4.

During a search session a user often try to refine (or slightly modify)

queries in order to get to the result he wants. This behavior is studied

by Lau and Horvitz [127] by categorizing queries according to seven

categories.

• New : A query for a topic not previously searched for by this

user within the scope of the dataset (twenty-four hours);
• Generalization: A query on the same topic as the previous

one, but seeking more general information than the previ-

ous one.
• Specialization: A query on the same topic as the previous

one, but seeking more specific information than the previous

one.
• Reformulation: A query on the same topic that can be viewed

as neither a generalization nor a specialization, but a refor-

mulation of the prior query.

Fig. 3.12. Probability of pushing the next button for three query logs [66].

• New : A query for a topic not previously searched for by this user within the

scope of the dataset (twenty-four hours);

• Generalization: A query on the same topic as the previous one, but seeking

more general information than the previous one.

• Specialization: A query on the same topic as the previous one, but seeking

more specific information than the previous one.

• Reformulation: A query on the same topic that can be viewed as neither a

generalization nor a specialization, but a reformulation of the prior query.

26

3.3 Search Sessions

• Interruption: A query on a topic searched on earlier by a user that has been

interrupted by a search on another topic.

• Request for additional results: A request for another set of results on the same

query from the search service.

• Blank queries: Log entries containing no query.

Authors apply the proposed categorization scheme within the Excite query log.

Figure 3.13 shows the results obtained. In the majority of the cases most actions

are either new queries or requests for additional informations. Furthermore, a large

percentage of users (about 30%) issue a modification, (refinement, specification,

or a reformulation) of a previously submitted query.

3.1 Search Sessions 37

• Interruption: A query on a topic searched on earlier by a user

that has been interrupted by a search on another topic.
• Request for additional results: A request for another set of

results on the same query from the search service.
• Blank queries: Log entries containing no query.

Figure 3.3 shows how queries are categorized within the Excite

query log. As it is evident, in the majority of the cases most actions

were either new queries or requests for additional information. Even

though, a large percentage of users (around 30%) were issuing a mod-

ification (either a refinement, or a specification, or a reformulation) of

a previously submitted query.

Previous results can be seen as a quantitative analysis of how users

interact with the search system. A different point of view is represented

by the analysis of Multitasking and Task Switching in query sessions.

Multitasking sessions are those of users seeking information on multiple

topics at the same time. Studies recently presented show that users have

an inclination to carry on multi-tasking queries. For instance, Ozmutlu

Fig. 3.3 Breakdown of the 4,960 queries analyzed in [127] into the different query modifi-
cation categories defined.
Fig. 3.13. Summary of the categorization of 4,960 queries analyzed in [99].

Jansen et al. [87, 88] examine 2,465,145 interactions from 534,507 users of Dog-

pile.com submitted on May 6, 2005 in order to investigate and identify the patterns

of interaction between searchers and search engine during Web searching. They

compare query reformulation patterns and investigate the type of query modifi-

cations and query modification transitions within sessions. Authors use manually-

crafted rules to identify reformulation types (such as “adding one extra word means

specializing the current query”). Authors identify three strong query reformulation

transition patterns: between i) specialization and generalization, between ii) video

and audio, and between iii) content change and system assistance. In addition,

results show that Web and images content are the most popular media collections.

Boldi et al. [37, 33] build an accurate model for classifying user query reformu-

lations into four broad classes (generalization, specialization, parallel move or error

27

3. Query Log Mining

correction) achieving 92% of the accuracy. Conceptually, the proposed taxonomy

has two dimensions, depicted in Figure 3.14. One dimension is found along the

generalization-specialization axis, and the other dimension along the dissimilarity

axis. Moving left to right along the dissimilarity (horizontal) axis, authors find a

continuous in which the syntactic and semantic gap between two queries gets larger

and larger. Furthermore, moving to the top or to the bottom along the specificity

(vertical) axis, authors find respectively reformulations towards more general or

more specific queries. Authors apply the proposed model to automatically label

two large query logs. Furthermore, authors study the resulting reformulation pat-

terns, finding results consistent with previous studies done on smaller manually

annotated datasets, and discovering new interesting patterns, including connec-

tions between reformulation types and topical categories. Finally, applying their

findings to a third query log that is publicly available for research purposes, authors

demonstrate that their reformulation classifier leads to improved recommendations

in a query recommendation system.

Figure 1. Graphical depiction of transition types.

changing the wording of the query, but keeping exactly
the same goal, in the sense of [8] (e.g. “used car” and
“second-hand car”). Then we find Parallel move: a
modification of the query from one aspect of an entity to
something related but not equivalent (e.g.: a “hotel in
Dublin” and “flights to Dublin”).
Finally, we have mission change: the user is completely

changing topic and she is looking for something else [3],
[8]; this happens at the extreme right along the dissimilarity
axis. We apply the model in [7] to detect mission change.
Our classification of reformulations departs from the one

proposed in [1] in the sense that they use a more fine-grained
taxonomy (including classes such as parallel move, replace-
ment with synonym, term variation, operator usage, type of
resource and domain suffix). The work in [10], [11] presents
a similar taxonomy, but they also distinguish between user-
initiated reformulations and reformulations recommended by
the search engine, and consider changes in the collection
being queried, which in our case is always the Web. Both
scenarios are outside the scope of the present paper.

Specificity axis. Along the vertical axis instead we have
Generalization and Specialization. Generalization occurs
when the new query q′ is more general than q (e.g.:
“camping” to “outdoor activities”); in some cases
(but not all of them) a generalization can be automatically
identified because q′ is a conjunction with a proper subset of
the terms of q; this type of rule is used in the manually-built
classifier in [10]. In a specialization, instead, the new query
q′ is more specific than q (e.g. “animal pictures” and
“photos of African lions”).
We expect Generalization and Specialization to be related.

A generalization reflects the user’s desire to increase recall,
whereas a specialization is the need to improve precision.
We also expect some specific properties from these two
transition types. For instance, we expect that both of them
should define a transitive relation. Also, we expect that
they should be anti-symmetric, given that, for instance, two
queries can not be simultaneously a specialization of each
other. Of course we do not expect these properties to hold
deterministically given the noise present in the query log.

IV. LEARNING A QUERY REFORMULATION MODEL

In this section we describe the process we followed
in order to build a model for query-reformulation type
classification.
Training data. We started from a set of consecutive query
pairs (q, q′), sampled from a query log of the Yahoo! search
engine in 2008 and segmented into search missions using the
model of [7]. In order to create a training set for our QRT
classification problem, a group of editors manually labelled
the set of query pairs (q, q′) in each search session with
one of the reformulation types described in Section III. In
cases two or more editors disagree on the type of a query
reformulation, the query pair was removed from the training
set. This left us with a set of 1375 labelled examples, of
which we used 2/3 for training and 1/3 for testing.
Features.We used a set of 27 features to build our model for
QRT classification, including features from [7], [23], [12],
[8] that have shown to be also effective for query segmen-
tation. For efficiency reasons, we used only features that
consider the query sequences and the clicks of users, but that
do not require access to the resulting URLs or page snippets.
Although the latter information might be very powerful (or
even decisive) to determine the query reformulation type, we
wanted to limit ourselves to features that could be computed
very quickly with little computational overhead. We note that
all our features are available at run-time: for instance the
“average session length” is the average over previously seen
sessions containing a given query pair, not the session length
of the current session which is unknown before the session
ends. All the features passed a features selection phase in
which we evaluated each feature relevance w.r.t. our target
variable (i.e., query reformulation type). The features are
presented in Table I, and include session features (statistics
relative to the sessions in which the pair (q, q′) occurs, such
as average session length, average position of the queries
in the sessions etc.), temporal features (e.g., average time
difference between q and q′ in the sessions where (q, q′)
occurs) and textual features (textual similarity measures;
some of them turn each query into a bag of words, and
some into a bag of character trigrams).
Modelling. Standard methods such as boosted decision trees
showed an accuracy of approximately 85% in predicting
query reformulation types. The model that we built after
trying several induction methods for our classification prob-
lem, exhibits an accuracy of 92% on a test set of unseen
cases.
Instead of directly tackling the 4-classes problem, we built

four distinct binary classification problems, where in each
problem the target variable is being or not a certain QRT
(e.g., is G?, is S?, etc.), plus a final 4-classes classifier for
the undecided cases. Each of the five models is a rule-based
classifier built with C5.0, the successor of the well-known
C4.5 decision tree induction algorithm [24]. We placed the

Fig. 3.14. Graphical depiction of transition types defined in [37].

A different type of analysis can be carried out by studying Multitasking and

Task Switching in query sessions. Multitasking sessions are performed by users

looking for information on multiple topics at the same time. Latest studies show

that users tend to carry on multi-tasking queries. Ozmutlu et al. [113] show that

in the 11.4% of the cases uses are pursuing multitasking sessions. This percentage

increases to 31.8% in the case of users of another popular (at that time) search

engine, AllTheWeb.com. In the same paper, the mean number of topic changes per

session has been estimated to be around 2.2, and it raises to 3.2 when considering

only multi-topic sessions.

Another interesting research field study methods to detect query re-submission,

or information re-retrieval [155]. The behavior analyzed is how often users search

for the same information he searched before. It is a quite common behavior nowa-

28

3.3 Search Sessions

days to use search instead of bookmarking an interesting page. An example of this

is a user searching for a conference home page by issuing the conference name as

a query to a search engine. The user may be interested in looking for news about

the conference after two months (for instance to read the call for papers, to check

submission deadlines, to check the list of accepted papers, to book an hotel). Some

important papers studying this behavior are [155, 154, 130].

Sanderson and Dumais [130] evaluate the re-finding behavior in web search

engines. The dataset used by authors covers a shorter period of time, three months

from April to June 2006, and contains approximately 3.3 million queries and 7.7

million search result clicks gathered from 324,000 unique users. An important thing

authors discover is that repeated queries by the same user are almost the 50% of

the total number of queries (1.68 million against 1.62 million unique queries). This

result is: i) greater than the one presented in [155], ii) different from a previous

result from Teevan et al. [154]. The conclusions are the same in all the cases:

users do re-submit the same queries over and over and for this reason search

engine designers should think solutions to take advantage of this phenomenon,

for example, by designing interfaces able to present users resubmitting again the

same query with a list of changes in the rank of the results with respect to those

returned in answer to the same query but previously submitted.

Many other works deal with the identification of users’ search sessions bound-

aries. Work on session identification can be classified into: i) time-based, ii) content-

based, and iii) mixed-heuristics, which usually combine both i) and ii).

Time-based techniques have been extensively proposed for detecting meaning-

ful search sessions due to their simplicity and ease of implementation. Indeed,

these approaches are based on the assumption that time between adjacent issued

queries is the predominant factor for determining a topic shift in user search activ-

ities. Roughly, if the time gap between two issued queries is lower than a certain

threshold then they are also likely to be related.

Silverstein et al. [140] present a broad analysis of a very large query log data

set collected by the AltaVista search engine and firstly define a concept of session

as follows: two consecutive queries are part of the same session if they are issued

at most within a 5-minutes time window. According to this definition, they find

that the average number of queries per session in the data they analyzed was 2.02.

He and Göker [76] use different timeouts to split user sessions of Excite query log,

ranging from 1 to 50 minutes.

Radlinski and Joachims [122] observe that users often perform a sequence of

queries with a similar information need, and they refer to those sequences of refor-

mulated queries as query chains. Their paper presents a method for automatically

detecting query chains in query and click-through logs using 30 minutes threshold

for determining if two consecutive queries belong to the same search session.

Jansen and Spink [83] make a comparison of nine Web search engines transac-

tion logs from the perspectives of session length, query length, query complexity,

29

3. Query Log Mining

and content viewed. Here, they provide another definition of session, i.e. search

episode, describing it as the period of time occurring from the first to the last

recorded timestamp on the WSE server from a particular user in a single day,

so that session length might vary from less than a minute to a few hours. More-

over, using the same concept of search episode, Spink et al. [149] investigate also

multitasking behaviors while users interacting with a WSE. Multitasking during

Web searches involves the seek-and-switch process among several topics within a

single user session. Again, a user session is defined to be the entire series of queries

submitted by a user during one interaction with the WSE, so that session length

might vary from less than a minute to a few hours. The results of this analysis

performed on a AltaVista query log show that multitasking is a growing element

in Web searching.

Finally, Richardson [126] shows the value of long-term WSE query logs with

respect to short-term, i.e., within-session, query information. He claims that long-

term query logs can be used to better understand the world where we live, showing

that query effects are long-lasting. Basically, in his work Richardson does not look

at term co-occurrences just within a search session that he agree to be a 30 minutes

time-window, but rather across entire query histories.

Content-based approaches suggest to exploit the lexical content of the query

themselves for determining a possible topic shift in the stream of issued queries

and, thus, a session boundary [99, 77, 111].

To this extent, several search patterns have been proposed by means of lexi-

cal comparison, using different string similarity scores (e.g., Levenstein, Jaccard,

etc.). However, approaches relying only on content features suffer of the so-called

vocabulary-mismatch problem, namely the existence of topically-related queries

without any shared terms (e.g., the queries “nba” and “kobe bryant” are com-

pletely different from a lexical content perspective but they are undoubtedly re-

lated). In order to overcome this issue, Shen et al. [138] compare expanded rep-

resentation of queries, instead of the actual queries themselves. Each individual

expanded query was obtained by concatenating the titles and the Web snippets

for the top 50 results provided by a WSE for the specific query. Thus, the re-

latedness between query pairs was computed using cosine similarity between the

corresponding expanded queries.

Mixed heuristics propose to combine the two previous approaches. Jansen et

al. [85] assume that a new search pattern always identifies the start of a new session.

Moreover, He et al. [77] show that statistical information collected from query logs

could be used for finding out the probability that a search pattern actually implies

a session boundary. In particular, they extend their previous work [76] to consider

both temporal and lexical information.

Boldi et al. [35] introduce the Query Flow Graph as a model for representing

data collected in WSE query logs. They exploited this model for segmenting the

30

3.4 Time-series Analysis of the Query Log

query stream into sets of related information-seeking queries, leveraging on an

instance of the Asymmetric Traveling Salesman Problem (ATSP).

Jones and Klinkner [92] argue that within a user’s query stream it is possi-

ble to recognize particular hierarchical units, i.e., search missions, which are in

turn subdivided into disjoint search goals. A search goal is defined as an atomic

information need, resulting in one or more queries, while a search mission is a

set of topically-related information needs, resulting in one or more goals. Given

a manually generated ground-truth, Jones and Klinkner [92] investigate how to

learn a suitable binary classifier, which is aimed to precisely detect whether two

queries belong to the same task or not. Among various results, they realize that

timeouts, whatever their lengths, are of limited utility in predicting whether two

queries belong to the same goal, and thus to identify session boundaries. Indeed,

authors do not explore how such binary classifier could be exploited for actually

segmenting users’ query streams into goals and missions.

Lucchese et al. [101] devise effective techniques for identifying task-based ses-

sions, i.e. sets of possibly non contiguous queries issued by the user of a Web search

engine for carrying out a given task. In order to evaluate and compare different ap-

proaches the authors built, by means of a manual labeling process, a ground-truth

where the queries of a given query log have been grouped in tasks. The analy-

sis of this ground-truth shows that users tend to perform more than one task at

the same time, since about 75% of the submitted queries involve a multi-tasking

activity. Furthermore, authors formally define the Task-based Session Discovery

Problem (TSDP) as the problem of best approximating the manually annotated

tasks, and propose several variants of well-known clustering algorithms, as well as

a novel efficient heuristic algorithm, specifically tuned for solving the TSDP. These

algorithms also exploit the collaborative knowledge collected by Wiktionary and

Wikipedia for detecting query pairs that are not similar from a lexical content point

of view, but actually semantically related. The proposed algorithms is evaluated

on the above ground-truth. Results show that it perform better than state-of-the-

art approaches, because it effectively take into account the multi-tasking behavior

of users.

3.4 Time-series Analysis of the Query Log

Queries can be viewed as signals in the domain of time. In each time unit it is

possible to record the occurrences of the query. The result is a sort of signal to

which standard temporal series techniques could be applied [162, 160, 72, 55, 178].

These papers introduce techniques allowing the discovery of peculiar query features

such as being periodic or bursty.

Adar et al. [2] use time series to predict i) why users issue queries and ii) how

users react and cause new spreading. In particular, a novel way to compare signals

coming from different sources of information. Dynamic Time Warping (DTW) is a

31

3. Query Log Mining

way to compare two time series also capturing behavioral properties by mapping

inflection points and behavior such as the rise in one curve to the rise in the second,

peak to peak, run to run. Figure 3.15 shows an example of DTW, against a simple

linear mapping. Lines going from a curve to the other show how events are mapped

within each line.

152 New Directions

Dynamic Time Warping (DTW) is a way to compare two time series

also capturing behavioral properties by mapping inflection points and

behaviors such as the rise in one curve to the rise in the second, peak

to peak, run to run. Figure 6.2 shows an example of DTW, against a

simple linear mapping. Lines going from a curve to the other show how

events are mapped within each line.

Computing a DTW is simply done by a dynamical programming

algorithm minimizing the distance in terms of euclidean distance

between to time series points.

The algorithm shown in Figure 6.1 produces a two-dimensional

array, DTW, containing how the two time series maps. The best warp-

ing path is simply obtained by crawling the array from the extreme

corner in a backward fashion along the minimum gradient direction.

Fig. 6.2 The difference of using DTW against a simple linear mapping for comparing two

time series.

Table 6.1. Dynamic time warping algorithm.

Procedure DynamicTimeWarping(x, y).

(1) DTW[0,0] = 0;

(2) for i = 1..length(x)

(a) DTW[0, i],DTW[i,0] = ∞;

(b) for i = 1..length(x)

i. for i = 1..length(y)

A. cost = |x(i) − y(j)|;
B. DTW[i, j] = min(DTW[i − 1, j] + cost,

DTW[i, j − 1] + cost, DTW[i − 1, j − 1] + cost);

Fig. 3.15. The difference of using DTW against a simple linear mapping for comparing
two time series. [2].

DTW is obtained by applying a dynamical programming algorithm minimizing

the distance in terms of euclidean distance between two time series points. The

algorithm produces a two dimensional array, DTW, containing how the two time

series maps. The best warping path is simply obtained by crawling the array from

the extreme corner in a backward fashion along the minimum gradient direction.

The goal of the paper is to discover how time-series are correlated in order

to be able to use events in one information source to predict those in another.

The datasets used are two query logs (MSN, and AOL), a blog dataset, a NEWS

dataset. By using human-based tests authors devise five different general trends

in time-series-based behavior prediction.

News of the weird – Events that are so weird and/or strange to be able to virally

spread over a huge amount of people. Anticipated events – Events that produce a

lot of queries but only few blog posts. Familiarity breed contempt – Events that are

newsworthy but not searched by users. Filtering behaviors – Events that have the

capability of deepening the filtering of categories. Elimination of noise – Events

that combined reduces the noise that might have been generated around a topic,

for instance a set of blog posts discussing a news article.

The models describing the aggregated and social behavior of users studied by

Adar et al. [2] can be used in practice, for instance, to analyze the market, or to

make search engines more reactive to changing user needs.

Zhang et al. [175] study time series analysis to evaluate predictive scenarios

using search engine transactional logs. Authors deal with developing models for

the analysis of searchers’ behaviors over time and investigate if time series analy-

32

3.4 Time-series Analysis of the Query Log

sis is a valid method for predicting relationships between searchers actions. Time

series analysis is a method often used to understand the underlying characteristics

of temporal data in order to make forecasts. The study uses a Web search engine

transactional log and time series analysis to investigate users’ actions. Authors

conducted their analysis in two main phases. The initial phase employed a basic

analysis and found that 10% of searchers clicked on sponsored links. Furthermore,

the analysis reveals that from 22:00 to 24:00, searchers almost exclusively clicked

on organic links with almost no clicks on sponsored links. The second, and more

extensive phase deals with using a one-step prediction time series analysis method

along with a transfer function method. Authors show that the period rarely affects

navigational and transactional queries, while rates for transactional queries vary

during different periods. Results also show that the average length of a searcher ses-

sion consist of about 2.9 interactions and that this average is consistent across time

periods. Moreover, results show that searchers who submit the shortest queries (i.e.

in number of terms) click on highest ranked results.

Some other recent papers deal with applying time series to query log analysis

and predicting users behavior.

Vlachos et al. [162] present several methods for mining knowledge from the

MSN query logs. They analyze time series built on each query of the log. They

demonstrate how to efficiently and accurately discover the important periods in a

time series. Authors also propose a simple but effective method for identification of

bursts (both long or short-term). Later, Vlachos et al. [160] motivate the need for

more flexible structural similarity measures between time-series sequences, which

are based on the extraction of important periodic features. Authors present non-

parametric methods for accurate periodicity detection and introduce new periodic

distance measures for time-series sequences. Furthermore, they combine these new

measures with an effective metric tree index structure for efficiently answering

k-nearest-neighbor queries. The goal of these tools and techniques is to assist in

detecting, monitoring and visualizing structural periodic changes. Authors claim

that these methods can be directly applicable in the manufacturing industry for

preventive maintenance and in the medical sciences for accurate classification and

anomaly detection.

Vlachos et al. [161] investigate lower and upper distance bounds on time-

series logs when working directly in a compressed form. Optimal distance esti-

mation means tighter bounds, leading to better candidate selection/elimination

and ultimately faster search performance. Their derivation of the optimal distance

bounds is based on the careful analysis of the problem using optimization prin-

ciples. The experimental evaluation shows a clear performance advantage of the

proposed method, compared to previous compression/search techniques. The pre-

sented method results in a 10–30% improvement on distance estimations, which

in turn leads to 25–80% improvement on the search performance.

33

3. Query Log Mining

Yizhou et al. [152] study the problem of mining causal relation of queries in

search engine query logs. They firstly detect events in query logs by applying a

statistical frequency threshold and then, the causal relation of queries is mined

by the geometric features of the events. The experimental results demonstrate

that this approach can accurately detect the events in temporal query logs and

effectively identify the causal relation of queries.

Chien et al. [56] try to find semantically related search engine queries based

on their temporal correlation. They figure out that two queries are related if their

popularity behave similarly over time. They also define a new measure of the

temporal correlation of two queries based on the correlation coefficient of their

frequency functions. Finally, authors provide a method for efficiently finding the

highest correlated queries for a given input query.

3.5 Some Applications of Query Log Mining

Query log mining is useful for enhancing the search experience of web search

engine users in terms of effectiveness and efficiency. Effectiveness in search sys-

tems refers to the quality of returned results. To this aim, five main applications

can be highlighted: i) query expansion, ii) query recommendation, iii) personalized

query results, iv) learning to rank, and v) query spelling correction. Furthermore,

efficiency in search systems refers to the speed of which results are returned. It

basically consists of two main topics that gain a lot of attention in the latest years:

i) caching, ii) index partitioning and querying in distributed web search systems.

In the following we will investigate the major contributions that are mainly

related to the results presented throughout the thesis. We will analyze query ex-

pansion and query recommendation. Interested readers could investigate the topics

that are not covered in this chapter by reading [141]. It is a good starting point.

3.5.1 Query Expansion

As already showed in Section 3.1, Web search engine users tend to submit short,

poorly expressive and sometimes mistyped queries. As a consequence of that search

engines tend to return to users too many useless results.

One of the techniques that Web search engines use to improve precision is

query expansion. Query expansion involves evaluating the user query and expand-

ing it with other semantically correlated terms in order to recall additional and

potentially useful documents.

Cui et al. [64] show that queries and documents are poorly correlated. Using a

two-months query log from the Encarta search engine2 and 41,942 documents from

the Encarta website, they measure the gap between the document space (all the

2 http://encarta.msn.com

34

http://encarta.msn.com

3.5 Some Applications of Query Log Mining

terms contained in the documents) and the query space (all the terms contained in

queries). Furthermore, authors define the concept of virtual document in the query

space that is made up by all the queries for which a document has been clicked

on. For each document in the document space, they build the corresponding vir-

tual document represented as a vector where the weight of each term is defined

by the tf × idf measure. The similarity between a query and the relative clicked

documents is measured by computing the cosine similarity between the two cor-

responding vectors. Results show that in most cases the similarity values of term

usages between user queries and documents are between 0.1 and 0.4. Only a small

percentage of documents have similarity 0.8. The average similarity value of the

whole collection is 0.28. It means that there is a large gap between document space

and query space.

For the reasons above, query expansion help in reducing the gap between doc-

ument space and query space. One of the first contributions on query expansion

(sometimes referred also as pseudo-relevance feedback [168]) is [68]. In this work,

Fitzpatrick and Dent propose past-query feedback and test its effectiveness against

the TREC-5 dataset. Authors show that past-query feedback improves of 38.3%

in average precision if compared to the non-query-expansion case.

Cui et al. [64] propose a method that exploits correlations among terms in

clicked documents and user queries. The exploitation of click-through data is due

to the assumption that clicked documents are relevant to a query. The proposed

method starts by extracting a set of query sessions from the query log. A query

session consists of a query and a list of clicked results. As an example, the query

session “britney spears” – 4,982 – 2,212 – 8,412 means that a user types the query

“britney spears” and she then clicks on three documents: 4,982, 2,212, 8,412. For

each one of the clicked documents in each session a list of terms is extracted. While

the set of all terms contained within each clicked documents form the Document

Terms set, the set of all terms contained within all the queries make up the Query

Terms set. Given a term in the Document Terms set (td) and a term in the Query

Terms set (tq), a link between td and tq is created if and only if for at least one

query containing tq there exists a clicked document containing the term td. Each

link is weighed by using the degree of term correlation between its endpoints. The

correlation is given by the conditional probability that term td appears given that

term tq already appeared, P (td|tq). The term correlation measure is then used to

devise a query expansion method relying on a function measuring the cohesion

between a query Q and a document term td. The cohesion weight is given by:

CoWeight(Q, td) = log

(∏

td∈Q
P (td|tq) + 1

)
(3.1)

The productory in the Equation (3.1) remarks that authors assume that terms

within the query are independent. The cohesion weight is used to build a list of

weighted candidate expansion terms. The top-k terms with the highest weights are

35

3. Query Log Mining

selected as expansion terms for Q. The evaluation of the method is performed on

30 queries extracted randomly from a combination of the Encarta query logs, from

the TREC query set, and from a small subset of manually evaluated queries. The

method is compared against a baseline consisting of not using query expansion,

and the local context method proposed by Xu and Croft [168]. The local context

method has been set to use 30 expanded terms for each query, while the log-based

uses 40 terms. The average precision for the baseline was 17.46% while the local

context method scored 22.04%. The log-based method scored an average precision

of 30.63% corresponding to an improvement of 75.42% on the baseline.

The technique proposed by Xu and Croft [168] is obsolete if compared to today’s

search engine technology. Moreover, expanding a query longer than 30 terms is not

viable due to the overhead it causes in the corresponding query processing phase.

Billerbeck et al. [32] use the concept of Query Association. User queries are

associated with a document if they are similar with the document. The idea is

thus to enrich documents with an associated Surrogate Document. Surrogate doc-

uments are used as a source of terms for query expansion. Furthermore, to make

the system more scalable, instead of keeping all of the queries associated with the

documents only the M closest queries are kept. Similarity is computed using the

Okapi BM25 [128] scoring function. Depending on two parameters, the methods

has to be fine tuned with respect to the different values of K, and M . Scholer et

al. empirically set K = 5, and M = 3. Billerbeck et al. [32] use the Robertson and

Walker’s term selection value formula [127] to select the e expanding terms on dif-

ferent combinations of ranking/expansion on documents/surrogates. Experiments

conducted on a TREC collection shows the superiority of both retrieval/expansion

on surrogates with respect to retrieval/expansion on the original documents (full-

text).

Collins-Thompson and Callan [61] describe a Markov chain framework that

combines multiple sources of knowledge on term associations. The stationary dis-

tribution of the model is used to estimate the probability that a potential expan-

sion term reflects aspects of the original query. Authors use this model for query

expansion and evaluate the effectiveness of the model by examining the accuracy

and robustness of the expansion methods. Authors also investigate the relative ef-

fectiveness of various sources of term evidence. Statistically significant differences

in accuracy are observed depending on the weighting of evidence in the random

walk.

Chirita et al. [57] propose to improve Web queries by expanding them with

terms collected from each user’s Personal Information Repository, thus implic-

itly personalizing the search output. Authors introduce five broad techniques for

generating the additional query keywords by analyzing user data at increasing

granularity levels, ranging from term and compound level analysis up to global

co-occurrence statistics, as well as to using external thesauri. The extensive em-

pirical analysis under four different scenarios presented shows that some of these

36

3.5 Some Applications of Query Log Mining

approaches perform very well, especially on ambiguous queries, producing a very

strong increase in the quality of the output rankings. Subsequently, authors move

this personalized search framework one step further and propose to make the

expansion process adaptive to various features of each query. A separate set of

experiments indicates the adaptive algorithms to bring an additional statistically

significant improvement over the best static expansion approach.

Fonseca et al. [69] propose a concept-based query expansion technique, which

allows disambiguating queries submitted to search engines. The concepts are ex-

tracted by analyzing and locating cycles in a special type of query relations graph.

This is a directed graph built from query relations mined using association rules.

The concepts related to the current query are then shown to the user who selects

the one concept that she interprets is most related to his query. This concept is

used to expand the original query and the expanded query is processed instead.

Using a Web test collection, authors show that our approach leads to gains in

average precision figures of roughly 32%. Furthermore, if the user also provides

information on the type of relation between her query and the selected concept,

the gains in average precision go up to roughly 52%.

3.5.2 Query Recommendation

Query recommendation is an important application of query log mining. It deals

with increasing precision of Web search engines by suggesting users a set of possible

queries they might be interested in during their search. The idea is to help users

in better formulating their information needs in order to give them the possibility

to reach their needs in a shorter time, thus decreasing the number of queries a

search engine should resolve.

Differently from query expansion, query suggestion aims at producing hints for

users, thus giving them the possibility to select the best similar query to refine

their search, instead of having the query automatically expanded with a lot of

different terms.

The activity of producing suggestions from queries submitted in the past can

be seen as a way of “exploiting queries submitted by experts to help non-expert

users” [18]. Therefore, the majority of query suggestion techniques detect related

queries by selecting those that are mostly similar to the ones submitted in the past

by other users.

A näıve approach to find queries similar to another one consists of simply

looking for those queries sharing terms in commons. As an example, “Pisa Vini”

and “Dottorato Pisa” would be considered to some extent similar as both the

two queries share the term “Pisa”. Obviously, this example shows that the näıve

approach might result misleading for users.

Lot of efforts have been spent on query recommendation producing a lot of

contributions in the field. Starting from papers selecting queries to be suggested

37

3. Query Log Mining

from those appearing frequently in query sessions [70], to use clustering to devise

similar queries on the basis of clustering membership [18, 11, 12], to use click-

through data information to devise query similarity [177, 63].

Query sessions can be an important source of information for devising poten-

tially related queries to be suggested to a user. One important idea is that if a

lot of previous users when issuing the query q1 also issue q2 afterwards, query q2

could be a suggestion for query q1.

Fonseca et al. [70] exploit this idea above by mining association rules from

query logs. Authors run an association rules mining algorithm on a query log. As

computing association rules on query logs could be very computationally expensive

(due to the dimensions of the data), the approach presented by Fonseca et al. [70]

mines only rules of the form qi ⇒ qj and, thus reducing the total effort needed

for the overall computation. Basically, for each query qi, all the associations above

a given support σ are sorted by confidence level and saved in the form of rules

qi ⇒ q1, qi ⇒ q2, . . . , qi ⇒ qm. Authors test the proposed technique on a real-

world query log coming from a Brazilian search engine and consisting of 2.312.586

queries. Experiments use a support σ = 3. The produced recommendations are

evaluated by means of a survey involving five assessors. Results are encouraging as

the technique scores 90.5% of precision (with five queries suggested) measured as

the number of suggestions retained relevant for the five assessors. By augmenting

the number of suggestions provided to users, precisions drops to 89.5% when ten

queries are suggested down to 81.4% when 20 queries are suggested.

Zäıane and Strilets [170] use a Query Memory model to store past queries

and retrieve them according to the one submitted. The method computes asso-

ciations on-the-fly at query resolution time. A Query Memory is a set of queries

represented by six different features: i) a bag of word representation of the query

(BagTerms); ii) the frequency with which the query has been submitted (Count);

iii) the timestamp recording the last time the query was submitted (LDate); iv)

the timestamp recording the first time the query was submitted (FDate); v) the

query result list stored as records made up of: URL, Title and Snippet of each

result page (QResult); vi) the timestamp recording the date at which results were

obtained. In order to produce query recommendations, seven different methods

can be used:

• Näıve query-based method : returning queries having in common at least one

term;

• Näıve simplified URL-based method : returning queries having in common at

least one URL in the result lists;

• Näıve simplified URL-based method : returning queries having in common a

large portion of URLs in the result list;

• Query-Title-based method : returning queries where terms in their result titles

are contained in the submitted query;

38

3.5 Some Applications of Query Log Mining

• Query-Content-based method : it is the same as the above only considering

snippet terms instead of title terms;

• Common query title method : returning queries whose results share title terms;

• Common query text method : it is the same of the previous one only considering

snippet terms instead of the title terms.

The evaluation of the technique is conducted by means of an user study. Au-

thors claim that it is difficult to find a winner strategy. Furthermore, authors

investigated the scalability of the method. They claimed that the use of the Query

Model in a real-world search engine needs the use of an index depicted to the

search of queries containing a keyword. This implies that the method performs a

double index access for each submitted query. Furthermore, this two accesses can

be done in parallel on a distributed platform.

Baeza-Yates et al. [18] use a clustering approach to query recommendation.

The query recommendation technique works by following a two level approach.

An offline process clusters past queries using text from queries and clicked URLs.

The online process then follows a two-stage approach: i) given an input (a query),

the most representative cluster is found; ii) each query in the cluster is ranked

according to two criteria: the similarity and the attractiveness of query answer,

i.e. how much the answers of the query have attracted the attention of users. In

the paper, authors refer to this as support. Moreover it should not be confused

with the more famous support of association rules [4]. The offline query clustering

algorithm operates over queries that are previously enriched by a selection of

terms extracted from the clicked documents. Clusters are computed by applying

a k-means algorithm. The similarity between queries is computed according to a

vector-space approach. Therefore, each query q is represented as a vector whose

i-th component qi is computed as

qi =
∑

u∈URLs

Clicks(q, u)× tf(ti, u)

maxttf(t, u)

where Clicks(q, u) is the percentage of clicks the URL u receives when answered in

response to the query q, and tf(t, u) is the number of occurrences of the term t in

the document pointed to URL u. All the clicked URLs are considered in computing

the sum. The distance between two queries is computed by the cosine similarity

of their relative vectors. The approach is evaluated on the TodoCL query log con-

taining 6,042 unique queries with the associated click-through information. 22,190

clicks are present in the log referring to 18,527 different URLs. The evaluation is

performed on ten queries by means of an user study. Results show that presenting

query suggestions ranked by support (the frequency of the query in the query log)

yields to more precise and high quality suggestions.

Jones et al. [93] propose a model for suggesting queries based on the concept of

query rewriting. Basically a query is rewritten into a new one by means of query

39

3. Query Log Mining

or phrase substitution. The rewriting process is based on the Log-Likelihood Ratio

(LLR) [104] measure to assess interdependencies between terms of queries. Given

two terms, the more the LLR is high, the more the likelihood of the two words

of being dependent is higher. Thus, query pairs with high LLR are identified as

substitutables. Authors also propose a systemization of possible suggestions into

four classes going from the most precise to the less precise class: precise rewriting,

approximate rewriting, possible rewriting, and clear mismatch. Precise rewriting

means that the query suggested has exactly the same semantic of the one to be

replaced. Approximate rewriting is the class containing narrowed or broadened

queries of the initial one. Possible rewriting is a still less precise query suggestion

methodology: queries are in some categorical relationship. The last class, clear

mismatch is the less precise and contains query pairs where no relationships can

be found among them. Authors use the four classes for defining the two general

tasks of query suggestion: specific rewriting (precise and approximate rewriting),

and broad rewriting (precise, approximate, and possible rewriting). Given these

two tasks, the problem of generating query recommendations can be seen as a

classification problem. Authors thus adopt and test different classifiers. Training

is performed on a set of manually annotated set of substitutions extracted from

queries of a query log. The assessment of the method is performed by using an

automatic evaluation. For the log used in [93], the precision of the method has

been measured to be 76% with a recall figure of 92%.

Boldi et al. [35] introduce the Query Flow Graph (QFG), a graph representation

of the interesting knowledge about latent querying behavior. Intuitively, in the

QFG a directed edge from query qi to query qj means that the two queries are

likely to be part of the same search mission. Any path over the QFG may be seen

as a searching behavior, whose likelihood is given by the strength of the edges along

the path. Figure 3.16 shows an example of the users’ search behavior represented

by means of a Query Flow Graph. Authors propose a methodology that builds

a QFG by mining time and textual information as well as aggregating queries

from different users. Using this approach, authors build a real-world QFG from

a large-scale query log and demonstrate its utility in two concrete applications:

i) finding logical sessions, and ii) query recommendation. In a later study, Boldi

et al. [36] propose, and experimentally study, query recommendations based on

short random walks on the query flow graph. The conducted experiments show

that these methods can match in precision, and often improve, recommendations

based on query-click graphs, without using click-through data. Experiments also

show that it is important to consider transition-type labels on edges for having

good quality recommendations.

Baeza-Yates and Tiberi [17] use click-through data as a way to provide recom-

mendations. The method is based on the concept of cover graph. A cover graph is

a bipartite graph of queries and URLs, where a query and a URL are connected if

the URL was returned as a result for the query and a user clicked on it. To catch

40

3.5 Some Applications of Query Log Mining

barcelona fc

<T>

0.506

barcelona fc
website

0.043
barcelona fc

fixtures
0.031

real
madrid

0.017

barcelona
weather

0.523

barcelona
hotels

0.018

barcelona
weather
online

0.100

barcelona

0.018

0.011

0.439

cheap
barcelona

hotels

0.072

luxury
barcelona

hotels

0.029

0.080

0.416

0.043

0.023

Figure 2: A portion of the query flow graph using
the weighting scheme based on relative frequencies,
described on Section 4.

Let f(s, q) and f(q, t) indicate the number of times query q
is the first and last query of a session, respectively.

The weight we use is:

w′(q, q′) =

{
f(q,q′)

f(q)
if (w(q, q′) > θ) ∨ (q = s) ∨ (q = t)

0 otherwise,

which uses the chaining probabilities w(q, q′) basically to
discard pairs that have a probability of less than θ to be
part of the same chain.

By construction, the sum of the weights of the edges go-
ing out from each node is equal to 1. The result of such a
normalization can be viewed as the transition matrix P of a
Markov chain.

In Figure 2 we show a small snapshot of the query flow
graph we produce with this weighting scheme. This contains
the query “barcelona” and some of its followers up to a
depth of 2, selected in decreasing order of count. Also the
terminal node t is present in the figure. Note that the sum of
outgoing edges from each node does not reach 1 just because
not all outgoing edges (and relative destination nodes) are
reported.

5. FINDING CHAINS
In this section we describe our first application of the

query-flow graph: finding chains of queries in user sessions.
As we have already mentioned, finding chains is a very im-
portant problem as it allows improving query-log analysis,
user profiling, mining user behavior, and more. For this
application we use the first weighing scheme described in
Section 4 based on chaining probabilities.

The problem we consider is the following. We are given a
supersession S = 〈q1, q2, . . . , qk〉 of one particular user. We

are also given the query-flow graph, which has been com-
puted with the sessions of S as part of its input. The chain-
finding problem can also be defined in the case that the
sessions of S have not participated in the construction of
the query-flow graph. However, in this paper we focus on
the former case and we leave the latter for future work.

One of the challenges of the problem we consider arises
from our definition of chains: we allow chains not to be con-
secutive in the supersession S; in other words, the super-
session S may contain many intertwined chains such as the
ones shown in the Table 1. Previous work has mostly focused
on the case where all chains are consecutive.

Chain #1 Chain #2

.
football results january 2nd pointui forum
royal carribean cruises audi ipswich
holidays golfers elbow
motherwell football club cox ipswich
... ...

Table 1: Two fragments from actual sessions con-
taining non-consecutive chains.

The chain-finding problem can be formalized as follows:
let us define a chain cover of S = 〈q1, q2, . . . qk〉 as a par-
tition of the set {1, . . . , k} into subsets C1, . . . , Ch. Each
set Cu = {iu1 < · · · < iu!u

} is thought of as a chain Cu =
〈s, qiu

1
, . . . , qiu

!u
, t〉, that is associated the probability

P (Cu) = P (s, qiu
1
)P (qiu

1
, qiu

2
) . . . P (qiu

!u−1
, qiu

!u
)P (qiu

!u
, t)

and we want to find a chain cover maximizing P (C1) . . . P (Ch).
When a query appears more than once, “duplicate” nodes

for that query are added to the formulation, which makes the
description of the algorithm slightly more complicated than
what is presented here. For simplicity of the presentation we
omit the details related to queries appearing more than once
below, which are not fundamental to the understanding of
the algorithm.

We separate this problem into two subproblems: session
reordering and session breaking. The session reordering prob-
lem is to ensure that all the queries belonging to the same
search mission are consecutive. Then, the session breaking
problem is much easier as it only needs to deal with non-
intertwined chains.

5.1 Session re-ordering by ATSP
We formulate the session re-ordering problem as an in-

stance of the Assymmetric Traveler Salesman Problem (ATSP).
Let w(q, q′) be a weight defined as a chaining probability
from Section 4. Given the session S = 〈q1, q2, . . . qk〉, con-
sider a directed weighted graph GS = (V, E, h) with nodes
V = {s, q1, . . . , qk, t}, edges E and edge weights h defined
as h(qi, qj) = − log w(qi, qj) . An edge (qi, qj) exists in E if
w(qi, qj) > 0.

An optimal ordering is a permutation π of 〈1, 2, . . . k〉 that
maximizes

k−1∏

i=1

w(qπ(i), qπ(i+1)).

This is equivalent to finding a Hamiltonian path of minimum
weight in this graph.

613

Fig. 3.16. An example of the users’ search behavior represented by means of a Query
Flow Graph [35].

the relations between queries, a graph is built out of a vectorial representation

for queries. In such a vector-space, queries are points in a high-dimensional space

where each dimension corresponds to a unique URL u that was, at some point,

clicked by some user. Each component of the vector is weighted according to the

number of times the corresponding URL has been clicked when returned for that

query. For instance, suppose we have five different URLs, namely, u1, u2, . . . , u5,

suppose also that for query q users have clicked three times URL u2 and four times

URL u4, the corresponding vector is (0, 3, 0, 4, 0). Queries are then arranged as a

graph with two queries being connected by an edge if and only if the two queries

share a non-zero entry, that is, if for two different queries the same URL received at

least one click. Furthermore, edges are weighted according to the cosine similarity

of the queries they connect. More formally, the weight of an edge e = (q, q′) is com-

puted according to Equation (3.2). In the formula, D is the number of dimensions,

i.e., the number of distinct clicked URLs, of the space.

41

3. Query Log Mining

W (q, q′) =
q · q′

|q| · |q′|
=

∑
i≤D

qi · q′i
√∑
i≤D

q2
i

√∑
i≤D

q′ 2i
(3.2)

Suggestions for a query q are obtained by accessing the corresponding node in

the cover graph and extracting the queries at the end of the top scoring edges.

Baraglia et al. [22] propose a new model for query recommendation, the Search

Shortcut Problem (SSP), that consists in recommending successful queries that al-

lowed other users to satisfy, in the past, similar information needs. This new model

present several advantages with respect to traditional query suggestion approaches.

Firstly, it allows a straightforward evaluation of algorithms from available query log

data. Moreover, it simplifies the application of several recommendation techniques

from other domains. In particular, authors apply collaborative filtering techniques

to this problem. The proposed query recommendation technique is evaluated on

two large query logs (AOL and MSN). Different techniques for analyzing and ex-

tracting information from query logs, as well as new metrics and techniques for

measuring the effectiveness of recommendations are proposed and evaluated. Re-

sults show notably accurate results, which demonstrate that collaborative filtering

techniques can be useful in recommending queries.

Query suggestion has been an effective approach to help users narrow down

to the information they need. However, most of the existing studies focus on only

popular queries. Since rare queries possess much less information (e.g., clicks) than

popular queries in the query logs, it is much more difficult to efficiently suggest

relevant queries to a rare query.

Yang et al. [145] propose an optimal rare query suggestion framework by lever-

aging implicit feedbacks from users in the query logs. The model resembles the

principle of pseudo-relevance feedback which assumes that top-returned results by

search engines are relevant. However, authors argue that the clicked URLs and

skipped URLs contain different levels of information and thus should be treated

differently. Hence, the query suggestion framework optimally combines both the

click and skip information from users and uses a random walk model to optimize

the query correlation. The proposed model specifically optimizes two parameters:

i) the restarting (jumping) rate of random walk, and ii) the combination ratio of

click and skip information. Unlike the Rocchio algorithm, the proposed learning

process does not involve the content of the URLs but simply leverages the click

and skip counts in the query-URL bipartite graphs. Consequently, the model is

capable of scaling up to the need of commercial search engines. Experimental re-

sults on one-month query logs from a large commercial search engine with over

40 million rare queries demonstrate the superiority of our framework, with statis-

tical significance, over the traditional random walk models and pseudo-relevance

feedback models.

42

3.6 Privacy Issues in Query Logs

Broder et al. propose to leverage the results from search engines as an external

knowledge base for building the word features for rare queries [45]. The authors

train a classifier on a commercial taxonomy consisting of 6,000 nodes for cate-

gorization. Results show a significant boost in term of precision with respect to

the baseline query expansion methods. Lately, Broder et al. propose an efficient

and effective approach for matching ads against rare queries [44]. The approach

builds an expanded query representation by leveraging offline processing done for

related popular queries. Experimental results show that the proposed technique

significantly improves the effectiveness of advertising on rare queries with only a

negligible increase in computational cost.

Mei et al. propose a novel query suggestion algorithm based on ranking queries

with the hitting time on a large scale bipartite graph [108]. The rationale of the

method is to capture semantic consistency between the suggested queries and the

original query. Empirical results on a query log from a real world search engine

show that hitting time is effective to generate semantically consistent query sug-

gestions. Authors show that the proposed method and its variations are able to

boost long tail queries, and personalized query suggestion.

3.6 Privacy Issues in Query Logs

Privacy in query logs becomes an hot topic in 2006 when AOL compiled a statistical

sampling of more than twenty million queries entered by 650,000 users of their

customers. Such enormous quantity of data was released for research purposes.

Users names were replaced by numbers. Furthermore, these numbers provide a sort

of thread by which queries by a given user could be identified. The identification

process is easy if users entered some pieces of information which permits their

identity to be discerned. Doing so, all other queries they made during the sampling

period could be identified as theirs.

Many commercial search engines overcome the problem by simply not pub-

lishing their logs. However, lot of efforts have been spent in order to find good

techniques for sanitizing query logs. As an example, Bar-Ilan in [21] state that

“interesting results can be obtained from query logs without jeopardizing the pri-

vacy of users”.

A seminal solution to the anonymity preservation challenge has been proposed

by Sweeney in [153]. Sweeney introduced the concept of k-anonymity, which en-

sures that each information request contains at least k (anonymized) individuals

with the same values, so that it is not possible to identify one individual in par-

ticular.

Jones et al. [91] provide a detailed description of a data analysis process that

leads to information disclosure in a query log. They show how the combination of

simple classifiers can be used to map a series of user queries into a gender, age and

location showing that this approach remains very accurate even after personally

43

3. Query Log Mining

identifying information has been removed from the log. Authors emphasize that

a user can be identified by a real-life acquaintance; this type of person has back-

ground knowledge on the user (e.g. location, age, gender, or even access the user’s

browser) and can use it to disclose the activities of the user in the log.

Adar [1] elaborates on vulnerabilities in the AOL log and shows that tradi-

tional privacy preservation methods can not be transferred directly to query logs.

Adar also points out that k-anonymity is too costly for query log anonymization,

because this type of dataset changes very rapidly. Two user anonymization meth-

ods are proposed, whose goal is to balance the achieved privacy and the retained

utility, i.e. the usability of the anonymized log for statistical analysis. The term

utility refers to the data utility of the anonymized log for the purposes of non-

adversarial information acquisition. Verykios et at. [159] count utility as one of

the important features for the evaluation of privacy preserving algorithms, next

to the performance of the algorithm, the level of uncertainty with which the sen-

sitive information can be predicted and the resistance to different data mining

techniques.

Xiong and Agichtein [167] describe some important applications of query log

analysis and discuss requirements on the degree of granularity of query logs. Au-

thors then analyze the sensitive information in query logs and classify them from

the privacy perspective. Two orthogonal dimensions are described for anonymizing

query logs and a spectrum of approaches along those dimensions is presented. Fur-

thermore, the authors discuss whether existing privacy guidelines such as HIPAA

can apply to query logs directly.

Cooper [62] assesses seven state-of-the-art privacy-preserving techniques against

three main criteria: i) how well the technique protects privacy, ii) how well the tech-

nique preserves the utility of the query logs, and iii) how well the technique might

be implemented as a user control. The author highlights that achieving the right

balance between protecting privacy and promoting the utility of the query logs

is thus difficult but necessary to ensure that Web users can continue to rely on

search engines without fear of adverse privacy consequences.

Poblete et al. [119] look into the privacy related implications of query log

analysis and in particular, they analyze a new concern, the privacy of businesses.

This include both institutions (such as companies) and people in the public eye

(such as political leaders). Authors provide a definition of confidential information

and analyze attacks that lead to confidentiality breaches, including methods to

prevent information disclosure.

Kumar et al. [98] study the privacy preservation properties of a specific tech-

nique for query log anonymization: token-based hashing. In this approach, each

query is tokenized, and then a secure hash function is applied to each token. Au-

thors show that statistical techniques may be applied to partially compromise

the anonymization. Authors then analyze the specific risks that arise from these

partial compromises, focused on revelation of identity from unambiguous names,

44

3.6 Privacy Issues in Query Logs

addresses, and so forth, and the revelation of facts associated with an identity that

are deemed to be highly sensitive. The goal of the study is twofold: to show that

token-based hashing is unsuitable for anonymization, and to present a concrete

analysis of specific techniques that may be effective in breaching privacy, against

which other anonymization schemes should be measured.

45

4

The Effects of Time on Query Flow Graph-based
Models for Query Suggestion

A recent query-log mining approach for query recommendation is based on Query

Flow Graphs, a markov-chain representation of the query reformulation process

followed by users of Web Search Engines trying to satisfy their information needs.

In this chapter we aim at extending this model by providing methods for dealing

with evolving data. In fact, users’ interests change over time, and the knowledge

extracted from query logs may suffer an aging effect as new interesting topics ap-

pear. Starting from this observation validated experimentally, we introduce a novel

algorithm for updating an existing query flow graph. The proposed solution allows

the recommendation model to be kept always updated without reconstructing it

from scratch every time, by incrementally merging efficiently the past and present

data.

4.1 Introduction

All popular Web search engines provide users with query suggestions to help them

to formulate better queries and to quickly satisfy their information needs. As

introduced in Chapter 3, query suggestion techniques are typically based on the

behavior of past users of the search engine recorded in query logs. In this chapter

we are interested particularly in query recommendation: the automatic generation

of interesting queries that are related in some non trivial way to the current user

information need.

A successfully query-log mining approach for generating useful query recom-

mendation based on Query Flow Graphs (QFGs) [35], was recently proposed

in [36]. The QFG model aggregates information in a query log by providing a

markov-chain representation of the query reformulation process followed by users

trying to satisfy the same information need. This chapter aims at extending the

QFG model by providing a methodology for dealing efficiently with evolving data.

The interests of search engine users change in fact over time. New topics may

suddenly become popular (this is described as a query burst), while others that

4. The Effects of Time on Query Flow Graph-based Models for Query Suggestion

attracted for some time the attention of users can lose importance. The knowl-

edge extracted from query logs can thus suffer an aging effect, and the models

used for recommendation rapidly becoming unable to generate useful and inter-

esting queries. Unfortunately, building a new fresh QFG from scratch as soon as

we discover the effect of aging is very expensive. We thus deal with this problem

by introducing an incremental algorithm for updating an existing QFG. The so-

lution proposed allows the recommendation model to be kept always updated by

incrementally adding fresh knowledge and deleting the aged one.

In order to validate our claims and assess our methodology, we build different

query flow graphs from the queries found on a large query log of a real-world search

engine, and we analyze the quality of the recommendation model devised from

these graphs to show that it inexorably ages. Then, we show that our algorithm

for merging QFGs allows the recommendation model to be kept updated and we

propose a general methodology for dealing with aging QFG models. Finally, we

show that the computational time needed to merge QFGs is remarkably lower

than the time required for building it from scratch, and we propose a distributed

solution allowing to shorten further the time for the QFG creation/update.

The results we present here show that the model built over a QFG inexorably

ages over time [23], to assess the aging effect and also to find effective anti-aging

strategies to combat time effects over QFG-based models [24].

The chapter is organized as follows. Section 4.2 discusses related works, while

Section 4.3 introduces the concept of query flow graph, and provides readers with

some useful notations. The data used for the experiments are described in Sec-

tion 4.4, while their analysis finalized to the evaluation of aging effects on the

recommendation models is discussed in Section 4.5. The incremental algorithm for

updating query flow graphs with fresh data is described in Section 4.6. Section 4.7

discusses its parallel implementation. Finally, Section 4.8 draws some conclusions

and outlines future work.

4.2 Related Work

Different approaches have been proposed in recent years that use query logs to

mine wisdom of the crowds for query suggestion.

Bruno et al. in [69] use an association rule mining algorithm to devise query

patterns frequently co-occurring in user sessions, and a query relations graph in-

cluding all the extracted patterns is built. A click-through bipartite graph is then

used to identify the concepts (synonym, specialization, generalization, etc.) used

to expand the original query.

Jones et al. in [93] introduce the notion of query substitution or query rewriting,

and propose a solution for sponsored search. Such solution relies on the fact that

in about half sessions the user modifies a query with another which is closely

48

4.3 The Query Flow Graph

related. Such pairs of reformulated queries are mined from the log and used for

query suggestion.

Baeza-Yates et al. [18] use a k-means algorithm to cluster queries by consid-

ering both topics and text from clicked URLs. Then the cluster most similar to

user query is identified, and the queries in the cluster with the highest similarity

and attractiveness (i.e. how much the answers of the query have attracted the

attention of past users) are suggested. The solution is evaluated by using a query

log containing only 6,042 unique queries from the TodoCL search engine, and the

suggestions to 10 different queries are evaluated by means of a user study.

Beeferman and Berger [26] apply a hierarchical agglomerative clustering tech-

nique to click-through data to find clusters of similar queries and similar URLs

in a Lycos log. A bipartite graph is created from queries and related URLs which

is iteratively clustered by choosing at each iteration the two pairs of most similar

queries and URLs. The conducted experimental evaluation shows that the pro-

posed solution is able to enhance the quality of the Lycos’s query recommender

which was used as baseline.

QFGs were introduced by Boldi et al. [35]. A QFG is an aggregated representa-

tion of the interesting information contained in query logs. Authors define a QFG

as a directed graph in which nodes are queries, and edges are weighted by the

probability of being traversed. Authors propose two weighting schemes. The first

one represents the probability that two queries are part of the same search mission

given that they appear in the same session, and the other one represents the prob-

ability that query qj follows query qi. Authors show the utility of the model in two

concrete applications, namely, finding logical sessions and query recommendation.

Boldi et al. in [36], [37] refine the previous study and propose a query suggestion

scheme based on a random walk with restart model. The query recommenda-

tion process is based on reformulations of search mission. Each reformulation is

classified into query reformulation types. Authors use four main reformulations:

generalization, specialization, error correction, and parallel move. An automatic

classifier was trained on manually human-labeled query log data to automatically

classify reformulations. Authors showed improvements on the recommendations

based on QFG models.

4.3 The Query Flow Graph

A Query Flow Graph is a compact representation of the information contained in

a query log. It has been applied successfully to model user interactions with a web

search engine and for a number of practical applications as segmenting physical

sessions into logical sessions [35] or query recommendation [35, 36].

As presented in [35] a Query Flow Graph is a directed graph G = (V,E,w)

where:

49

4. The Effects of Time on Query Flow Graph-based Models for Query Suggestion

• V = Q ∪ {s, t}, is the set of distinct queries Q submitted to the search engine

enriched with two special nodes s and t, representing a starting state and a

terminal state which can be seen as the begin and the end of all the chains;

• E ⊆ V × V is the set of directed edges;

• w : E → (0..1] is a weighting function that assigns to every pair of queries

(q, q′) ∈ E a weight w(q, q′).

Each distinct query is represented by a single node independently of its fre-

quency, and the number of users who issued it. In order to build the QFG repre-

senting a given query log, we need to preprocess the data, sorting the queries by

userid and by timestamp, and splitting them into physical sessions using a fixed

time interval. In a second step we connect two queries q, q′ with an edge if there is

at least one session of the query log in which q and q′ are consecutive. The third

step of the QFG construction consists in weighting directed edges (q, q′) on the

basis of a function w : E → (0..1] that measures the probability of transition from

query q to query q′. In [35], two weighting schemes are proposed. A first one based

on chaining probability and the second one based on relative frequencies. For edge

weighting we adopted the chaining probability scheme. To estimate such chaining

probability, we extract for each edge (q, q′) a set of features aggregated over all

sessions that contain the queries q and q′ appearing consecutively.

This classification step produces a set of so called chain graphs. Each chain

graph is represented by a set of queries (i.e. nodes) interconnected by edges

weighted by the probability of moving from a query to another. Noisy edges (i.e.

those edges having a low probability of being traversed) are removed on the basis

of a filtering process by means of a threshold value t.

4.4 Experimental Framework

Our experiments have been conducted on the AOL query log and on a hardware

consisting of a cluster of machines equipped with G5 PowerPCs and 5 Gb of RAM

each.

The AOL data-set contains about 20 million queries issued by about 650, 000

different users, submitted to the AOL search portal over a period of three months

from 1st March, 2006 to 31st May, 2006. Each query record comes with the user

ID, timestamp, and the list of results returned to the user. After the controversial

discussion followed to its initial public delivery, AOL has withdrawn the query log

from their servers and is not offering it for download anymore. We decided to run

experiments on that log anyways, because of the following reasons. First of all,

the log spans a long period of time and this allows us to show how models for

query suggestions degrade in a more realistic way. Second, we are not disclosing

any sensitive information neither about users nor about usage behavior. Therefore,

we are not breaching into the privacy of any specific user. Last, but not least, the

50

4.4 Experimental Framework

query log is still available on the web. Everybody can easily find and download it.

Indeed we consider this a strong point in favor of its use: the availability of data

allows the repeatability of experiments which is an important requirement for any

scientific work.

To assess the aging effects on QFG models we conducted several experiments to

evaluate the impact of different factors. The log has been split into three different

segments. Two of them have been used for training and the third one for testing.

The three segments correspond to the three different months of users activities

recorded in the query log. We fixed the test set – i.e. the set of queries from which

we generate recommendations – to be the queries submitted in the last month.

We also have conducted experiments with different training granularities, based

on weekly and biweekly training sets. Results on those shorter training segments

are consistent with those presented in the following, and we are omitting them for

brevity.

The QFGs over the two monthly training segments have been constructed

according to the algorithm presented by Boldi et al. in [35]. This method uses

chaining probabilities measured by means of a machine learning method. The initial

step was thus to extract those features from each training log, and storing them

into a compressed graph representation. In particular we extracted 25 different

features (time-related, session and textual features) for each pair of queries (q, q′)
that are consecutive in at least one session of the query log.

Table 4.1 shows the number of nodes and edges of the different graphs corre-

sponding to each query log segment used for training.

Time window Id Nodes Edges

March 06 M1 3,814,748 6,129,629

April 06 M2 3,832,973 6,266,648

Table 4.1. Number of nodes and edges for the graphs corresponding to the two different
training segments.

It is important to remark that we have not re-trained the classification model

for the assignment of weights associated with QFG edges. We reuse the one that

has been used in [35] for segmenting users sessions into query chains1. This is

another point in favor of QFG-based models. Once you train the classifier to assign

weights to QFG edges, you can reuse it on different data-sets without losing in

effectiveness. We want to point out, indeed, that what we are evaluating in this

work is that QFGs themselves age much faster than the model used to build them.

This is a subtle difference we want to state clearly.

Once the QFG has been built, the query recommendation methods are based

on the probability of being at a certain node after performing a random walk over

1 We thank the authors of [35] for providing us their model.

51

4. The Effects of Time on Query Flow Graph-based Models for Query Suggestion

the query graph. This random walk starts at the node corresponding to the query

for which we want to generate a suggestion. At each step, the random walker either

remains in the same node with a probability α, or it follows one of the out-links with

probability equal to 1−α; in the latter case, out-links are followed proportionally

to w(i, j). In all the experiments we computed the stable vector of the random

walk on each QFG by using α = 0.15. Actually, the stable vector is computed

according to a Random Walk with Restart model [156]. Instead of restarting the

random walk from a query chosen uniformly at random, we restart the random

walk only from a given set of nodes. This is done by using a preference vector

v, much in the spirit of the Topic-based PageRank computation [75], defined as

follows. Let q1, . . . , qn be a query chain (q1 is the most recently submitted query).

The preference vector v is defined in the following way: vq = 0 for all q /∈ q1, . . . , qn
and vqi ∝ βi. β is a weighting factor that we set in all of our experiments to be

β = 0.90.

4.5 Evaluating the Aging Effect

One of the main goals of this chapter is to show that time has some negative

effects on the quality of query suggestions generated by QFG-based models. It is

also worth remarking that we can safely extend the discussion that follows also to

suggestion models different from QFG-based ones. As a matter of fact, the presence

of “bursty” [95] topics could require frequent model updates whatever model we

are using. To validate our hypothesis about the aging of QFG-based models we

have conducted experiments on models built on the two different training segments

described in the above section.

In order to assess the various reasons why a QFG-based model ages we have

considered, for each segment, two classes of queries, namely F1, and F3, which

respectively correspond to queries having a strong decrease and a strong increase

in frequency. F1 is the set of the 30 queries that are among the 1,000 most frequent

queries in the first month (M1) but whose frequency has had the greater drop

in the last month covered by the query log (M3). Conversely, F3 is the set of

the 30 queries among the 1,000 most frequent queries in the test log M3 whose

frequency has the greater drop in the first part of the log M1. Actually, to make

the assessment more significant, we do not include queries that are too similar,

and we do not include queries containing domain names within the query string.

Figure 4.1 graphically show where the selected queries for each class fall when

we plot the popularity of the top-1000 most frequent queries in M1 (M3) by

considering query ids assigned according to frequencies in M3 (M1).

Some examples of queries in F1 are: “shakira”, “americanidol”, “ecards”, “nfl”.

Such queries are related to particular events in March 2006, for instance singer

Shakira in March 2006 released a new album. Some examples of queries in F3 are:

“mothers day gift”, “mothers day poems”, “memorial day”, “da vinci code”. As

52

4.5 Evaluating the Aging Effect

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

Top 1000 queries in month 3 on month 3

Top 1000 queries in month 1 on month 3

!"#"$%"&'()"*+",'

Fig. 4.1. Queries in F3. The set of top 1,000 queries in M3 compared with the same
set projected onM1. Query identifiers are assigned according to frequencies inM3. The
circled area in the plot highlights the zone from where F3 was drawn.

in the previous case, F3 queries are strongly related to that particular period of

time. For instance, in May 2006 the movie adaptation of the popular book “Da

Vinci Code” was released.

We selected two distinct sets because we want to assess the effectiveness of

recommendations for both new or emerging query topics in the test log (i.e. queries

in F3), and for queries that are frequent in the first month but poorly represented

(or absent) in the test month (i.e. queries in F1).

The first evaluation we perform is a human-based assessment of the quality

of query suggestions generated by models trained on the two different segments.

From each query in F1 and F3 we generated the top 20 recommendations using

four different sets of QFG-based models: three of them are filtered with different

values of the threshold t (0.5, 0.65, and 0.75), one is generated without filtering

(t = 0). Each set consists of QFGs built on either M1 or M2.

The generated recommendations were manually evaluated and classified as use-

ful and not useful. We consider useful a recommendation that undoubtedly in-

terprets the possible intent of the user better than the original query.

Table 4.3 shows the results of the human assessment performed by counting,

for each query and the three different threshold levels, the number of useful sug-

gestions. We averaged the counts over all the queries evaluated. For each training

period we show the average number of useful suggestion for queries in the three

different groups, i.e. F1, F3, and F1 ∪ F3.

53

4. The Effects of Time on Query Flow Graph-based Models for Query Suggestion

Set Query
M1 M2

Score Suggestions Score Suggestions

F3

da vinci

49743 da vinci’s self portrait black and white 73219 da vinci and math
47294 the vitruvian man 33769 da vinci biography
35362 last supper da vinci 31383 da vinci code on portrait
31307 leonardo da vinci 29565 flying machines
30234 post it 28432 inventions by leonardo da vinci
30234 handshape 20stories 26003 leonardo da vinci paintings

23343 friends church
23343 jerry c website

survivor

8533 watch survivor episodes 7392 survivor preview
8083 survivor island 7298 watch survivor episodes
4391 2006 survivor 7110 survivor island album
4310 bubba gump hat 4578 survivor edition 2006
4310 big shorts 3801 cbs the great race

3801 chicken and broccoli

lost

16522 lost fan site 5138 lost season 2
3634 abcpreview.go.com 3742 lost update
2341 altricious 2162 lost easter eggs
2341 5 year treasury rate 1913 abcpreview.go.com
2341 1-800-sos-radon 1913 antique curio cabinets

1913 4440

F1

anna nicole smith

11113 anna nicole smith nude 23497 anna nicole smith recent news
11101 anna nicole smith - supreme court 18694 anna nicole smith and supreme court
11054 anna nicole smith diet 18546 anna nicole smith and playboy
10274 anna nicole smith with liposuction 16836 anna nicole smith pictures
4677 cameron diaz video 15289 anna nicole smith free nude pics
4677 calcination 13436 anna nicole smith diet

6642 branson tractors
6642 bandlinoblu jeans

harley davidson

5097 harley davidson ny 5749 harley davidson sound system manual
2652 american harley davidson 3859 automatic motorcycles
2615 2002 harley davidson ultra classic 3635 harley davidson credit
2602 adamec harley davidson 3618 cherokee harley davidson
2341 air fight 2103 harley davidson sporster
2341 928 zip code 1965 2002 harley davidson classic
2341 antispy ware 1394 regions banking

1394 aol email only
1394 adultactioncamcom

shakira

10989 shakira video 3281 hips don’t lie
7522 shakira albums 3281 shakira hips don’t lie video
7522 shakira my hips don’t lie 3175 shakira video
5836 shakira biography 3042 shakira wallpaper
3864 70s music funk 2811 shakira album
3864 97.1zht 2592 shakira nude

1868 cant fight the moonlight
1868 free video downloads

Table 4.2. Some examples of recommendations generated on different QFG models.
Queries used to generate recommendations are taken from different query sets. For each
query we present the most important recommendations with their assigned relative scores.

Filtering threshold
Average number of use-
ful suggestions on M1

Average number of use-
ful suggestions on M2

F1 F3 F1 ∪ F3 F1 F3 F1 ∪ F3

0 2.51 2.02 2.26 2.12 2.46 2.29

0.5 3.11 2.69 2.9 2.88 2.87 2.87

0.65 3.02 2.66 2.84 2.8 2.71 2.76

0.75 3 2.64 2.82 2.72 2.68 2.7

Table 4.3. Model aging statistics varying the model type and the temporal window.
Results were manually assessed.

From the table we can draw some interesting conclusions. First, the perfor-

mance of the models built from M1 and M2 are quite similar (column F1 ∪ F3).

This might seem a counterexample to the hypothesis that the models age. Actu-

ally, by breaking down the overall figure into separate figures for F1 and F3 we

can observe that for all the queries in F3 the suggestions built fromM2 are more

useful than those built on M1.

54

4.5 Evaluating the Aging Effect

Furthermore, by inspecting some of the suggestions generated for the queries

shown in Table 4.2, it is evident that some of the suggestions are fresher (i.e. more

up-to-date) in the case of a model built on M2 than those obtained on models

built on M1. This is particularly true for queries in F3. For instance, for the

query “lost” suggestions computed by a model trained on M2 appear to be more

meaningful than those suggested using an old model on that particular period of

time. Furthermore, another interesting observation is that filtering (i.e. removing

noisy edges) works pretty well since it increases the average number of useful

suggestions.

When we performed the assessment of the suggestions we noted a phenomenon

regarding the scores computed on the different QFGs by the random walk-based

method. Let us consider again the results shown in Table 4.2 and let us look at

the suggestions, with the relative scores, computed for 6 queries (3 queries from

F1 and 3 queries from F3) on M1 and M2.

As we go further down the list sorted by score, when the quality of the sugges-

tions starts to degrade, we often observe that the useless suggestions are associated

with the same low score values, e.g. “regions banking”, “aol email only”, “adul-

tactioncamcom” are three different (and useless) query suggestions for the query

“harley davidson” whose QFG computed score is always 1394.

From the above observation we make the following hypothesis that we will use

to derive a second automatic evaluation methodology to assess the “usefulness” of

suggestions:

when a QFG-based query recommender system gives the same score to con-

secutive suggestions, these recommendations and the following ones having

a lower score are very likely to be useless.

A QFG-based recommender system recommends queries by computing a ran-

dom walk with restart on the model. At each step, the random walker either

remains in the same node with a probability α, or it follows one of the out-links

with probability equal to 1 − α. Out-links are followed proportionally to w(i, j).

Let us suppose the recommender system starts recommending more than k queries

sharing the same score for the given query q. On the QFG model it means that

the query q has more than k out-links sharing the same probability (w(i, j)). Due

to the lack of information the system is not able to assign a priority to the k

recommended queries. This is the reason why we consider these recommendations

as “useless”.

This heuristic considers useful k query recommendations if the suggestions

following the top-k recommended queries have equal scores associated with them.

Consider again the case of the query “harley davidson”, we have six queries with

different scores and then the remaining queries (for which the associated scores

are equal) are clearly useless.

55

4. The Effects of Time on Query Flow Graph-based Models for Query Suggestion

We perform the automatic analysis described above to the 400 most frequent

queries in the third month for which recommendations were generated on models

built on either M1 or M2. For all the experiments we set k = 3. Table 4.4 shows

that according to this measure of quality filtered models works better than un-

filtered ones. The filtering process reduces the “noise” on the data and generates

more precise knowledge on which recommendations are computed. Furthermore,

the increase is quite independent from the threshold level, i.e. by increasing the

threshold from 0.5 to 0.75 the overall quality is, roughly, constant.

Filtering threshold
Average number of use-
ful suggestions on M1

Average number of use-
ful suggestions on M2

0 2.84 2.91

0.5 5.85 6.23

0.65 5.85 6.23

0.75 5.85 6.18

Table 4.4. Recommendation statistics obtained by using the automatic evaluation
method on a set of 400 queries drawn from the most frequent in the third month.

We further break down the overall results shown in Table 4.4 to show the

number of queries on which the QFG-based model generated a given number of

useful suggestions. We plot this histogram to compare those numbers on M1 and

M2 in Figure 4.2. To highlight more the effect of incremental updates we show in

Figure 4.3 the total number of queries having at least a certain number of useful

recommendation. For example, the third bucket shows how many queries have at

least three useful suggestions. For each bucket, results for M2 are always better

than the ones for M1.

0

12,5

25

37,5

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 >18

M1 M2

Fig. 4.2. Histogram showing the number of queries (on the y axis) having a certain
number of useful recommendations (on the x axis). Results are evaluated automatically.

56

4.6 Combating Aging in Query-Flow Graphs

0

100

200

300

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 >18

M1 M2

Fig. 4.3. Histogram showing the total number of queries (on the y axis) having at least a
certain number of useful recommendations (on the x axis). For instance the third bucket
shows how many queries have at least three useful suggestions.

First of all, when we train a QFG-based model onM2 the percentage of queries

having 0 useful results is remarkably lower than those measured on the model

trained on M1. Furthermore, for Figure 4.3 we can observe that a model trained

onM2 has a larger percentage of queries for which the number of useful suggestions

is at least 4.

This confirms our hypothesis that QFG-based recommendation models age and

have to be updated in order to always generate useful suggestions.

4.6 Combating Aging in Query-Flow Graphs

Models based on Query Flow Graphs age quite rapidly in terms of their perfor-

mance for generating useful recommendations.

The pool of queries we use to generate recommendation models (M1) contains

both frequent and time-sensitive queries. We consider time-sensitive those queries

that are both frequent and have a large variation with respect to their value in

the previous month(s) (e.g. > 50% of positive variation). Time-sensitive queries

are related for instance to movies, new products being launched, fashion, and in

general with news events generating query bursts. In Figure 4.1 it is easy to identify

time-sensitive queries by looking at those with the greater variation between their

frequencies over the two months.

As Tables 4.3 and 4.8 show, if we compute recommendations on older models

the average recommendation quality degrades. Indeed, stable queries, i.e. those

queries that are (relatively) frequent in each period of the year, also have to be

taken into account by the model. Therefore, we must be able to give suggestions

that are not too much influenced by time or, in other words, to update the rec-

ommendation model instead of rebuilding a new model from scratch disregarding

older knowledge.

57

4. The Effects of Time on Query Flow Graph-based Models for Query Suggestion

There are two ways of building an updated QFG: i) rebuilding the model by

considering the whole set of queries from scratch, or ii) using the old QFG-based

model and adding fresh queries to it.

A straightforward option is to compute a new QFG representing the two

months. The new part of the query log (M2) is merged with the old one (M1)

obtaining a new data-set to be used for building the new model. The merged data-

set can be processed from scratch by performing all the steps necessary to build

a QFG (i.e. preprocessing, features generation, compression, normalization, chain

graph generation, random walk computation). The old model is simply discarded.

The other option is computing recommendations on an incremental model that

is built by merging the old QFGs with the one obtained from the new queries. In

this way: i) we refresh the model with new data covering time-related queries;

ii) the old part of the model contributes to maintain quality on frequent and

time-unrelated queries. The methodology we are proposing incrementally extends

the recommendation model with a sub-model built on more recent data. A sound

incremental approach has to consistently update the old model with fresh data

continuously or after fixed periods of time. Another advantage of this approach is

that the new model can be built by spending only the time needed to build a QFG

from a relatively small set of new queries, plus the cost of the merging process.

Let us introduce an example to show the main differences among the two

approaches in terms of computational time. Table 4.5 shows the total elapsed times

to create different QFGs. Suppose the model used to generate recommendations

consists of a portion of data representing one month (for M1 and M2) or two

months (forM12) of the query log. The model is being updated every 15 days (for

M1 and M2) or every 30 days (for M12). By using the first approach, we pay

22 (44) minutes every 15 (30) days to rebuild the new model from scratch on a

new set of data obtained from the last two months of the query log. Instead, by

using the second approach, we need to pay only 15 (32) minutes for updating the

one-month (two-months) QFG.

Dataset
From scratch Incremental

strategy [min.] strategy [min.]

M1 (March 2006) 21 14

M2 (April 2006) 22 15

M12 (March and April) 44 32

Table 4.5. Time needed to build a Query Flow Graph from scratch and using our
incremental approach (from merging two QFG representing an half of data).

The time spent in updating incrementally the model is, in practice, shorter

than the time needed to build the model from scratch (in our case it is almost two

third (i.e. 32%) that time). The process of merging two QFGs can be performed

using an open-source Java tool [39] that implements a graph algebra giving users

58

4.6 Combating Aging in Query-Flow Graphs

the possibility to perform some operations on WebGraph [34] encoded graphs. In

our experiments we used three different QFGs built onM1,M2, andM12 defined

as in the first column of Table 4.5.

Query M1 M2 M12

mothers day 2 3 3

da vinci 4 6 7

lost 2 4 6

philippines 2 2 3

Table 4.6. Manual assessment of the number of useful recommendations generated for
some time-related queries on the three different models.

Table 4.6 shows the importance of having an incremental approach for time-

related queries. It is evident from the table that the model built on M12 always

gives the best recommendations, in terms of quality, with respect to the two sep-

arate models M1 and M2.

Table 4.7 shows example query suggestions generated by the system, to demon-

strate the improved quality of the recommendations. These results suggest a pos-

itive effect of the incremental-update method on the recommendation quality.

As in the previous section we evaluated the quality of the recommendations,

also by using the automatic procedure above described. The results are shown on

Table 4.8. We have used the same set of 400 queries for which recommendations

were generated using the QFG built on M12.

Again, the results suggested by the anecdotal evidence, are confirmed by the

assessment procedure. The model built on the two merged train segments is better

than the singleM2 model (which was, in turn, better than the model built onM1).

Improvements, in this case, are quite significant and range from 25% to 28% in

accuracy.

0

12,5

25

37,5

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 >18

M1 M2 M12

Fig. 4.4. Histogram showing the number of queries (on the y axis) having a certain
number of useful recommendations (on the x axis). Results are evaluated automatically.

59

4. The Effects of Time on Query Flow Graph-based Models for Query Suggestion

Set Query M12

F3

da vinci

86251 da vinci and math
85436 da vinci biography
83427 da vinci code on portrait
82119 da vinci’s self portrait black and white
80945 flying machines
79563 inventions by leonardo da vinci
74346 leonardo da vinci paintings
30426 friends church

survivor

7250 survivor preview
7250 watch survivor episodes
7236 survivor island panama
7110 survivor island exile
4578 survivor edition 2006
3980 survivor games
3717 big shorts
3717 baltimore bulk trash

lost

13258 lost fan site
3716 lost season 2
3640 abcpreview.go.com
3640 lost chat room
3582 lost update
3272 lost easter eggs
1913 henry gale
1858 4440
1858 1-800-sos-radon
1858 4440

F1

anna nicole smith

15174 anna nicole smith recent news
14876 anna nicole smith and supreme court
13567 anna nicole smith court appeal
12768 anna nicorle smith and playboy
10509 anna nicole smith pictures
9832 anna nicole smith free nude pics
9411 anna nicole smith show
8971 anna nicole smith diet
8880 branson tractors
8880 bandlinoblu jeans

harley davidson

5969 harley davidson premium sound system owners manual
4073 harley davidson ny
4001 automatic motorcycles
3738 cherokee harley davidson
3038 harley davidson credit
2562 custom harley davidson
2494 harley davidson sporster
2166 2002 harley davidson classic
2085 regions banking
2085 1998 dodge ram ground effects kits
2085 adultactioncamcom

shakira

4174 hips don’t lie
4174 shakira albums
4140 shakira hips don’t lie video
3698 shakira video
3135 shakira nude
3099 shakira wallpaper
3020 shakira biography
3018 shakira aol music
2015 free video downloads

Table 4.7. Some examples of recommendations generated on different QFG models.
Queries used to generate recommendations are taken from different query sets.

Filtering threshold
Average number of use-
ful suggestions on M2

Average number of use-
ful suggestions on M12

0 2.91 3.64

0.5 6.23 7.95

0.65 6.23 7.94

0.75 6.18 7.9

Table 4.8. Recommendation statistics obtained by using the automatic evaluation
method on a relatively large set of 400 queries drawn from the most frequent in the
third month.

Using the automatic evaluation method we have investigated the main reasons

why we obtain such an improvement. Looking at the different bars in Figure 4.4

we can observe that values that have had the greatest improvement are those

corresponding to a number of suggestions larger than 8 (with the only exceptions of

60

4.7 Distributed QFG Building

0

100

200

300

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 >18

M1 M2 M12

Fig. 4.5. Histogram showing the total number of queries (on the y axis) having at least a
certain number of useful recommendations (on the x axis). For instance the third bucket
shows how many queries have at least three useful suggestions.

the cases of 10 and 14 suggestions). In particular the improvement is remarkable in

the case of “more than 18” useful suggestions given. Figure 4.5 also shows the total

number of queries having at least a certain number of useful recommendations.

Again, results forM12 are remarkably better than those referring toM1, andM2.

To conclude, we have shown that recommendations given using QFG-based

models are sensitive to the aging of the query base on which they are built. We

have also shown the superiority of QFG-based models built on queries drawn from

larger period of time and we have shown how to build such a models without the

need of retraining them from scratch.

4.7 Distributed QFG Building

In this section we present a method to build QFGs that exploit the observation

made above on the feasibility of an incremental approach to QFG-based model

update. We present an approach for building a QFG-based model on a distributed

architecture.

4.7.1 Divide-and-Conquer Approach

The first approach exploits a parallel divide-and-conquer computation that pro-

ceeds by dividing the query log into m distinct segments, building the QFG in

parallel on each processor available and the iteratively merging the different seg-

ments until a single QFG is obtained.

The process is depicted in Figure 4.6. Our algorithm builds a QFG as follows:

1. the query log is split into m parts. In the example represented in Figure 4.6

files were split into 15 days intervals;

61

4. The Effects of Time on Query Flow Graph-based Models for Query Suggestion

2. the features requested to build the QFG are extracted from the data contained

in each interval. Each interval, is processed in parallel on the different machines

of the cloud;

3. each part is compressed using the WebGraph framework, obtaining a partial

data-graph;

4. using the graph algebra described in [39], each partial graph is iteratively

merged. Each iteration is done in parallel on the different available nodes of

the cloud;

5. the final resulting data-graph is now processed with other steps [35] (normal-

ization, chain extraction, random walk) to obtain the complete and usable

QFG.

!"#$%&'#

!#()*+,#-./#

01)2()*+,'#3456)8#

!#()*+,#-./#

!"#$%&'# !"#$%&'# !"#$%&'#

-./# -./# -./# -./#

9#()*+,'#-./#

Fig. 4.6. Example of the building of a two months query flow graph with a parallel
approach.

Table 4.9 summarizes the computational costs of building a QFG in a dis-

tributed way. The main benefit of this approach is to significantly reduce the time

needed to perform the preliminary generation step.

4.8 Summary

In this chapter we studied the effect of time on recommendations generated using

Query Flow Graphs [35] (QFGs). These models aggregate information in a query

log by providing a markov-chain representation of the query reformulation process

62

4.8 Summary

generation of 15-days data-graph 6 min 15 sec.

merge of two 15-days data-graphs 5 min 23 sec.

merge of two one-month data-graphs 11 min 04 sec.

Total time 22 min 42 sec.

Table 4.9. Time needed to build a two-months data-graph using our incremental ap-
proach and splitting the query log in four parts.

followed by multiple users. In this chapter we showed how to extend QFG-based

recommendation models to evolving data. We showed that the interests of search

engine users change over time and new topics may become popular, while other

interests that focused for some time the attention of the crowds can suddenly

loose importance. The knowledge extracted from query logs can thus suffer from

an aging effect, and the models used for recommendations rapidly become unable

to generate useful and interesting suggestions. We showed that the building of a

new fresh QFG from scratch is expensive. To overcome this problem we introduced

an incremental algorithm for updating an existing QFG. The solution proposed

allows the recommendation model to be kept always updated by incrementally

adding fresh knowledge and deleting the aged one.

In order to validate our claims and assess our methodology, we built different

QFGs from the query log of a real-world search engine, and we analyze the qual-

ity of the recommendation models obtained from these graphs to show that they

inexorably age. It is worth noticing that a comprehensive user-study is (almost)

impossible on this kind of task. To assess the effect of aging with a survey, we

would need to make users aware of the context and news events happened in the

period to which the query log is referred (March-May 2006). Then, we proposed

a general methodology for dealing with aging QFG models that allows the rec-

ommendation model to be kept up-to-dated in a remarkably lower time than that

required for building a new model from scratch. As a side result we proposed a

parallel/distributed solution allowing to make QFG creation/update operations

scalable.

63

5

Incremental Algorithms for Effective and Efficient
Query Recommendation

Query recommender systems give users hints on possible interesting queries rel-

ative to their information needs. Most query recommenders are based on static

knowledge models built on the basis of past user behaviors recorded in query logs.

These models should be periodically updated, or rebuilt from scratch, to keep up

with the possible variations in the interests of users. In this chapter we study

query recommender algorithms that generate suggestions on the basis of models

that are updated continuously, each time a new query is submitted. We extend

two state-of-the-art query recommendation algorithms and evaluate the effects of

continuous model updates on their effectiveness and efficiency. Tests conducted on

an actual query log show that contrasting model aging by continuously updating

the recommendation model is a viable and effective solution.

5.1 Introduction

In the latest years, web search engines have started to provide users with query rec-

ommendations to help them refine queries and to quickly satisfy their needs. Query

suggestions are generated according to a model built on the basis of the knowledge

extracted from query logs. The model usually contains information on relationships

between queries that are used to generate suggestions (see Section 3.5.2).

In Chapter 4 we show that as the model is built on a previously collected

snapshot of a query stream, its effectiveness decreases due to interest shifts [54].

To reduce the effect of aging, query recommendation models must be periodically

re-built or updated.

In this chapter we thus propose two novel algorithms, based on previously pro-

posed, state-of-the-art query recommendation solutions, that update their model

continuously on the basis of each new query processed. We name the new class of

query recommender algorithms proposed here incrementally updating query rec-

ommender systems to point out that this kind of systems update the model on

which recommendations are drawn without the need for rebuilding it from scratch.

5. Incremental Algorithms for Effective and Efficient Query Recommendation

Designing an effective method to update a recommendation model poses inter-

esting challenges due to: i) Limited memory availability – queries are potentially

infinite, and we should keep in memory only those queries “really” useful for rec-

ommendation purposes, ii) Low response time – recommendations and updates

must be performed efficiently without degrading user experience.

Some of the approaches considered in related works are not suitable for contin-

uous updates because modifying a portion of the model requires, in general, the

modification of the whole structure. Therefore, the update operation would be too

expensive to be of practical relevance. Other solutions exploit models which can be

built incrementally. The two algorithms we propose use two different approaches

to generate recommendations. The first uses association rules for generating rec-

ommendations, and it is based on the static query suggestion algorithm proposed

in [70], while the second uses click-through data, and its static version is described

in [17].

We conduct multiple tests on a large real-world query log to evaluate the ef-

fects of continuous model updates on the effectiveness and the efficiency of the

query recommendation process. Result assessment used an evaluation methodol-

ogy that measures the effectiveness of query recommendation algorithms by means

of different metrics. Experiments show the superiority of incrementally updating

algorithms with respect to their static counterparts. Moreover, the tests conducted

demonstrate that our solution to update the model each time a new query is pro-

cessed has a limited impact on system response time.

An incremental approach to continuously update indices rather than query

recommenders was proposed in [71]. Similar efficiency and effectiveness trends were

noted, and hence, that approach forms a motivation for the described incremental

recommender algorithm approach.

5.1.1 Main Contributions

This chapter extends and groups together, in a complete framework, several major

contributions:

• a novel class of query recommendation algorithms whose models are continu-

ously updated as user queries are processed (previously introduced in [41]);

• four new metrics to evaluate the quality of the recommendations computed

(two of them previously introduced in [41]);

• an analysis of the effect of time on the quality and coverage of the suggestions

provided by the algorithms presented and by their static counterparts using

both the four new metrics defined and two syntax-based metrics.

Novel, and unpublished contributions presented in this chapter are:

• a deeper analysis of the quality of recommendations provided by the algorithms

presented and by their static counterparts using two new quality metrics and

two syntax-based metrics;

66

5.2 Related Work

• an analysis of the correlation of the effectiveness of recommendations between

results from syntax-based and quality metrics;

The chapter is organized as follow: Section 5.2 discusses related works, while

Section 5.3.1 discusses two state-of-the-art algorithms in their original formulation

and afterward, in Section 5.3.2 we discuss the main issues concerning their incre-

mentally updating versions. The definition of four novel metrics used to assess

the results are presented in Section 5.4, while the evaluation of the effectiveness

of the algorithms for query recommendation is discussed in Section 5.5. Finally,

Section 5.6 draws some conclusions and discusses future work.

5.2 Related Work

The wisdom of the crowds, i.e., the behavior of many individuals is smarter than

the behavior of few intelligent people, is the key to query recommenders and to

many other web 2.0 applications. We now present a review of state-of-the-art

techniques for query recommendation.

Document-based. Baeza-Yates et al. in [18] propose to compute groups of related

queries by running a clustering algorithm over the queries and their associated in-

formation recorded in the logs. Semantically similar queries may even not share

query-terms if they share relevant terms in the documents clicked by users. Thus,

the algorithm avoids the problem of comparing and clustering a sparse collection

of vectors, in which semantically similar queries are difficult to find. Query sug-

gestions are ranked according to two principles: i) the similarity of the queries to

the input query, and ii) the support, which measures how much the answers of the

query have attracted the attention of users. The method uses a modified version of

the TF-IDF and a ranking method based on the relevance of a query with respect

to its own cluster. The solution is evaluated by using a query log containing 6,042

unique queries from the TodoCL search engine, and the suggestions to 10 different

queries are evaluated by means of a user study.

Click-through-based. Beeferman and Berger in [26] apply a hierarchical ag-

glomerative clustering technique to click-through data to find clusters of similar

queries and similar URLs in a Lycos log. A bipartite graph is created from queries

and related URLs which is iteratively clustered by choosing at each iteration the

two pairs of most similar queries and URLs. The experimental evaluation shows

that the proposed solution is able to enhance the quality of the Lycos’s query

recommender which was used as baseline.

Cao et al. propose a query suggestion approach based on contexts [49]. A query

context consists of recent queries issued by a user. The query suggestion process

is structured according to two steps. An offline phase summarizes user queries

into concepts (i.e., a small set of similar queries) by clustering a click-through

67

5. Incremental Algorithms for Effective and Efficient Query Recommendation

bipartite graph, and extracts query sessions, and builds a concept sequence suffix

tree, representing a query suggestion model, by using session data. The concept

sequence suffix tree is built bottom-up starting from sequence of concepts (i.e., list

of candidate suggestions), which constitute the leaves. A parent of two nodes is

the longest proper suffix of the concept sequences associated to such nodes. The

root node corresponds to the empty sequence. The on-line step finds the context of

the submitted query, and its related concepts suggesting associated queries to the

user. This solution was experimented with a large query log containing 151, 869, 102

unique queries and 114, 882, 486 unique URLs.

Session-based. Boldi et al. introduce the concept of Query Flow Graph (QFG) [35].

A QFG is an aggregated representation of the interesting information contained in

query logs. Authors define a QFG as a directed graph in which nodes are queries,

and edges are weighted by the probability w(qi, qj) of being traversed. Authors

propose two weighting schemes. The first one represents the probability that two

queries are part of the same search mission given that they appear in the same

session, and the other one represents the probability that query qj follows query

qi. Furthermore, authors highlight the utility of the model in two concrete appli-

cations, namely, finding logical sessions and query recommendation. Boldi et al.

refine the previous study in [36], [37] proposing a query suggestion scheme based on

a random walk with restart model. The query recommendation process is based

on reformulations of search missions. Each reformulation is classified into query

reformulation types. Authors use four main reformulations: generalization, special-

ization, error correction, and parallel move. An automatic classifier was trained

on manually human-labeled query log data to automatically classify reformula-

tions. Baraglia et al. show that the QFG model ages [24] and propose strategies

for updating it efficiently.

Fonseca et al. use an association rule mining algorithm to devise query patterns

frequently co-occurring in user sessions, and a query relations graph including all

the extracted patterns is built [69]. A click-through bipartite graph is then used to

identify the concepts (synonym, specialization, generalization, etc.) used to expand

the original query.

Jones et al. introduce the notion of query substitution or query rewriting, and

propose a solution for sponsored search [93]. Such a solution relies on the fact

that in about half sessions the user modifies a query with another which is closely

related. Such pairs of reformulated queries are mined from the log and used for

query suggestion.

White et al. present a novel web search interaction feature which, for a given

query, provides links to websites frequently visited by other users with similar in-

formation needs [166]. These links complement traditional search results, allowing

direct navigation to authoritative resources for the query topic. Authors propose a

user study showing that a search enhanced by destination suggestions outperforms

68

5.3 Incremental algorithms for query recommendation

other systems for exploratory tasks, with best performance obtained from mining

past users behavior at query-level granularity.

5.3 Incremental algorithms for query recommendation

Our claim is that continuously updating the query recommendation model is both

useful and feasible. The feasibility of developing an incrementally updating version

of a query recommender system depends on the technique used to compute the

suggestions. For efficiency, these algorithms should only store a reduced set of

information.

We validate our claims by studying two well-known query recommendation

algorithms and modifying them to continuously update the model on which rec-

ommendations are computed. It is worth mentioning that not all query recom-

mendation algorithms can be designed to on-line update their recommendation

model. For example, some of the approaches presented in Section 5.2 are based on

indexing terms of documents selected by users, clustering click-through data, or

extracting knowledge from users’ sessions. Such operations are too expensive to

be performed on-line, and their high computational costs would compromise the

efficiency of their recommender system. Furthermore, as shown in [29], the fusion

of similar approaches typically yields minimal gains.

The two algorithms considered use different approaches for generating recom-

mendations. The first uses association rules [70] (henceforth AssociationRules),

while the second exploits click-through data [17] (henceforth CoverGraph). Here-

inafter, we will refer to the original formulations of the two algorithms as static,

as opposed to their relative incremental versions which will be called incremental.

Not all the recommendation models can be efficiently updated incrementally. In-

deed, for efficiency reasons, incremental versions of recommending algorithms do

not compute exactly the same model. Instead, they compute an approximation

that produces good results due to the continuous updating of the model.

5.3.1 Static solutions

Static solutions work by preprocessing historical data (represented by past users’

activities on query logs), building an on-line recommendation module that is used

to provide suggestions to users.

AssociationRules. Fonseca et al. uses association rules as a basis for generat-

ing recommendations [70]. The algorithm is based on two main phases. The first

uses query log analysis for session extraction, and the second basically extracts

association rules and identifies highly related queries. Each session is identified

by all queries sent by an user in a specific time interval (t = 10 minutes). Let

I = I1, . . . , Im be the set of queries and T the set of user sessions t. A session t ∈ T

69

5. Incremental Algorithms for Effective and Efficient Query Recommendation

is represented as a vector where tk = 1 if session t contains query k ∈ [1, . . . ,m],

0 otherwise.

Let X be a subset of I. A session t satisfies X, if for all items Ik in X, tk = 1.

Association rules are implications of the form X ⇒ Y , where X ⊂ I, Y ⊂ I, and

X ∩ Y = ∅. The rule X ⇒ Y holds with i) a confidence factor of c if c% of the

transactions in T that contains X also contains Y , and ii) a support s if s% of the

sessions in T contains X∪Y . The problem of mining associations is to generate all

the rules having a support greater than a specified minimum threshold (minsup).

The rationale is that distinct queries are considered related if they occur in many

user sessions.

Suggestions for a query q are simply computed by accessing the list of rules of

the form q ⇒ q′ and by suggesting the q′’s corresponding to rules with the highest

support values.

CoverGraph. Baeza-Yates et al. use click-through data as a way to provide rec-

ommendations [17]. The method is based on the concept of cover graph. A cover

graph is a bipartite graph of queries and URLs, where a query and a URL are

connected if the URL was returned as a result for the query and a user clicked on

it.

To catch the relations between queries, a graph is built out of a vectorial

representation for queries. In such a vector-space, queries are points in a high-

dimensional space where each dimension corresponds to a unique URL u that was,

at some point, clicked by some user. Each component of the vector is weighted

according to the number of times the corresponding URL has been clicked when

returned for that query. For instance, suppose we have five different URLs, namely,

u1, u2, . . . , u5, suppose also that for query q users have clicked three times URL

u2 and four times URL u4, the corresponding vector is (0, 3, 0, 4, 0). Queries are

then arranged as a graph with two queries being connected by an edge if and only

if the two queries share a non-zero entry, that is, if for two different queries the

same URL received at least one click. Furthermore, edges are weighted according

to the cosine similarity of the queries they connect. More formally, the weight of

an edge e = (q, q′) is computed according to Equation 5.1. In the formula, D is

the number of dimensions, i.e., the number of distinct clicked URLs, of the space.

W (q, q′) =
q · q′

|q| · |q′|
=

∑
i≤D

qi · q′i
√∑
i≤D

q2
i

√∑
i≤D

q′ 2i
(5.1)

Suggestions for a query q are obtained by accessing the corresponding node in

the cover graph and extracting the queries at the end of the top scoring edges.

70

5.3 Incremental algorithms for query recommendation

5.3.2 Incremental algorithms

The interests of search-engine users change over time, and new topics may become

popular. Consequently, the knowledge extracted from query logs can suffer from

an aging effect, and the models used for recommendations rapidly become unable

to generate useful and interesting suggestions [24]. Furthermore, the presence of

bursty [95] topics could require frequent model updates independent of the model

used.

The algorithms proposed in Section 5.3.1 use a statically built model to com-

pute recommendations. Incremental algorithms are radically different from static

methods for the way they build and use recommendation models. While static

algorithms need an off-line preprocessing phase to build the model from scratch

every time an update of the knowledge base is needed, incremental algorithms

consist of a single online module integrating the two functionalities: i) updating

the model, and ii) providing suggestions for each query.

Starting from the two algorithms presented above, we design two new query

recommender methods continuously updating their models as queries are issued.

Algorithms 1 and 2 formalize the structure of the two proposed incremental algo-

rithms that are detailed in the following. The two incremental algorithms differ

from their static counterparts by the way in which they manage and use data to

build the model. Both algorithms exploit LRU caches and Hash tables to store

and retrieve efficiently queries and links during the model update phase.

Our two incremental algorithms are inspired by the Data Stream Model [109]

in which a stream of queries are processed by a database system. Queries consist

modifications of values associated with a set of data. When the dataset fits com-

pletely in memory, satisfying queries is straightforward. Turns out that the entire

set of data cannot be contained in memory. Therefore, an algorithm in the data

stream model must decide, at each time step, which subset of the set of data is

worthwhile to maintain in memory. The goal is to attain an approximation of the

results we would have had in the case of the non-streaming model. We make a first

step towards a data stream model algorithmic framework aimed at building query

recommendations. We are aware that there is significant room for improvement,

especially in the formalization of the problem in the streaming model. Nonetheless,

we show empirically that an incremental formulation of each of the two popular

query recommenders maintains the high accuracy of suggestions.

IAssociationRules. Algorithm 1 specifies the operations performed by IAssoci-

ationRules, the incremental version of AssociationRules.

The data structures storing the model are updated at each iteration. We use

the LastQuery auxiliary data structure to record the last query submitted by u.

Since the model and the size of LastQuery could grow indefinitely, whenever they

are full, the LRUInsert function is performed to keep in both structures only the

most recently used entries.

71

5. Incremental Algorithms for Effective and Efficient Query Recommendation

Algorithm 1 IAssociationRules

1: loop
2: (u, q)← GetNextQuery() {Get the query q and the user u who submitted it.}
3: ComputeSuggestions (q, σ) {Compute suggestions for query q over σ.}
4: if ∃LastQuery (u) then
5: q′ ← LastQuery (u)
6: LastQuery (u)← q {Update the last query submitted by u.}
7: if ∃σq′,q then
8: ++σq′,q {Increment Support for q′ ⇒ q.}
9: else

10: LRUInsert (σ, (q′, q)) {Insert an entry for (q′, q) in σ. If σ is full, remove an
entry according to an LRU policy.}

11: end if
12: else
13: LRUInsert (u, q,LastQuery) {Insert an entry for (u, q) in LastQuery. If

LastQuery is full, remove an entry according to an LRU policy.}
14: end if
15: end loop

Claim. Keeping up-to-date the AssociationRule-based model is O (1).

The proof of the claim is straightforward. The loop at line 3 of Algorithm 1 is

made up of constant-cost operations (whenever we use hash structures for both

LastQuery and σ). LRUInsert maintains the most recently submitted queries in

the model.

Algorithm 2 ICoverGraph

1: Input: A threshold τ .
2: loop
3: (u, q)← GetNextQuery() {Get the query q and the user u who submitted it.}
4: ComputeSuggestions (q, σ) {Compute suggestions for query q over σ.}
5: c = GetClicks (u, q)
6: if ∃queryHasAClickOn (c) then
7: queryHasAClickOn (c)← q
8: else
9: LRUInsert (queryHasAClickOn, c)

10: end if
11: for all q′ 6= q ∈ queryHasAClickOn (c) s.t. W ((q, q′)) > τ do
12: if w > τ then
13: if ∃σq′,q then
14: σq,q′ = w {For each query that shares at least one clicked url, update the

model}
15: else
16: LRUInsert (σ, (q′, q) , w)
17: end if
18: end if
19: end for
20: end loop

72

5.3 Incremental algorithms for query recommendation

ICoverGraph. The incremental version of CoverGraph adopts a solution similar

to that used by IAssociationRules. It uses a combination of LRU structures and

associative arrays to incrementally update the (LRU managed) structure σ. Algo-

rithm 2 shows the description of the algorithm. The hash table queryHasAClickOn

is used to retrieve the list of queries having c among their clicked URLs. This data

structure is stored in a fixed amount of memory, and whenever its size exceeds the

allocated capacity, an entry is removed on the basis of a LRU policy (this justifies

the conditional statement at line 6).

Claim. Keeping up-to-date a CoverGraph-based model is O (1).

Actually, the cost depends on the degree of each query/node in the cover graph.

As shown in [17], i) the degree of nodes in the cover graph follows a power-law

distribution, and ii) the maximal number of URLs between two queries/nodes is

constant, on average. The number of iterations needed in the loop at line 11 can

be thus considered constant.

From the above methods, it is clear that to effectively produce recommenda-

tions, a continuous updating algorithm should have the following characteristics:

• The algorithm must cope with an undefined number of queries. LRU caches

keep in memory only the most relevant items for which it is important to

produce recommendations. LRU-like structures, like the one used in the pre-

viously presented algorithms are suitable enough, have a constant managing

complexity and are very good candidates for this purpose.

• The lookup structures used to generate suggestions and maintain the models

must be efficient, possibly constant in time. Random-walks on graph-based

structures, or distance functions based on comparing portions of texts, etc.,

are not suitable for our purpose.

• A modification of an item in the model must not involve a modification of the

entire model. Otherwise, update operations take too much time and jeopardize

the efficiency of the method.

The feasibility of an incremental update of the recommendation model is an

important point of our work. The update operations must run in parallel with the

query processor. Therefore, those operations must not constitute a bottleneck for

the entire system. As analyzed above, we have succeeded in proposing a method for

keeping up-to-date two algorithms in constant time. Furthermore, in the incremen-

tal algorithms we use efficient data structures, and an optimized implementation

of the model update algorithm. For each new query, our algorithms are able to

update the model, and to produce suggestions in, on-the-order-of, a few tenth of

a second. Such response times guarantee the feasibility of the approach on a real-

world search engine where the query recommender and the query processor run in

parallel.

73

5. Incremental Algorithms for Effective and Efficient Query Recommendation

5.4 Quality Metrics

Assessing the effectiveness of recommender systems is a tough problem that can

be addressed either through user-studies or via automatic evaluation mechanisms.

We opted for an automatic evaluation methodology conducted by means of two

previously proposed metrics, and four novel metrics based on the analysis of users’

traces contained in query logs. The four novel metrics measure the overlap between

queries actually submitted by the users and recorded in the tails of users’ sessions

and suggestions generated starting from the first queries in the same sessions.

The more users actually submitted queries suggested, the more the recommender

system is considered effective.

The two, basic, syntax-based metrics used are the TermBased, and the Results-

Metric proposed by Balfe and Smyth in [20]. Let q be the submitted query, and let

the set S = {s1, . . . , sm} be the m recommendations computed over q. We define

the following two metrics:

τ(q, S) =
1

|S|
∑

si∈S

|q ∩ si|
|q ∪ si|

(TermBased)

ρ(q, S) =
1

|S|
∑

si∈S

|res(q) ∩ res(si)|
|res(q) ∪ res(si)|

(ResultsMetric)

where |q∩si| is the number of shared terms, and res(s) is the set of results retrieved

by a search engine for the query s.

The TermBased metric considers terms composing the query. It counts how

many terms in the original query occur in the suggested queries. For example,

suppose q is the query “query recommender system”. Suppose, then, that sugges-

tions are: “query suggestion”, “query recommendation system”, “recommending

queries”. The TermBased score is, then, equal to 1/4. Note that the TermBased

score is equal to 1 only when all the suggested queries are equal to the submitted

one. The trivial recommendation algorithm maximizing this score is, thus, the one

generating the input query as the only suggestion for each query. It is a baseline

for the evaluation and provides a measure of the syntactic distance of two given

queries.

The ResultsMetric metric aims at catching semantic similarities among queries

exploiting web search engine results. For each query the first k results are retrieved

by querying a search engine. In our experiments we retrieved the top-10 results

returned by the Yahoo! Web Search Engine for each query. Then, the number of

results shared by the submitted query and the suggested ones is divided by the

total number of results retrieved.

The most important limitation of the previous two metrics is that they consider

a single issued query comparing it with all the ones provided by the recommender

system. In other words, the metrics do not take into account the history of the

74

5.4 Quality Metrics

users and how they interact with the search engine. To overcome this limitation

we study four new metrics considering users’ histories from query logs.

To focus the evaluation on the most recently submitted queries in the user

session, we introduce four new metrics. While two of them work by evaluating the

effectiveness of recommendations on a per query basis, the remaining two metrics

work by measuring the effectiveness of the recommendations provided within the

user session. They are defined as follows. Let S be the set of all users’ sessions in

the query log, and let S = {q1, . . . , qn} be a user session of length n. We define

S1 = {q1, . . . , qbn2 c} to be the set of queries in the first half of the session, and let

Rj = {r1, . . . , rm} be the set of top-m query recommendations returned for the

query qj ∈ S1
1. For each qj , we now define S2 = {qj+1, . . . , qn} to be the n − j

most recently submitted queries in the session, S∗ = {qbn2 c+1, . . . , qn} to be the

set of queries in the second half of the session, and

QueryOverlap =
1

K

∑

ri∈Rj

sk∈S2

[ri = sk]f(k) (5.2)

LinkOverlap =
1

K

∑

ri∈findClk(Rj)
sk∈clk(S2)

[ri = sk]f(k) (5.3)

Omega =
1

K · |S1|
∑

j∈S1

∑

ri∈Rj

sk∈S∗

[ri = sk]f(k) (5.4)

LinkOmega =
1

K · |S1|
∑

j∈S1

∑

ri∈findClk(Rj)
sk∈clk(S∗)

[ri = sk]f(k) (5.5)

where [expr] is a boolean function whose result is 1 if expr is true or 0 otherwise,

clk(S2) is a function returning the set of clicked URLs by the user for the queries

in S2, findClk(Rj) is a function returning the set of clicked URLs by other users

for the queries in Rj , and f(k) is a weighting function allowing us to differentiate

the importance of each recommendation depending on the position it occupies in

the second part of the session. The value of K is defined as
∑m
k=1 f(k), where

m = |S2| for the QueryOverlap, m = |clk(S2)| for the LinkOverlap, m = |S∗| for

the Omega, and m = |clk(S∗)| for the LinkOmega metric. K normalizes the values

in the range [0, 1].

The intuition behind of the metrics presented above is that a suggestion is use-

ful if it let the user reach his/her goal quicker. Here goal is meant to be the user’s

information need. In other words, suppose Alice wants to have all the information

available on training for a marathon. She starts by issuing the query “marathon

training”. She goes on by issuing “marathon training program”, “marathon run-

ning training”, “marathon training from scratch”, and finally, by issuing “running

1 In our experiments we use m = 5.

75

5. Incremental Algorithms for Effective and Efficient Query Recommendation

marathon training program” Alice finds the information she was looking for. The

goal of the metrics presented above is to give higher scores to recommenders sug-

gesting the query “running marathon training program” rather than suggesting

any preceding query in Alice’s session. In fact, link-based metrics, LinkOverlap

and LinkOmega, are more sophisticated and capture the concept of letting a user

find the information s/he wanted by comparing the clicked links instead of the

submitted query.

Finally, the Coverage of a recommendation model is defined as the fraction of

queries for which a recommendation can be computed.

5.5 Experiments

5.5.1 Experimental Setup

We conducted our experiments on a collection consisting of the first 3, 200, 000

queries from the AOL query log [116]. The AOL data-set contains about 20 million

queries issued by about 650, 000 different users, submitted to the AOL search

engine over a period of three months from 1st March, 2006 to 31st May, 2006.

Regardless of the controversy spawned by the public release of this log, it is still

readily available on the web. Unlike often used, hidden, proprietary logs, the use of

the AOL query log supports experimental repeatability, an important requirement

of any scientific study. Hence, we conduct our experiments using this log.

5.5.2 Correlation of Metrics

First of all, we measure the correlation between our two classes of metrics (syntax-

based and session-based). The correlation is computed using a set of several hun-

dred queries. In Figures 5.1 and 5.2 each point represents a query and shows

the correlation between two different instances of syntax-based and session-based

metrics for the given query. They show that there is no correlation within the two

syntax-based metrics and session-based ones. As an example, in 5.1(b) there are

some black vertical line resulting from the overlap of a high number of points.

These lines illustrate that for a set of queries LinkOverlap assumes very different

values while TermBased present the same behavior. Our two classes of metrics

capture two unrelated aspects of the generated suggestions. Syntax-based metrics

measure the goodness of the proposed recommendations from a term level point

of view, or from how many search results they share. Whereas our new metrics

focus on a different aspect: the relatedness of recommendation with respect to the

“history” of the user, and how s/he interacts with the search engine.

5.5.3 Results

First, we analyze the effect of time on the static models (Section 5.3.1) showing

that this type of models age as time passes.

76

5.5 Experiments

(a)

(b)

Fig. 5.1. TermBased vs. QueryOverlap, TermBased vs. LinkOverlap

The plots reported in Figures 5.3, 5.4, and 5.5, show the effectiveness of query

suggestions on a per time window basis for both the static and incremental algo-

rithms. We use a “timeline” composed of 10 days of the query log. The “timeline”

is divided into ten intervals, each corresponding to one day of queries stored in

the query log (about 400,000 queries). The queries in the first time interval were

used to train the models used by the algorithms. While static models are trained

77

5. Incremental Algorithms for Effective and Efficient Query Recommendation

(a)

(b)

Fig. 5.2. ResultsMetric vs. QueryOverlap, ResultsMetric vs. LinkOverlap

only on the first interval, the incremental counterparts update their model on the

basis of the queries submitted during the entire timeline considered. Effectiveness

of recommendations generated by the different algorithms during the remaining

nine days considered is measured by means of the LinkOverlap, QueryOverlap, and

Coverage metrics.

78

5.5 Experiments

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 1 2 3 4 5 6 7 8 9 10

C
o

v
er

ag
e

Time

AssociationRules
IAssociationRules

(a)

 15

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 1 2 3 4 5 6 7 8 9 10

C
o

v
er

ag
e

Time

CoverGraph
ICoverGraph

(b)

Fig. 5.3. Coverage for AssociationRules, IAssociationRules, CoverGraph, and ICover-
Graph as a function of the time.

Our first finding is illustrated in Figure 5.3, where coverage, i.e., the percent-

age of queries for which the algorithms are able to generate recommendations, is

plotted as a function of time. In both plots, the coverage measured for the static

versions of the recommendation algorithms decreases as time passes. In particular,

at the end of the observed period, AssociationRules and CoverGraph lose 20%,

and 9% of their initial coverage, respectively. Even if CoverGraph appears to be

79

5. Incremental Algorithms for Effective and Efficient Query Recommendation

more robust than AssociationRules, both algorithms suffer an aging effect on their

models. On the other hand, the coverage measured for the two incremental algo-

rithms is always greater than the one measured for their respective static versions.

In particular, at the end of the observed period, the IAssociationRules algorithm

covers 23.5% more queries with respect to its static version, while ICoverGraph

covers 22% more queries with respect to CoverGraph. This is due to the inclusion

in the model of new and “fresh” data.

Figures 5.4 and 5.5 illustrate the effectiveness of recommendations produced

by the static and incremental versions of the AssociationRules and CoverGraph

algorithms as a function of the time. Both QueryOverlap and LinkOverlap in

Figures 5.4 and 5.5 are measured in the above described setting.

From the plots we can see that the two static algorithms behave in a slightly

different way. CoverGraph seems to suffer more than AssociationRules for the

aging of its recommendation model.

By considering both QueryOverlap and LinkOverlap metrics, AssociationRules

is able to return better quality recommendations than CoverGraph, but, as Fig-

ure 5.3 shows, the coverage of queries for which suggestions can be generated is

lower. In particular, CoverGraph is able to give suggestions to a number of queries

which is three times larger than the one measured with AssociationRules.

Figures 5.6 and 5.7 show the effectiveness of recommendations produced by the

static and incremental versions of AssociationRules and CoverGraph by varying

the size of the model used (“training set” for the static algorithms, and “cache di-

mensions” for the incremental algorithms). The effectiveness of recommendations

is measured by using Omega and LinkOmega. Plots in Figure 5.6 (Omega) reveal

that AssociationRules and its incremental version (IAssociationRules) are remark-

ably more sensible to model dimension variations with respect to its competitor,

CoverGraph (ICoverGraph). Furthermore, plots in Figure 5.7 (LinkOmega) are

obtained by adding click-through data in the evaluation process. They show that

CoverGraph is more competitive in both the static and incremental versions, i.e., it

produces recommendations with an higher number of clicks associated than Asso-

ciationRules, while AssociationRules and IAssociationRules are still more sensible

to model dimension variations.

Figure 5.8 shows the relations between model dimensions (“training set” for

the static algorithms, and “cache dimensions” for the incremental algorithms)

and the syntax-based metrics. Increasing the training set for AssociationRules

gives an improvement for the ResultsMetric. Therefore, the recommender model is

always more able to suggest queries sharing search engine results with the original

submitted query. Furthermore, augmenting the training set for CoverGraph gives

bad performances on both syntax-based metrics.

We argue that incremental algorithms for query recommendation can provide

better recommendations because they do not suffer from model aging, and can

rapidly cover also bursty topics. Figure 5.8 clearly shows that for incremental al-

80

5.5 Experiments

 0.0038

 0.004

 0.0042

 0.0044

 0.0046

 0.0048

 0.005

 0.0052

 0.0054

 0.0056

 1 2 3 4 5 6 7 8 9 10

Q
u

er
y

O
v

er
la

p

Time

IAssociationRules
AssociationRules

(a)

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 1 2 3 4 5 6 7 8 9 10

L
in

k
O

v
er

la
p

Time

IAssociationRules
AssociationRules

(b)

Fig. 5.4. QueryOverlap, and LinkOverlap for AssociationRules, and IAssociationRules
as a function of the time.

gorithms an increment of cache size does not provide sensitive improvements of

the values for both syntax-based metrics. From the figures, it is evident that the

effectiveness of recommendations provided by both static and incremental models

eventually stabilize. Indeed, the proposed incremental algorithms IAssociation-

Rules and ICoverGraph produce better recommendations. With the exception of

the initialization phase (see Figure 5.4, LinkOverlap) in which the model warms

81

5. Incremental Algorithms for Effective and Efficient Query Recommendation

 0.0022

 0.0024

 0.0026

 0.0028

 0.003

 0.0032

 0.0034

 1 2 3 4 5 6 7 8 9 10

Q
u

er
y

O
v

er
la

p

Time

ICoverGraph
CoverGraph

(a)

 0.084

 0.086

 0.088

 0.09

 0.092

 0.094

 0.096

 0.098

 0.1

 0.102

 0.104

 1 2 3 4 5 6 7 8 9 10

L
in

k
O

v
er

la
p

Time

ICoverGraph
CoverGraph

(b)

Fig. 5.5. QueryOverlap, and LinkOverlap for CoverGraph, and ICoverGraph as a func-
tion of the time.

up, the percentage of effective suggestions generated by the two incremental al-

gorithms during the entire period observed is larger than those provided by their

static counterparts.

82

5.6 Summary

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 50000 100000 150000 200000 250000 300000 350000 400000

O
m

eg
a

Training set (number of items)

AssociationRules
CoverGraph

(a)

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 4000 6000 8000 10000 12000 14000 16000 18000 20000

O
m

eg
a

Cache dimension (number of items)

IAssociationRules
ICoverGraph

(b)

Fig. 5.6. Omega for AssociationRules, CoverGraph, and IAssociationRules, ICover-
Graph.

5.6 Summary

We studied the effects of incremental model updates on the effectiveness of two

query suggestion algorithms. As the interests of search-engine users change over

time and new topics become popular, the knowledge extracted from historical

usage data can suffer an aging effect. Consequently, the models used for recom-

mendations may rapidly become unable to generate high-quality and interesting

suggestions.

83

5. Incremental Algorithms for Effective and Efficient Query Recommendation

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 50000 100000 150000 200000 250000 300000 350000 400000

L
in

k
O

m
eg

a

Training set (number of items)

AssociationRules
CoverGraph

(a)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 4000 6000 8000 10000 12000 14000 16000 18000 20000

L
in

k
O

m
eg

a

Cache dimension (number of items)

IAssociationRules
ICoverGraph

(b)

Fig. 5.7. LinkOmega for AssociationRules, CoverGraph, and IAssociationRules, ICov-
erGraph.

84

5.6 Summary

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 50000 100000 150000 200000 250000 300000 350000 400000

si
m

il
ar

it
y

Training set (number of items)

CoverGraph - TermBased
CoverGraph - ResultsMetric

AssociationRules - TermBased
AssociationRules - ResultsMetric

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 4000 6000 8000 10000 12000 14000 16000 18000 20000

si
m

il
ar

it
y

Cache dimension (number of items)

ICoverGraph - TermBased
ICoverGraph - ResultsMetric

IAssociationRules - TermBased
IAssociationRules - ResultsMetric

(b)

Fig. 5.8. Syntax-based metrics for AssociationRules, CoverGraph, and IAssociation-
Rules, ICoverGraph as a function of the model dimensions.

We introduced a new class of query recommender algorithms that update in-

crementally the model on which recommendations are drawn. Starting from two

state-of-the-art algorithms, we designed four new query recommender systems that

continuously update their models as queries are issued. The two incremental al-

gorithms differ from their static counterparts by the way in which they manage

and use data to build the model. In addition, we proposed an automatic evalu-

85

5. Incremental Algorithms for Effective and Efficient Query Recommendation

ation mechanism based on four new metrics to assess the effectiveness of query

recommendation algorithms.

The experimental evaluation conducted by using a large real-world query log

shows that the incremental update strategy for the recommendation model yields

better results for both coverage (more than 20% queries covered by both IAs-

sociationRules, and ICoverGraph) and effectiveness due to the “fresh” data that

are added to the recommendation models. Furthermore, this improved effective-

ness is accomplished without compromising the efficiency of the query suggestion

process.

86

6

Generating Suggestions for Queries in the Long
Tail with an Inverted Index

This chapter proposes an efficient and effective solution to the problem of choosing

the queries to suggest to web search engine users in order to help them in rapidly

satisfying their information needs. By exploiting a weak function for assessing the

similarity between the current query and the knowledge base built from historical

users’ sessions, we re-conduct the suggestion generation phase to the processing

of a full-text query over an inverted index. The resulting query recommendation

technique is very efficient and scalable, and is less affected by the data-sparsity

problem than most state-of-the-art proposals. Thus, it is particularly effective in

generating suggestions for rare queries occurring in the long tail of the query pop-

ularity distribution. The quality of suggestions generated is assessed by evaluating

the effectiveness in forecasting the users’ behavior recorded in historical query

logs, and on the basis of the results of a reproducible user study conducted on

publicly-available, human-assessed data. The experimental evaluation conducted

shows that our proposal remarkably outperforms two other state-of-the-art solu-

tions, and that it can generate useful suggestions even for rare and never seen

queries.

6.1 Introduction

Giving suggestions to users of Web search engines is a common practice aimed at

“driving” users toward the information bits they may need. Suggestions are usually

provided as queries that are, to some extent, related to those recently submitted by

the user. The generation process of such queries, basically, exploits the expertise of

“skilled” users to help inexperienced ones. Besides, generating effective suggestions

for user queries which are rare or have never been seen in the past is an open issue

poorly addressed by state-of-the-art query suggestion techniques.

In a previous work, an interesting framework for the query suggestion problem

is provided by the Search Shortcut model, and an evaluation metric for assessing

the effectiveness of suggested queries by exploiting a query log are proposed [22].

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

Basically, the model formalizes a way of exploiting the knowledge mined from query

logs to help users to rapidly satisfy their information need. In the same work the

use of Collaborative Filtering (CF) algorithms is investigated. However, the work

highlights some limitations in the query recommendations solutions based on col-

laborative filtering mainly due to the poor and very sparse scoring information

available in query logs. In fact, due to the long-tail distribution of query occur-

rences, click information for low-frequency queries is rare and very sparse. Since

implicit feedback information given by popularity and user clicks is the only source

of (positive) query scoring available, most of the queries in the query log cannot be

exploited to generate the recommendation model [3]. This issue affects CF-based

solutions, but also many other query recommendation techniques discussed in the

literature.

In this chapter we propose an efficient and effective query recommendation al-

gorithm that can “cover” also queries in the long tail. We adopt the Search Short-

cuts model and its terminology, and re-conduct the shortcut generation phase to

the processing of a full-text query over an inverted file that indexes satisfactory

user sessions recorded in a query log. Differently from most state-of-the art pro-

posals, our shortcut generation algorithm aggregates implicit feedback information

present in query logs at the level of single query terms, thus alleviating the data

sparseness issue. The contribution of each query terms is then combined during

the suggestion generation process in order to provide recommendations also for

queries that are rare or even for those that were never seen in the past. Gener-

ating suggestions for rare queries is a hot research topic [108, 145, 44], and our

suggestion generation technique beyond addressing the data-sparsity problem, is

both very efficient and scalable, making it suitable for a large-scale deployment in

real-world search engines.

Another contribution of this chapter consists in the methodology adopted for

manually assessing the effectiveness of query suggestion techniques. The methodol-

ogy exploits the query topics and the human judgements provided by the National

Institute of Standards and Technology (NIST) for running the TREC Web Track’s

diversity task. For the purposes of the diversity task, the NIST assessors provide

50 queries, and, for each of them, they identify a representative set of subtopics,

based on information extracted from the logs of a commercial search engine. We

claim that given a query topic A with all its subtopics {a1, a2, . . . , an}, and a

query suggestion technique T , the more the queries suggested by T for A cover

the human-assessed subtopics {a1, a2, . . . , an}, the more T is effective. To assess

the effectiveness of a given query suggestion technique, we thus propose to simply

ask human editors to count how many subtopics are actually covered by the sug-

gestions generated by T for the TREC diversity track queries. This methodology

is entirely based on a publicly-available data. It can be thus considered fair and

constitute a good shared base for testing and comparing query recommendation

systems. We shall define the above concept better in Section 6.4.

88

6.2 Related Work

The experimental evaluation conducted shows that the solution proposed out-

performs remarkably two state-of-the-art algorithms chosen for performance com-

parison purposes (presented in [17] and [35, 36]). Differently from these competitor

algorithms, our solution generates in fact relevant suggestions for a vast majority

of the 50 TREC queries, and the suggested queries covered a high percentage of

possible subtopics. In particular we assessed that it can generate useful suggestions

even for queries that are rare or do not occur in the query log used for training the

recommendation model. Moreover, the proposed algorithm outperforms the com-

petitor solutions even on the tests measuring the effectiveness in forecasting the

users’ behavior recorded in historical query according to the metric used in [22].

The main original contributions of this chapter are thus:

• a novel algorithm to efficiently and effectively generate query suggestions that

is robust to data sparsity;

• a novel evaluation methodology with which we can compare the effectiveness

of suggestion mechanisms;

• an extensive evaluation comparing on the same basis the proposed solution

with two state-of-the-art algorithms.

The rest of the chapter is organized as follows. The next Section shows a

brief overview of the state of the art in query recommendation. Section 6.3 briefly

sketches the shortcuts model and describes the efficient algorithm designed for gen-

erating query shortcuts. The evaluation methodology based on the TREC diversi-

fication track data is discussed in Section 6.4 which also presents the encouraging

results obtained by our solution in the performance comparisons tests conducted.

Finally, Section 6.5 draws some conclusions and outlines future work.

6.2 Related Work

The problem addressed in this chapter is related to two related research fields that

have been traditionally addressed from different points of view. We are talking

about query suggestion algorithms and recommender systems.

Recommender systems are used in several domains, being specially successful

in electronic commerce. They can be divided in two broad classes: those based

on content filtering, and those on collaborative filtering. As the name suggests,

content filtering approaches base their recommendations on the content of the

items to be suggested. They face serious limitations when dealing with multime-

dia content and, more importantly, their suggestions are not influenced by the

human-perceived quality of contents. On the other side, collaborative filtering so-

lutions are based on the preferences of other users. There are two main families of

collaborative filtering algorithms: memory-based and model-based. Memory-based

approaches use the whole past usage data to identify similar users [136], items [134],

or both [164]. Generally, memory-based algorithms are quite simple and produce

89

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

good recommendations, but they usually face serious scalability problems. On the

other hand, model-based algorithms construct in advance a model to represent

the behavior of users, allowing to predict more efficiently their preferences. How-

ever, the model building phase can be highly time-consuming, and models are

generally hard to tune, sensitive to data changes, and highly dependent on the

application domain. Different approaches can be adopted based on linear algebra

methods [48, 125], clustering [157], latent class models [78], SVD models [117].

An analysis of the use of CF algorithms to the query suggestion problem can be

found in [22], where the problem descending from the poor and very sparse scoring

information available in query logs is highlighted.

On the other side, query suggestion techniques address specifically the problem

of recommending queries to WSE users, and propose specific solutions and spe-

cific evaluation metrics tailored to the Web search domain. Techniques proposed

during last years are very different, yet they have in common the exploitation of

usage information recorded in query logs [142]. Many approaches extract the in-

formation used from the plain set of queries recorded in the log, although there

are several works that take into account the chains of queries that belong to the

same search session [122]. In the first category we have techniques that employ

clustering algorithms to determine groups of related queries that lead users to

similar documents [165, 18, 26]. The most “representative” queries in the clusters

are then returned as suggestions. Others solutions employ the reformulations of

the submitted query issued by previous users [93], or propose as suggestions the

frequent queries that lead in the past users to retrieve similar results [19].

Baeza-Yates and Tiberi [17] exploit click-through data as a way to provide

recommendations. The method is based on the concept of Cover Graph (CG). A

CG is a bipartite graph of queries and URLs, where a query q and an URL u are

connected if a user issued q and clicked on u that was an answer for the query.

Suggestions for a query q are thus obtained by accessing the corresponding node in

the CG and by extracting the related queries sharing more URLs. The sharing of

clicked URLs results to be very effective for devising related queries, and the CG

solution has been chosen as one of the two query suggestion algorithms considered

in this chapter for experimental performance comparison.

Among the proposals exploiting the chains of queries stored in query logs, [69]

use an association rule mining algorithm to devise frequent query patterns. These

patterns are inserted in a query relation graph which allows “concepts” (queries

that are synonyms, specializations, generalizations, etc.) to be identified and sug-

gested.

Boldi et al. introduce the concept of Query Flow Graph (QFG), an aggregated

representation of the information contained in a query log [35]. A QFG is a directed

graph in which nodes are queries, and the edge connecting node q1 to q2 is weighted

by the probability that users issue query q2 after issuing q1. Authors highlight the

utility of the model in two concrete applications, namely, devising logical sessions

90

6.2 Related Work

and generating query recommendation. The authors refine the previous studies

in [36] and [37] where a query suggestion scheme based on a random walk with

restart model on the QFG is proposed. Such QFG-based suggestion algorithm

is the second algorithm considered in this chapter for experimental performance

comparison.

A approach similar to our is represented by the query refinement/substitution

technique discussed in [93]. The goal of query refinement is to generate a new query

to replace a user’s original ill-formed search query in order to enhance the relevance

of retrieved results. The technique proposed includes a number of tasks such as

spelling error correction, word splitting, word merging, phrase segmentation, word

stemming, and acronym expansion. Our approach instead aims at suggesting users

a set of queries that better specify their information needs.

The importance of rare query classification and suggestion recently attracted

a lot of attention from the IR community. Generating suggestions for rare queries

is in fact very difficult due to the lack of information in the query logs.

Downey et al. [65] describe search log studies aiming at explaining behaviors

associated with rare and common queries. They investigate the search behavior

following the input of rare and common queries. Results show that search engines

perform less well on rare queries. The authors also study transitions between rare

and common queries highlighting the difference between the frequency of queries

and their related information needs.

Yang et al. [145] propose an optimal rare query suggestion framework by lever-

aging implicit feedbacks from users in the query logs. The proposed model is based

on the pseudo-relevance feedback. It assumes that clicked and skipped URLs con-

tain different level of information, and thus, they should be treated differently.

Therefore, the framework optimally combines both click and skip information from

users, and uses a random walk model to optimize i) the restarting rate of the ran-

dom walk, and ii) the combination ratio of click and skip information. Experimen-

tal results on a log from a commercial search engine show the superiority of the

proposed method over the traditional random walk models and pseudo-relevance

feedback models.

Mei et al. propose a novel query suggestion algorithm based on ranking queries

with the hitting time on a large scale bipartite graph [108]. The rationale of the

method is to capture semantic consistency between the suggested queries and the

original query. Empirical results on a query log from a real world search engine

show that hitting time is effective to generate semantically consistent query sug-

gestions. The authors show that the proposed method and its variations are able

to boost long tail queries, and personalized query suggestion.

Broder et al. propose to leverage the results from search engines as an external

knowledge base for building the word features for rare queries [45]. The authors

train a classifier on a commercial taxonomy consisting of 6,000 nodes for cate-

gorization. Results show a significant boost in term of precision with respect to

91

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

the baseline query expansion methods. Lately, Broder et al. propose an efficient

and effective approach for matching ads against rare queries [44]. The approach

builds an expanded query representation by leveraging offline processing done for

related popular queries. Experimental results show that the proposed technique

significantly improves the effectiveness of advertising on rare queries with only a

negligible increase in computational cost.

The idea we present in this chapter follows a completely new approach. First,

we infer the relevance of a query based on whether it successfully ended a search

session, i.e., the last query of the user session allowed the user to find the infor-

mation she was looking for. “Successful sessions” have already been taken into

account as a way to evaluate promotions of search results [144, 143]. Similarly,

“satisfactory sessions” are considered in this chapter as the key factor for gener-

ating useful query recommendations. All the queries in the satisfactory sessions

stored in the log which terminate with the same final query are considered “re-

lated”, since it is likely that these queries were issued by different users trying

to satisfy a similar information need. Thus, our technique exploit a sort of col-

laborative clustering of queries inferred from successful user search processes, and

suggest users the final queries which are the representatives of the clusters closest

to the submitted query.

6.3 An Efficient Algorithm for the Query Shortcuts Problem

In the following we briefly recall the basis of the Search Shortcuts Problem (SSP)

proposed in [22], and we introduce our novel shortcuts generation algorithm.

6.3.1 The Search Shortcuts Problem

The SSP is formally defined as a problem related to the recommendation of queries

in search engines and the potential reductions obtained in the users session length.

This problem formulation allows a precise goal for query suggestion to be devised:

recommend queries that allowed “similar” users, i.e., users which in the past fol-

lowed a similar search process, to successfully find the information they were look-

ing for. The problem has a nice parallel in computer systems: prefetching. Similarly

to prefetching, search shortcuts anticipate requests to the search engine with sug-

gestion of queries that a user would have likely issued at the end of her session.

We now introduce the notations and we recap the formal definition of the SSP.

Let U be the set of users of a WSE whose activities are recorded in a query log

QL, and Q be the set of queries in QL. We suppose QL is preprocessed by using

some session splitting method (e.g. [92, 101]) in order to extract query sessions,

i.e., sequences of queries which are related to the same user search task. Formally,

we denote by S the set of all sessions in QL, and σu a session issued by user u.

Moreover, let us denote with σui the i-th query of σu. For a session σu of length

92

6.3 An Efficient Algorithm for the Query Shortcuts Problem

n its final query is the query σun, i.e. the last query issued by u in the session.

To simplify the notation, in the following we will drop the superscript u whenever

the user u is clear from the context.

We say that a session σ is satisfactory if and only if the user has clicked on

at least one link shown in the result page returned by the WSE for the final query

σn, unsatisfactory otherwise.

Finally, given a session σ of length n we denote σt| the head of σ, i.e., the

sequence of the first t, t < n, queries, and σ|t the tail of σ given by the sequence

of the remaining n− t queries.

Definition 1. We define k-way shortcut a function h taking as argument the

head of a session σt|, and returning as result a set h
(
σt|
)

of k queries belonging

to Q.

Such definition allows a simple ex-post evaluation methodology to be intro-

duced by means of the following similarity function:

Definition 2. Given a satisfactory session of length n σ ∈ S, and a k-way shortcut

function h, the similarity between h
(
σt|
)

and a tail σ|t is defined as:

s
(
h
(
σt|
)
, σ|t

)
=

∑
q∈h(σt|)

n−t∑
m=1

Jq =
(
σ|t
)
m

Kf (m)

|h(σt|)|
(6.1)

where f (m) is a monotonic increasing function, and function Jq = σmK = 1 if and

only if q is equal to σm.

For example, to evaluate the effectiveness of a given shortcut function h, the

sum (or average) of the value of s computed on all satisfactory sessions in S can

be computed.

Definition 3. Given the set of all possible shortcut functions H, we define Search

Shortcut Problem (SSP) the problem of finding a function h ∈ H which maxi-

mizes the sum of the values computed by Equation (6.1) on all satisfactory sessions

in S.

A difference between search shortcuts and query suggestion is actually rep-

resented by the function Jq =
(
σ|t
)
m

K in Equation (6.1). By relaxing the strict

equality requirement, and by replacing it with a similarity relation – i.e., Jq ∼(
σ|t
)
m

K = 1 if and only if the similarity between q and σm is greater than some

threshold – the problem reduces, basically, to query suggestion. By defining ap-

propriate similarity functions, the Equation in (6.1) can be thus used to evaluate

query suggestion effectiveness as well.

Finally, we should consider the influence the function f (m) has in the definition

of scoring functions. Actually, depending on how f is chosen, different features of

93

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

a shortcut generating algorithm may be tested. For instance, by setting f (m) to

be the constant function f (m) = c, we measure simply the number of queries in

common between the query shortcut set and the queries submitted by the user. A

non-constant function can be used to give an higher score to queries that a user

would have submitted later in the session. An exponential function f (m) = em

can be exploited instead to assign an higher score to shortcuts suggested early.

Smoother f functions can be used to modulate positional effects.

6.3.2 The Search Shortcuts Generation Method

Inspired by the above SSP, we define a novel algorithm that aims to generate sug-

gestions containing only those queries appearing as final in satisfactory sessions.

The goal is to suggest queries having a high potentiality of being useful for people

to reach their initial goal. As hinted by the problem definition, suggesting queries

appearing as final in satisfactory sessions, in our view is a good strategy to ac-

complish this task. In order to validate this hypothesis, we analyzed the Microsoft

RFP 2006 dataset, a query log from the MSN Search engine containing about 15

million queries sampled over one month of 2006 (hereinafter QL).

First, we measured that the number of distinct queries that appear as final

query in satisfactory sessions of QL is relatively small if compared to the overall

number of submitted queries: only about 10% of the total number of distinct

queries in QL occur in the last position of satisfactory user sessions. As expected,

the distribution of the occurrences of such final queries in satisfactory user sessions

is very skewed (as shown in Figure 6.1), thus confirming once more that the set of

final queries actually used by people is limited.

Queries which are final in some satisfactory sessions may obviously appear

also in positions different from the last in other satisfactory sessions. We verified

that, when this happens, these queries appear much more frequently in positions

very close to the final one. About 60% of the distinct queries appearing in the

penultimate position of satisfactory sessions are also among the final queries, about

40% in positions second to the last, 20% as third to the last, and so on. We can

thus argue that final queries are usually close to the achievement of the user

information goal. We consider these queries as highly valued and high quality

short pieces of text expressing actual user needs.

The SSP algorithm proposed in this chapter works by computing, efficiently,

similarities between partial user sessions (the one currently performed) and his-

torical satisfactory sessions recorded in a query log. Final queries of most similar

satisfactory sessions are suggested to users as search shortcuts.

Let σ′ be the current session performed by the user, and let us consider the

sequence τ of the concatenation of all terms with possible repetitions appearing in

σ′t|, i.e. the head of length t of session σ′. We now compute the value of a scoring

function δ (τ, σs), which for each satisfactory session measures the similarity be-

tween its queries and the set of terms τ . Intuitively, this similarity measures how

94

6.3 An Efficient Algorithm for the Query Shortcuts Problem

Fig. 6.1. Popularity of final queries in satisfactory sessions.

much a previously seen session overlaps with the user need expressed so far (the

concatenation of terms τ serves as a bag-of-words model of user need). Sessions

are ranked according to δ scores and from the subset of the top ranked sessions

we suggest their final queries. It is obvious that depending on how the function δ

is chosen we may have different recommendation methods. In our particular case,

we opt for δ to be the similarity computed as in the BM25 metrics [128]. We opt

for an IR-like metric because we want to take into much consideration words that

are discriminant in the context of the session to which we are comparing. BM25,

and other IR-related metrics, have been designed specifically to account for that

property in the context of query/documents similarity. We borrow from BM25 the

same attitude to adapt to this conditions. The shortcuts generation problem has

been, thus, reduced to the information retrieval task of finding highly similar ses-

sions in response to a given sequence of queries. In our experiments, we compute

the similarity function δ only on the current query issued by the user instead of

using the whole head of the session. We do this in order to be fair with respect to

our competitors as they produce recommendations starting from a single query.

We leave the study of the use of the whole head of the session for producing query

recommendations as a future work.

The idea described above is thus translated into the following process. For each

unique “final query” qf contained in satisfactory sessions we define what we have

95

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

called a virtual document identified by its title and its content. The title, i.e. the

identifier of the document, is exactly query string qf . The content of the virtual

document is instead composed of all the terms that have appeared in queries of

all the satisfactory sessions ending with qf . At the end of this procedure we have

a set of virtual documents, one for each distinct final query occurring in some

satisfactory sessions. Just to make things more clear, let us consider a toy exam-

ple. Consider the two following satisfactory sessions: (gambling, gambling places,

las vegas, bellagio), and (las vegas, strip, las vegas hotels, bellagio). We create the

virtual document identified by title bellagio and whose content is the text (gam-

bling gambling places las vegas las vegas strip las vegas hotels). As you can see

the virtual document actually contains also repetitions of the same term that are

considered in the context of the BM25 metrics. All virtual documents are indexed

with the preferred Information Retrieval system, and generating shortcuts for a

given user session σ′ becomes simply processing the query σ′t| over the inverted file

indexing such virtual documents. We know that processing queries over inverted

indexes is very fast and scalable, and these important characteristics are inherited

by our query suggestion technique as well.

The other important feature of our query suggestion technique is its robustness

with respect to rare and singleton queries. Singleton queries account for almost

50% of the submitted queries [142], and their presence causes the issue of the

sparsity of models [3]. Since we match τ with the text obtained by concatenating

all the queries in each session, we are not bound to look for previously submitted

queries as in the case of other suggestion algorithms. Therefore we can generate

suggestions for queries in the long tail of the distribution whose terms have some

context in the query log used to build the model.

6.4 Assessing Search Shortcuts Quality

The effectiveness of a query recommender systems can be evaluated by means of

user-studies or through the adoption of some performance metrics. Unfortunately,

both these methodologies may lack of generality and incur in the risk of being

over-fitted on the system object of the evaluation. The evaluation methodology

used in this chapter tries to address pragmatically the above issues.

For what concerns the methodology based on a performance metrics, we used

the one defined in Equation (6.1), and we computed the average value of similarity

over a set of satisfactory sessions. This performance index objectively measures the

effectiveness of a query suggestion algorithm in foreseeing the satisfactory query

for the session.

In particular, we measured the values of this performance index over sugges-

tions generated by using our Search Shortcuts (SS) solution and by using in exactly

the same conditions two other state-of-the-art algorithms: Cover Graph (CG) pro-

posed in [17], and Query Flow Graph (QFG), proposed in [36]. These algorithms

96

6.4 Assessing Search Shortcuts Quality

are recent and highly reputed representatives of the best practice in the field of

query recommendation. To test QFG-based query suggestion we used the original

implementation kindly provided us by the authors. In the case of CG, instead, we

evaluate our own implementation of the technique.

For what concerns the methodology based on user-studies, we propose a ap-

proach that measures coverage and the effectiveness of suggestions against a man-

ually assessed and publicly available dataset.

To this purpose, we exploited the query topics and the human judgements pro-

vided by NIST for running the TREC 2009 Web Track’s Diversity Task1. For the

purposes of the TREC diversity track, NIST provided 50 queries to a group of

human assessors. Assuming each TREC query as a topic, assessors were asked to

identify a representative set of subtopics covering the whole spectrum of differ-

ent user needs/intentions. Subtopics are based on information extracted from the

logs of a commercial search engine, and are roughly balanced in terms of popular-

ity. Obviously the queries chosen are very different and from different categories:

difficult, ambiguous, and/or faceted in order to allow the overall performance of

diversification methods to be evaluated and compared. Since diversity and topic

coverage are key issues also for the query recommendation task [102], we propose

to use the same third-party dataset for evaluating query suggestion effectiveness

as well.

Let’s now introduce the definitions of coverage, and effectiveness.

Definition 4 (Coverage). Given a query topic A with subtopics {a1, a2, . . . , an},
and a query suggestion technique T , we say that T has coverage equal to c if n · c
subtopics match suggestions generated by T .

In other words, a coverage of 0.8 for the top-10 suggestions generated for a query

q having 5 subtopics means that 4 subtopics of q are covered by at least one

suggestion.

Definition 5 (Effectiveness). Given a query topic A with subtopics {a1, a2, . . . , an},
and a query suggestion technique T generating k suggestions, we say that T has

effectiveness equal to e if k · e suggestions cover at least one subtopic.

In other words, an effectiveness of 0.1 on the top-10 suggestions generated for a

query q means that only one suggestion is relevant for one of the subtopics of q.

The methodology just described has some net advantages. It is based on a

publicly-available test collection which is provided by a well reputed third-party

organization. Moreover, it grants to all the researchers the possibility of measuring

the performance of their solution under exactly the same conditions, with the same

dataset and the same reproducible evaluation criterium. In fact, even though the

matching between suggestions and topics is still human-driven the process has a

very low ambiguity as we shall discuss in the next section.

1 http://trec.nist.gov/data/web09.html

97

http://trec.nist.gov/data/web09.html

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

Query and its subtopics

TREC query (n. 8):appraisal
S1: What companies can give an appraisal of my home’s value?
S2: I’m looking for companies that appraise jewelry.
S3: Find examples of employee performance appraisals.
S4: I’m looking for web sites that do antique appraisals.

SS

performance appraisal (S3)
hernando county property appraiser (S1)
antique appraisal (S4)
appraisers in colorado (S1)
appraisals etc (S1)
appraisers.com (S4)
find appraiser (S1)
wachovia bank appraisals (S1)
appraisersdotcom (S4)

QFG

online appraisals (S4)

CG

appraisersdotcom (S4)
employee appraisals (S3)
real estate appraisals (S1)
appraisers (S1)
employee appraisals forms (S3)
appraisers.com (S4)
gmac
appraisers beverly wv (S1)
picket fence appraisal (S1)
fossillo creek san antonio

Table 6.1. An example of the coverage evaluating process involving the TREC dataset.
For the 8th TREC query appraisal , one of the assessors evaluates the coverage of sug-
gestions generated by SS, QGF, and CG. The subtopics covered by each suggestion are
reported in bold between parentheses. Suggestions not covering any of the subtopics are
emphasized.

6.4.1 Experimental Settings

The experiments were conducted using the Microsoft RFP 2006 query log which

was preliminary preprocessed by converting all queries to lowercase, and by re-

moving stop-words and punctation/control characters.

The queries in the log were then sorted by user and timestamp, and segmented

into sessions on the basis of a splitting algorithm which simply groups in the same

session all the queries issued by the same users in a time span of 30 minutes. We

tested also the session splitting technique based on the Query Flow Graph proposed

in [35], but for the purpose of our technique, we did not observe a significant

variation in terms of quality of the generated suggestions.

98

6.4 Assessing Search Shortcuts Quality

Noisy sessions, likely performed by software robots, were removed. The re-

maining entries correspond to approximately 9M sessions. These were split into

two subsets: training set with 6M sessions and a test set with the remaining 3M

sessions. The training log was used to build the recommendation models needed

by CG and QFG and used for performance comparison.

Instead, to implement our SS solution we extracted satisfactory sessions present

in the training log and grouped them on the basis of the final query. Then, for

each distinct final query its corresponding virtual document was built with the

terms (with possible repetitions) belonging to all the queries of all the associated

satisfactory sessions. Finally, by means of the Terrier search engine2, we indexed

the resulting 1, 191, 143 virtual documents. The possibility of processing queries on

such index is provided to interested readers through a simple web interface avail-

able at the address http://searchshortcuts.isti.cnr.it. The web-based wrapper

accepts user queries, interact with Terrier to get the list of final queries (id of

virtual documents) provided as top-k results, and retrieves and visualizes the as-

sociated query strings.

6.4.2 TREC queries statistics

We measured the popularity of the 50 TREC 2009 Web Track’s Diversity Task

queries in the training log obtained by the Microsoft RFP 2006 dataset as described

in the previous section. Figure 6.2 shows the cumulative frequency distribution of

the 50 TREC queries. While 8/50 queries are not present in the training log, 2/50

queries occur only one time. Furthermore, 23/50 queries have a frequency lower

than 10 and 33/50 queries occur lower than 100 times. The TREC dataset thus

contains a valid set of queries for evaluating the effectiveness of our method as

it includes several examples of unseen and rare queries, while popular queries are

represented as well. Table 6.2 shows some queries with their popularity measured

in the training log.

TREC query Frequency

wedding budget calculator 0
flame designs 1

dog heat 2
the music man 5

diversity 27
map of the united states 170

cell phones 568
starbucks 705

Table 6.2. An example of eight TREC queries with their relative frequency in the
training log.

2 http://terrier.org/

99

http://searchshortcuts.isti.cnr.it
http://terrier.org/

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

0 1 10 100 1,000

0

5

10

15

20

25

30

35

40

45

50

frequency

nu
m

be
r o

f q
ue

rie
s

Fig. 6.2. Histogram showing the total number of TREC queries (on the y axis) having
at most a certain frequency (on the x axis) in the training log. For instance, the third
bar shows that 23 TREC queries out of 50 occur at most ten times in the training log.

6.4.3 Search Shortcuts metric

We used Equation (6.1) to measure the similarity between the suggestions gener-

ated by SS, CG, and QFG for the first queries issued by a user during a satisfac-

tory session belonging to the test set, and the final queries actually submitted by

the same user during the same session. We conducted experiments by setting the

number k of suggestions generated to 10, and, as in [22], we chose the exponen-

tial function f (m) = em to assign an higher score to shortcuts suggested early.

Moreover, the length t of the head of the session was set to dn/2e, where n is the

length of the session considered. Finally, the metric used to assess the similarity

between two queries was the Jaccard index computed over the set of tri-grams of

characters contained in the queries [89], while the similarity threshold used was

0.9.

Due to the long execution times required by CG, and QFG for generating

suggestions, it was not possible to evaluate suggestion effectiveness by processing

all the satisfactory sessions in the test set. We thus considered a sample of the test

set constituted by a randomly selected group of 100 satisfactory sessions having a

length strictly greater than 3. The histogram in Figure 6.3 plots the distribution

of the number of sessions vs. the quality of the top-10 recommendations produced

by the three algorithms. Results in the plot are grouped by quality range. As an

example, the second group of bars shows the number of sessions for which the three

algorithms generated suggestions having a quality (measured using Equation (6.1))

ranging from from 0.1 to 0.2. Results show that recommendations produced for

the majority of sessions by QFG and CG obtains a quite low score (in the interval

100

6.4 Assessing Search Shortcuts Quality

between 0 to 0.1), while SS produces recommendations whose quality is better

distributed among all the range.

In particular, SS produces recommendations having a quality score greater

than 60% for 18 sessions out of 100. Moreover, in 36 cases out of 100, SS generates

useful suggestions when its competitors CG and QFG fails to produce even a single

effective suggestion. On average, over the 100 sessions considered, SS obtains an

average quality score equal to 0.32, while QFG and CG achieves 0.15 and 0.10,

respectively.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

CG SS QFG

nu
m

be
r o

f s
es

si
on

s

freq. = 0 freq. = 1 1 < freq. ≤ 10 10 < freq. ≤ 100 100 < freq. ≤ 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG SS QFG

Fig. 6.3. Distribution of the number of sessions vs. the quality of the top-10 recommen-
dations produced by the three algorithms.

6.4.4 Suggestions Quality on TREC topics

The relevance of the suggestions generated by SS, CG, and QFG w.r.t. the TREC

query subtopics was assessed manually3. Seven volunteers were chosen among CS

researchers working in different research groups of our Institute. The evaluation

consisted in asking assessors to assign, for any given TREC query, the top-10 sug-

gestions returned by SS, CG, and QFG to their related subtopic. Editors were

also able to explicitly highlight that no subtopic can be associated with a partic-

ular recommendation. The evaluation process was blind, in the sense that all the

suggestions produced by the three methods were presented to editors in a single,

lexicographically ordered sequence where the algorithm which generated any spe-

cific suggestion was hidden. Given the limited number of queries and the precise

definition of subtopics provided by NIST assessors, the task was not particularly

3 All the queries suggested by the three algorithms for the 50 TREC queries are available
to the interested reader along with the associated subtopic lists at the address http:

//searchshortcuts.isti.cnr.it/TREC_results.html.

101

http://searchshortcuts.isti.cnr.it/TREC_results.html
http://searchshortcuts.isti.cnr.it/TREC_results.html

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

cumbersome, and the evaluations generated by the assessors largely agree. Ta-

ble 6.1 shows the outcome of one of the editors for the TREC query n. 8. The

note in bold after each suggestion indicates the subtopic to which the particular

suggestion was assigned (e.g. “employee appraisals” in the CG column matches

subtopic S3). Thus for this topic this editor gave to both SS and CG a coverage

of 3/4 (3 subtopics covered out of 4), while QFG was rated 1/4. Moreover, sug-

gestions in italic, e.g. gmac in the CG column, were considered by the editor not

relevant for any of the subtopics. Thus, for topic “appraisals” SS and QFG score

an effectiveness equal to 1 (all suggestions generated were considered relevant),

whereas CG score was 4/5 (2 non relevant suggestions out of 10).

The histogram shown in Figure 6.4 plots, for each of the 50 TREC topics,

the average coverage (Definition 4) of the associated subtopics measured on the

basis of assessor’s evaluations for the top-10 suggestions returned by SS, CG, and

QFG. By looking at the Figure, we can see that SS outperforms remarkably its

competitors. On 36 queries out of 50 SS was able to cover at least half of the

subtopics, while CG only in two cases reached the 50% of coverage, and QFG on

8 queries out of 50. Moreover, SS covers the same number or more subtopics than

its competitors in all the cases but 6. Only in 5 cases QFG outperforms SS in

subtopic coverage (query topics 12, 15, 19, 25, 45), while in one case (query topic

22) CG outperforms SS. Furthermore, while SS is always able to cover one or some

subtopics for all the cases, in 15 (27) cases for QFG (CG) the two methods are

not able to cover any of the subtopics. The average fraction of subtopics covered

by the three methods is: 0.49, 0.24, and 0.12 for SS, QFG, and CG, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG SS QFG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG SS QFG

Fig. 6.4. Coverage of the subtopics associated with the 50 TREC diversity-track queries
measured by means of an user-study on the top-10 suggestions provided by the Cover
Graph (CG), Search Shortcuts (SS), and Query Flow Graph (QFG) algorithms.

Figure 6.5 reports the effectiveness (Definition 5) of the top-10 suggestions

generated by SS, QFG, and CG. Also considering this performance metric our

Search Shortcuts solution results the clear winner. SS outperforms its competitors

102

6.4 Assessing Search Shortcuts Quality

in 31 cases out of 50. The average effectiveness is 0.83, 0.43, and 0.42 for SS, QFG,

and CG, respectively. The large difference measured is mainly due to the fact that

both CG and QFG are not able to generate good suggestions for queries that are

not popular in the training log.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG SS QFG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG SS QFG

Fig. 6.5. Effectiveness measured on the TREC query subtopics among the top-10 sug-
gestions returned by the Cover Graph (CG), Search Shortcuts (SS), and Query Flow
Graph (QFG) algorithms.

Regarding this aspect, the histogram in Figure 6.6 shows the average effec-

tiveness of the top-10 suggestions returned by SS, CG and QFG measured for

groups of TREC queries arranged by their frequency in the training log. SS re-

markably outperforms its competitors. SS is in fact able to produce high-quality

recommendations for all the categories of query analyzed, while CG and QFG can

not produce recommendations for unseen queries. Furthermore, while SS produce

constant quality recommendations with respect to the frequency of the TREC

queries, CG and QFG show an increasing trend in the quality of recommendations

as the frequency of the TREC queries increases.

For this reason, we can assert that the SS method is very robust to data spar-

sity which strongly penalizes the other two algorithms, and is able to effectively

produce significant suggestions also for singleton queries which were not previously

submitted to the WSE. We recall that singleton queries account for almost half

of the whole volume of unique queries submitted to a WSE, and are often the

hardest to answer since they ask for “rare” or badly expressed information needs.

The possibility of suggesting relevant alternatives to these queries is more valuable

than the one of suggesting relevant alternatives to frequent queries, which express

common and often easier to satisfy needs.

Just to give an example of the results we obtained and the data on which we

evaluated the quality, Table 6.3 reports the top-10 suggestions provided by SS, CG,

and QFG for some TREC Web Track’s diversity task query topics. For each query

103

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

freq. = 0 freq. = 1 1 < freq. ≤ 10 10 < freq. ≤ 100 100 < freq. ≤ 1,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG SS QFG

0 1 10 100 1,000

0

10

20

30

40

50

frequencies

nu
m

be
r o

f q
ue

rie
s

Fig. 6.6. Average effectiveness of the top-10 suggestions provided by the Cover Graph
(CG), Search Shortcuts (SS), and Query Flow Graph (QFG) algorithms for groups of
TREC queries arranged by their frequency (freq.) in the training log.

topic, the first column of the table lists the associated subtopics. These examples

are representative of the figures above discussed: SS computed mostly relevant

suggestions covering a significant subset of the subtopics. CG, on the other hand,

performed worst and returned three suggestions only for a single query among the

five reported in the table, and one single suggestion in another case. QFG returned

instead 10 suggestions for three topics, and no suggestions in two cases.

104

6.4 Assessing Search Shortcuts Quality

Q
u
e
r
ie

s
a
n
d

t
h
e
ir

s
u
b
t
o
p
ic

s
S
S

C
G

Q
F
G

T
R
E
C

q
u
e
r
y

(
n
.
1
8
)
:

w
ed

d
in

g
b
u

d
g
e
t

ca
lc

u
la

to
r

(
fa

c
e
t
e
d
)
;
N
o
t

p
r
e
s
e
n
t

in
t
h
e

t
r
a
in

in
g

lo
g
;

1
.

I
w
a
n
t

t
o

fi
n
d

o
n
li
n
e

g
u
id

e
s
,

t
ip

s
,

a
n
d

c
h
e
c
k
li
s
t
s

fo
r

p
la

n
n
in

g
a

w
e
d
d
in

g
.

2
.
I
a
m

lo
o
k
in

g
fo

r
s
p
r
e
a
d
s
h
e
e
t
s

o
r

t
e
m

p
la

t
e
s

t
o

h
e
lp

m
e

t
a
b
u
la

t
e

a
b
u
d
g
e
t

fo
r

a
w
e
d
d
in

g
.

3
.
I
w
a
n
t

t
o

fi
n
d

s
o
m

e
e
x
a
m

p
le

w
e
d
d
in

g
b
u
d
g
e
t
s
.

4
.

I’
m

lo
o
k
in

g
fo

r
in

fo
r
m

a
t
io

n
o
n

p
la

n
n
in

g
a

w
e
d
d
in

g
s
h
o
w
e
r
,
li
k
e

t
h
e
m

e
id

e
a
s

a
n
d

b
u
d
g
e
t

g
u
id

e
li
n
e
s
.

5
.
H
o
w

c
a
n

I
p
la

n
a
n

in
e
x
p
e
n
s
iv

e
w
e
d
d
in

g
?

b
u
d
g
e
t

w
e
d
d
in

g
b
u
d
g
e
t

s
h
e
e
t

s
a
m

p
le

w
e
d
d
in

g
b
u
d
g
e
t
s

b
u
d
g
e
t

c
a
lc

u
la

t
o
r

b
u
d
g
e
t

o
u
t
s
id

e
w
e
d
d
in

g
w
e
d
d
in

g
p
la

n
n
in

g
b
u
d
g
e
t

w
e
d
d
in

g
b
o
u
q
u
e
t
s

h
o
w

t
o

h
a
v
e

a
c
e
le

b
r
it
y

w
e
d
d
in

g
o
n

a
b
u
d
g
e
t

p
la

n
n
in

g
a

w
e
d
d
in

g
o
n

a
b
u
d
g
e
t

w
e
d
d
in

g
c
o
s
t
s

n
o

su
g
g
e
st
io
n

p
ro

v
id
ed

n
o

su
g
g
e
st
io
n

p
ro

v
id
ed

T
R
E
C

q
u
e
r
y

(
n
.
4
9
)
:

fl
a
m

e
d
e
si

g
n

s
(
a
m

b
ig

u
o
u
s
)
;
F
r
e
q
u
e
n
c
y

in
t
h
e

t
r
a
in

in
g

lo
g
:
1
;

1
.
F
in

d
fr
e
e

fl
a
m

e
d
e
s
ig

n
c
li
p
a
r
t

I
c
a
n

u
s
e

o
n

a
w
e
b
s
it
e
.

2
.
H
o
w

d
o

I
m

a
k
e
r
e
a
li
s
t
ic

fl
a
m

e
im

a
g
e
s
u
s
in

g
P
h
o
t
o
s
h
o
p
?

3
.
I’
m

lo
o
k
in

g
fo

r
g
o
o
d

fl
a
m

e
t
a
t
t
o
o

d
e
s
ig

n
s
.

4
.
F
in

d
p
ic

t
u
r
e
s

o
f
fl
a
m

e
s

a
n
d

fi
r
e
.

5
.
I
w
a
n
t
t
o

fi
n
d

fl
a
m

e
d
e
s
ig

n
d
e
c
a
ls

I
c
a
n

p
u
t
o
n

m
y

c
a
r

o
r

m
o
t
o
r
c
y
c
le

.
6
.
I’
m

lo
o
k
in

g
fo

r
fl
a
m

e
d
e
s
ig

n
s
t
e
n
c
il
s
.

fl
a
m

e
s

fl
a
m

e
fo

n
t
s

p
e
n
n
y

fl
a
m

e
fl
a
m

e
il
lu

s
t
r
a
t
io

n
fl
a
m

in
g

t
e
x
t

fl
a
m

in
g

fo
n
t
s

t
a
t
t
o
o

fl
a
m

e
d
e
s
ig

n
s

fl
a
m

e
p
a
t
t
e
r
n

c
o
m

fo
r
t
e
r
s

in
fl
a
m

e
s

b
a
n
d

fl
a
m

e
a
r
t

n
o

su
g
g
e
st
io
n

p
ro

v
id
ed

n
o

su
g
g
e
st
io
n

p
ro

v
id
ed

T
R
E
C

q
u
e
r
y

(
n
.
5
0
)
:

d
o
g

h
ea

t
(
a
m

b
ig

u
o
u
s
)
;
F
r
e
q
u
e
n
c
y

in
t
h
e

t
r
a
in

in
g

lo
g
:
2
;

1
.
W

h
a
t

is
t
h
e

e
ff
e
c
t

o
f
e
x
c
e
s
s
iv

e
h
e
a
t

o
n

d
o
g
s
?

2
.

W
h
a
t

a
r
e

s
y
m

p
t
o
m

s
o
f

h
e
a
t

s
t
r
o
k
e

a
n
d

o
t
h
e
r

h
e
a
t
-

r
e
la

t
e
d

il
ln

e
s
s
e
s

in
d
o
g
s
?

3
.

F
in

d
in

fo
r
m

a
t
io

n
o
n

d
o
g
s
’

r
e
p
r
o
d
u
c
t
iv

e
c
y
c
le

.
W

h
a
t

d
o
e
s

it
m

e
a
n

w
h
e
n

a
d
o
g

is
in

h
e
a
t
?

h
e
a
t

h
e
a
t

c
y
c
le

o
f
a

d
o
g

c
a
n

a
d
o
g

b
e

s
p
a
y
e
d

in
h
e
a
t

d
o
g
s

h
e
a
t

d
o
g

in
h
e
a
t

s
y
m

p
t
o
m

s
d
o

fe
m

a
le

d
o
g
s

h
o
w
l
in

h
e
a
t

c
y
c
le

d
o
g

h
e
a
t

e
x
h
a
u
s
t
io

n
s
ig

n
s

o
f
a

fe
m

a
le

d
o
g

in
h
e
a
t

h
e
a
t

c
y
c
le

o
f
d
o
g
s

w
h
e
n

d
o

d
a
u
s
c
h
o
u
n
d

g
o

in
t
o

h
e
a
t

fe
m

a
le

d
o
g
s

in
h
e
a
t

h
o
w

lo
n
g

h
o
w

o
ft
e
n

d
o

d
o
g
s

c
o
m

e
in

h
e
a
t

fe
m

a
le

d
o
g
s

in
h
e
a
t

d
o
g
s

in
h
e
a
t

d
o

fe
m

a
le

d
o
g
s

h
o
w
l
in

h
e
a
t

c
y
c
le

h
o
w

t
o

t
e
ll

if
y
o
u
r

d
o
g

is
p
r
e
g
n
a
n
t

c
a
n

a
d
o
g

b
e

s
p
a
y
e
d

in
h
e
a
t

m
e
m

p
h
is

s
p
a
y
in

g
p
e
t

v
a
c
s

p
e
t

v
a
x

m
y
s
p
a
c
e

y
s
p
a
c
e

m
y
s
p
a
c

T
R
E
C

q
u
e
r
y

(
n
.
4
2
)
:

th
e

m
u

si
c

m
a
n

(
fa

c
e
t
e
d
)
;
F
r
e
q
u
e
n
c
y

in
t
h
e

t
r
a
in

in
g

lo
g
:
5
;

1
.
F
in

d
ly

r
ic

s
fo

r
s
o
n
g
s

fr
o
m

T
h
e

M
u
s
ic

M
a
n
.

2
.
F
in

d
c
u
r
r
e
n
t

p
e
r
fo

r
m

a
n
c
e
s

o
f
T
h
e

M
u
s
ic

M
a
n
.

3
.
F
in

d
r
e
c
o
r
d
in

g
s

o
f
s
o
n
g
s

fr
o
m

T
h
e

M
u
s
ic

M
a
n
.

4
.
I’
m

lo
o
k
in

g
fo

r
t
h
e

s
c
r
ip

t
fo

r
T
h
e

M
u
s
ic

M
a
n
.

t
il
l
t
h
e
r
e

w
a
s

y
o
u

m
u
s
ic

a
l
m

u
s
ic

m
a
n

ly
r
ic

s
t
h
e

m
u
s
ic

m
a
n

s
o
u
n
d
t
r
a
c
k

t
h
e

m
u
s
ic

m
a
n

s
u
m

m
a
r
y

e
le

p
h
a
n
t

m
a
n

m
u
s
ic

7
0
s

m
u
s
ic

r
u
b
b
e
r
b
a
n
d

m
a
n

e
n
c
in

o
m

a
n

s
o
n
g
s

m
u
s
ic

m
a
n

ly
r
ic

s
fr
e
e

m
u
s
ic

o
n

m
s
n

m
u
s
ic

m
a
n

t
r
o
u
b
le

in
r
iv

e
r

c
it
y

t
h
e

m
u
s
ic

m
a
n

m
o
v
ie

t
h
e

m
u
s
ic

m
a
n

o
n

b
r
o
a
d
w
a
y

t
h
e

m
u
s
ic

m
a
n

s
u
m

m
a
r
y

s
t
a
t
e

fa
ir

m
u
s
ic

a
l

t
il
l
t
h
e
r
e

w
a
s

y
o
u

d
iz

z
y

g
il
e
le

s
p
e
e

o
y
s
t
e
r
s

r
o
c
k
e
fe

ll
e
r

r
e
c
ip

e
a
r
c
h
n
id

fe
m

a
le

w
h
a
le

b
r
e
w
s
k
i

fa
t
s

d
o
m

in
o
s

fi
r
s
t

n
a
m

e

T
R
E
C

q
u
e
r
y

(
n
.
2
4
)
:

d
iv

e
rs

it
y

(
fa

c
e
t
e
d
)
;
F
r
e
q
u
e
n
c
y

in
t
h
e

t
r
a
in

in
g

lo
g
:
2
7
;

1
.
H
o
w

is
w
o
r
k
p
la

c
e

d
iv

e
r
s
it
y

a
c
h
ie

v
e
d

a
n
d

m
a
n
a
g
e
d
?

2
.
F
in

d
fr
e
e

a
c
t
iv

it
ie

s
a
n
d

m
a
t
e
r
ia

ls
fo

r
r
u
n
n
in

g
a

d
iv

e
r
-

s
it
y

t
r
a
in

in
g

p
r
o
g
r
a
m

in
m

y
o
ff
ic

e
.

3
.
W

h
a
t

is
c
u
lt
u
r
a
l
d
iv

e
r
s
it
y
?

W
h
a
t

is
p
r
e
ju

d
ic

e
?

4
.

F
in

d
q
u
o
t
e
s
,

p
o
e
m

s
,

a
n
d
/
o
r

a
r
t
w
o
r
k

il
lu

s
t
r
a
t
in

g
a
n
d

p
r
o
m

o
t
in

g
d
iv

e
r
s
it
y
.

d
iv

e
r
s
it
y

in
e
d
u
c
a
t
io

n
d
iv

e
r
s
it
y

in
c
lu

s
io

n
c
u
lt
u
r
a
l
d
iv

e
r
s
it
y

d
iv

e
r
s
it
y

t
e
s
t

a
c
c
e
p
t
in

g
d
iv

e
r
s
it
y

d
iv

e
r
s
it
y

p
o
e
m

d
iv

e
r
s
it
y

s
k
il
ls

d
iv

e
r
s
e

le
a
r
n
e
r
s

p
r
e
s
e
n
t
a
t
io

n
p
ic

t
u
r
e

o
f
d
iv

e
r
s
e

c
h
il
d
e
r
n

a
d
v
a
n
t
a
g
e
s

o
f
d
iv

e
r
s
it
y

n
o

su
g
g
e
st
io
n

p
ro

v
id
ed

a
c
c
e
p
t
in

g
d
iv

e
r
s
it
y

d
is
p
a
r
ig

in
g

r
e
m

a
r
k
s

d
iv

e
r
s
e

w
o
r
ld

d
iv

e
r
s
it
y

d
ir
e
c
t
o
r

d
iv

e
r
s
it
y

p
o
e
m

d
iv

e
r
s
it
y

t
e
s
t

m
in

o
r
it
y

&
w
o
m

e
n

c
iv

il
li
b
e
r
t
ie

s
in

c
lu

s
io

n
g
e
n
d
e
r

a
n
d

r
a
c
ia

l
b
ia

s

T
a
b
le

6
.3
.

Q
u
er

y
su

g
g
es

ti
o
n
s

p
ro

v
id

ed
b
y

S
ea

rc
h

S
h
o
rt

cu
ts

,
C

ov
er

G
ra

p
h
,

a
n
d

Q
u
er

y
F

lo
w

G
ra

p
h

fo
r

so
m

e
T

R
E

C
d
iv

er
si

ty
-t

ra
ck

q
u
er

y
to

p
ic

s.

105

6. Generating Suggestions for Queries in the Long Tail with an Inverted Index

6.5 Summary

We proposed a very efficient solution for generating effective suggestions to WSE

users based on the model of Search Shortcut. Our original formulation of the prob-

lem allows the query suggestion generation phase to be re-conducted to the pro-

cessing of a full-text query over an inverted index. The current query issued by

the user is matched over the inverted index, and final queries of the most simi-

lar satisfactory sessions are efficiently selected to be proposed to the user as query

shortcuts. The way a satisfactory session is represented as a virtual document, and

the IR-based technique exploited, allow our technique to generate in many cases

effective suggestions even to rare or not previously seen queries. The presence of

at least one query term in at least a satisfactory session used to build our model,

permits in fact SS to be able to generate at least a suggestion.

By using the automatic evaluation approach based on the metric defined in

Equation (6.1), SS outperforms QFG in quality of a 0.17, while the improvement

over CG was even greater (0.22). In 36 evaluated sessions out of 100, SS generates

useful suggestions when its competitors CG and QFG fails to produce even a single

useful recommendation.

An additional contribution of the chapter regards the evaluation methodology

used, based on a publicly-available test collection provided by a highly reputed

organization such as the NIST. The proposed methodology is objective and very

general, and, if accepted in the query recommendation scientific community, it

would grant researchers the possibility of measuring the performance of their so-

lution under exactly the same conditions, with the same dataset and the same

evaluation criterium.

On the basis of the evaluation conducted by means of the user-study, SS re-

markably outperforms both QFG and CG in almost all the tests conducted. In

particular, suggestions generated by SS covers the same number or more TREC

subtopics than its two counterparts in 44 cases out of 50. In 36 cases the number

of subtopics covered by SS suggestions is strictly greater. Only in 5 cases QFG

outperforms SS, while this never happens with CG. Also when considering effec-

tiveness, i.e. the number of relevant suggestions among the top-10 returned, SS

results the clear winner with an average number of relevant suggestions equal to

8.3, versus 4.3, and 4.2 for QFG, and CG, respectively. Moreover, differently from

competitors SS results to be very robust w.r.t. data sparsity, and can produce

relevant suggestions also to queries which are rare or not present in the query log

used for training.

All the queries suggested by the three algorithms for the 50 TREC queries

given as input to assessors are available along with the associated subtopic lists at

http://searchshortcuts.isti.cnr.it/TREC_results.html. Moreover, a simple web-

based wrapper that accepts user queries and computes the associated top-20 SS

recommendations is available at http://searchshortcuts.isti.cnr.it.

106

http://searchshortcuts.isti.cnr.it/TREC_results.html
http://searchshortcuts.isti.cnr.it

6.6 Acknowledgements

6.6 Acknowledgements

We acknowledge the authors of [35, 36] and the Yahoo! Research Lab of Barcelona

for providing us the possibility of using their Query Flow Graph implementation

for evaluation purposes.

107

7

Efficient Diversification of Web Search Results

In this chapter we analyze the efficiency of various search results diversification

methods. While efficacy of diversification approaches has been deeply investigated

in the past, response time and scalability issues have been rarely addressed. A

unified framework for studying performance and feasibility of result diversification

solutions is thus proposed. First we define a new methodology for detecting when,

and how, query results need to be diversified. To this purpose, we rely on the con-

cept of “query refinement” to estimate the probability of a query to be ambiguous.

Then, relying on this novel ambiguity detection method, we deploy and compare

on a standard test set, three different diversification methods: IASelect, xQuAD,

and OptSelect. While the first two are recent state-of-the-art proposals, the latter

is an original algorithm introduced here. We evaluate both the efficiency and the

effectiveness of our approach against its competitors by using the standard TREC

Web diversification track testbed. Results show that OptSelect is able to run two

orders of magnitude faster than the two other state-of-the-art approaches and to

obtain comparable figures in diversification effectiveness. Finally, we extend a Web

search architecture based on additive Machine Learned Ranking (MLR) systems

with a new module computing the diversity score of each retrieved document.

Our proposed solution is designed to be used with other techniques, (e.g. early

termination of rank computation, etc.).

7.1 Introduction

Web Search Engines (WSEs) are nowadays the most popular mean of interaction

with the Web. Users interact with them by usually typing a few keywords repre-

senting their information need. Queries, however, are often ambiguous and have

more than one possible interpretation [7, 121].

Consider, for example, the popular single-term query “apple”. It might refer to

Apple Corp., to the fruit, or to a tour operator which is very popular in the US.

Without any further information that may help to disambiguate the user intent,

7. Efficient Diversification of Web Search Results

search engines should produce a set of results possibly covering all (the majority

of) the different interpretations of the query. To help users in finding the right

information they are looking for, many different interfaces have been proposed to

present search results. The first, and näıve, solution has been paging the ranked

results list. Instead of presenting the whole list of results, the search engine presents

results divided in pages (also known with the term SERP, i.e. Search Engine Result

Page) containing ten results each.

Some alternative interfaces have been proposed. Results clustering approaches,

for instance, organize search results into folders that group similar items to-

gether [171, 53]. On the other side of the same coin, results diversification [5] follows

an intermediate approach that aims at “packing” the highest possible number of

diverse, relevant results within the first SERP.

Given that web search engines’ mission of satisfying their users is of paramount

importance, diversification of web search results is a hot research topic nowadays.

Nevertheless, the majority of research efforts have been put on studying effective

diversification methods able to satisfy web users. In this chapter we take a different

turn and consider the problem from the efficiency perspective. As Google’s co-

founder Larry Page declares1: “Speed is a major search priority, which is why in

general we do not turn on new features if they will slow our services down.” This

chapter is, to the best of our knowledge, the first work discussing efficiency in

SERP diversification. The approach we follow to achieve an efficient and viable

solution is based on analyzing query log information to infer knowledge about

when diversification actions have to be taken, and what users expectations are.

Indeed, the original contributions presented are several:

• we define a methodology for detecting when, and how, query results need to be

diversified. We rely on the well-known concept of query refinement to estimate

the probability of a query to be ambiguous. In addition, we show how to derive

the most likely refinements, and how to use them to diversify the list of results;

• we define a novel utility measure to evaluate how useful is a result for a diver-

sified result list;

• we propose OptSelect, an original algorithm allowing the diversification task

to be accomplished effectively and very efficiently;

• relying on our diversification framework, we deploy OptSelect and two other

recent state-of-the-art diversification methods in order to evaluate on the stan-

dard TREC Web diversification track testbed both the efficiency and the ef-

fectiveness of our approach against its competitors;

• we extend a search architecture based on additive Machine Learned Ranking

(MLR) systems with a new module computing the diversity score of each

retrieved document. Our proposed solution is designed to be used with other

techniques, (e.g. early termination of rank computation, etc.).

1 http://www.google.com/corporate/tech.html

110

http://www.google.com/corporate/tech.html

7.2 Related Work

The chapter is organized as follows: Section 7.2 discusses related works. Sec-

tion 7.3 presents a formalization of the problem, the specialization extraction

method, and the algorithm we propose. Section 7.4 shows the efficiency of our so-

lutions. Section 7.5 discusses some experimental results. In Section 7.7 we present

our conclusions and we outline possible future work.

7.2 Related Work

Result diversification has recently attracted a lot of interest. A very important

pioneering work on diversification is [52]. In this paper, the authors present the

Maximal Marginal Relevance (MMR) problem, and they show how a trade-off

between novelty and relevance of search results can be made explicit through the

use of two different functions, the first measuring the similarity among documents,

and the other the similarity between documents and the query. Zhai et al. [172]

stated that in general it is not sufficient to return a set of relevant results as the

correlation among the returned results is also very important. In a later work,

Zhai et al. [174] formalize and propose a risk minimization approach that allow

an arbitrary loss function over a set of returned documents to be defined. Loss

functions aim at determining the dissatisfaction of the user with respect to a

particular set of results. Such loss function depends on the language models rather

than on categorical information about two documents [173].

Diversification has also been studied for purposes different from search engine

result diversification. Ziegler et al. [180] study the diversification problem from a

“recommendation” point of view. Radlinski et al. [123] propose a learning algo-

rithm to compute an ordering of search results from a diverse set of orderings. Vee

et al. [158] study the diversification problem in the context of structured databases

with applications to online shopping. Clarke et al. [59] study diversification in ques-

tion answering.

Agrawal et al. [5] present a systematic approach to diversify results that aims

to minimize the risk of dissatisfaction of the web search engine users. Furthermore,

authors generalize some classical IR metrics, including NDCG, MRR, and MAP, to

explicitly account for the value of diversification. They show empirically that their

algorithm scores higher in these generalized metrics compared to results produced

by commercial search engines.

Gollapudi et al. [73] use the axiomatic approach to characterize and design

diversification systems. They develop a set of axioms that a diversification system

is expected to satisfy, and show that no diversification function can satisfy all

these axioms simultaneously. Finally, they propose an evaluation methodology to

characterize the objectives and the underlying axioms. They conduct a large scale

evaluation based on data derived from Wikipedia and a product database.

Rafiei et al. [124] model the diversity problem as expectation maximization and

study the challenges of estimating the model parameters and reaching an equilib-

111

7. Efficient Diversification of Web Search Results

rium. One model parameter, for example, is the correlation between pages which

authors estimate using textual contents of pages and click data (when available).

They conduct experiments on diversifying randomly selected queries from a query

log and the queries chosen from the disambiguation topics of Wikipedia.

Clough et al. [60] examine user queries with respect to diversity. They ana-

lyze 14.9 million queries from the MSN query log by using two query log analysis

techniques (click entropy and reformulated queries). Authors found that a broad

range of query types may benefit from diversification. They also found that, al-

though there is a correlation between word ambiguity and the need for diversity,

the range of results users may wish to see for an ambiguous query stretches well

beyond traditional notions of word sense.

Santos et al. [132, 131, 133] introduce a novel probabilistic framework (xQuAD)

for Web search result diversification, which explicitly accounts for the various as-

pects associated to an underspecified query. In particular, they diversify a docu-

ment ranking by estimating how well a given document satisfies each uncovered

aspect and the extent to which different aspects are satisfied by the ranking as

a whole. Authors evaluate the xQuAD framework in the context of the diversity

task of the TREC 2009 Web track. They exploit query reformulations provided by

three major WSEs to uncover different query aspects.

Similarly to [131], we exploit related queries as a mean of achieving diversifica-

tion of query results. Nevertheless, our approach is very different from the above

two. In [131], the authors exploit query reformulations provided by commercial

Web search engines. All these reformulations are then taken into account during

query processing in order to achieve a result set covering all the facets. In our

case, the different meanings and facets of queries are instead disclosed by analyz-

ing user behaviors recorded in query logs. During the analysis also the popularity

of the different specializations is derived. Popularity distribution is then used to

maximize the “usefulness” of the final set of documents returned. An approach

orthogonal to our is instead investigated by Radlinski and Dumais in [121], where

the problem of generating queries that can yield to a more diverse results set is

studied starting from the observation that the top-k results retrieved for a query

might not contain representative documents for all of its interpretations.

7.3 Diversification using Query Logs

Users generally query a search engine by submitting a sequence of requests. Split-

ting the chronologically ordered sequence of queries submitted by a given user into

sessions, is a challenging research topic [118, 13, 92]. Since our approach exploits

user session information, but session splitting methodologies are out of the scope

of this work, we resort to adopt a state-of-the-art technique based on Query-Flow

Graph [35, 37]. It consists of building a Markov Chain model of the query log

and subsequently finding paths in the graph which are more likely to be followed

112

7.3 Diversification using Query Logs

by random surfers. As a result, by processing a query log Q we obtain the set

of logical user sessions exploited by our result diversification solution. Both the

query topics possibly benefiting from diversification, and the probability of each

distinct specialization among the spectrum of possibilities, are in fact mined from

logs storing historical information about the interaction of users with the WSE.

As an example, let us assume that in a given query log the queries leopard mac

OS X, leopard tank, and leopard pictures, are three specializations of query leopard

that commonly occur in logical query sessions. The presence of the same query re-

finements in several sessions issued by different users gives us evidence that a query

is ambiguous, while the relative popularity of its specializations allow us to com-

pute the probabilities of the different meanings. On the basis of this information

learned from historical data, once a query q is encountered by the WSE, we: (a)

check if q is ambiguous or faceted, and if so, (b) exploit the knowledge about the

different specializations of q submitted in the past to retrieve documents relevant

for all of them. Finally, (c) use the relative frequencies of these specializations to

build a final result set that maximize the probability of satisfying the user. In the

following, we describe more precisely how ambiguous/faceted queries are detected

and managed.

7.3.1 Mining Specializations from Query Logs

We assume that a query log Q is composed by a set of records 〈qi, ui, ti, Vi, Gi〉
storing, for each submitted query qi: (i) the anonymized user ui; (ii) the timestamp

ti at which ui issued qi; (iii) the set Vi of URLs of documents returned as top-k

results of the query, and, (iv), the set Ci of URLs corresponding to results clicked

by ui. Let q and q′ be two queries submitted by the same user during the same

logical session recorded in Q. We adopt the terminology proposed in [37], and we

say that a query q′ is a “specialization” of q if the user information need is stated

more precisely in q′ than in q (i.e., q′ is more specific than q). Let us call Sq the

set of specializations of an ambiguous/faceted query q mined from the query log.

Given the above generic definition, any algorithm that exploits the knowledge

present in query log sessions to provide users with useful suggestions of related

queries, can be easily adapted to the purpose of devising specializations of sub-

mitted queries. Given the popularity function f() that computes the frequency of

a query topic in Q, and a query recommendation algorithm A trained with Q,

Algorithm 3 can be used to detect efficiently and effectively queries that can ben-

efit from result diversification, and to compute for them the set of most common

specializations along with their probabilities.

In this work, we experimented the use of a very efficient query recommendation

algorithm [42] (see Chapter 6) for computing the possible specializations of queries.

The algorithm used learns the suggestion model from the query log, and returns

as related specializations, only queries that are present in Q, and for which related

113

7. Efficient Diversification of Web Search Results

Algorithm 3 AmbiguousQueryDetect(q,A, f(), s)

{Given the submitted query q, a query recommendation algorithm A, and an integer s

compute the set Ŝq ⊆ Q of possible specializations of q.}
1: Ŝq ← A(q); {Select from Ŝq the most popular specializations.}
2: Sq ← {q′ ∈ Ŝq|f(q′) ≥ f(q)

s
};

3: if |Sq| ≥ 2 then return (Sq); else return (∅);

probabilities can be, thus, easily computed. Note that any other approach for

deriving user intents from query logs, (as an example, [120, 129]), could be used

and easily integrated in our diversification framework.

Definition 6 (Probability of Specialization). Let Q̂ = {q ∈ Q, s.t. |Sq| > 1}
be the set of ambiguous queries in Q, and P (q′|q) the probability for q ∈ Q̂ to be

specialized from q′ ∈ Sq.

We assume that the distribution underlying the possible specialization of an

ambiguous query is known and complete, i.e.,
∑
q′∈Sq

P (q′|q) = 1, and P (q′|q) =

0,∀q′ /∈ Sq, ∀q ∈ Q̂. To our purposes these probability distributions are simply

estimated by dividing the frequency returned by Algorithm 3 using the following

formula:

P (q′|q) = f(q′)/
∑

q′∈Sq

f(q′)

Obviously, query logs can not give the complete knowledge about all the possi-

ble specializations for a given ambiguous query, but we can expect that the most

popular interpretations are present in a large query log covering a long time period.

Now, let us give some additional assumptions and notations.

D is the collection of documents indexed by the search engine which returns, for

each submitted query q, an ordered list Rq of documents. The rank of document

d ∈ D within Rq is indicated with rank(d,Rq).

Moreover, let d1 and d2 be two documents of D, and δ : D×D → [0,1] a distance

function having the non-negative, and symmetric properties, i.e. (i) δ(d1, d2) = 0

iff d1 = d2, and (ii) δ(d1, d2) = δ(d2, d1).

Definition 7 (Results’ Utility). The utility of a result d ∈ Rq for a specializa-

tion q′ is defined as:

U(d|Rq′) =
∑

d′∈Rq′

1− δ(d, d′)
rank(d′, Rq′)

. (7.1)

where Rq′ is the list of results that the search engine returned for specialized query

q′.

114

7.3 Diversification using Query Logs

Such utility represents how good d ∈ Rq is for satisfying a user intent that is

better represented by specialization q′. The intuition for U is that a result d ∈ Rq
is more useful for specialization q′ if it is very similar to a highly ranked item

contained in the results list Rq′ .

The utility function specified in Equation (7.1) uses the following function to

measure the distance between two documents:

δ(d1, d2) = 1− cosine(d1, d2) (7.2)

where cosine(d1, d2) is the cosine similarity between the two documents.

In the methods presented in the following, we use a normalized version of

results’ utility, Ũ (d|Rq′), which is defined as the normalization of U (d|Rq′) in

the [0, 1] interval. The normalization factor is computed by assuming that, in the

optimal case, result d is at distance δ(d, ·) = 0. In this case, the utility function is

equal to

∑

d′∈Rq′

1

rank(d′, Rq′)
=

|Rq′ |∑

i=1

1

i
= H|Rq′ |

where H|Rq′ | is the |Rq′ |-th harmonic number. Therefore,

Ũ (d|Rq′) =
U (d|Rq′)
H|Rq′ |

Using the above definitions, we can now define three different query-logs-based

approaches to diversification. The first two methods are adaptations of the Agrawal

et al. [5] algorithm, and the Santos’s et al. xQuAD framework [131]. The last one

refers to our novel formulation detailed in Section 7.3.1.

The QL Diversify(k) Problem

In a recent paper, Agrawal et al. [5] defined the Diversify(k) problem, a covering-

like problem aimed to include the maximum number of possible “categories” into

the list of k results that are returned in response to a user’s query.

We briefly recall the definition of the problem, as stated in the original paper [5]:

Diversify(k): Given query q, a set of documents Rq, a probability distribution
of categories for the query P (c|q), the quality values of the documents V (d|q, c),
∀d ∈ D and an integer k. Find a set of documents S ⊆ Rq with |S| = k that
maximizes

P (S|q) =
∑

c

P (c|q)

(
1−

∏

d∈S
(1− V (d|q, c))

)
(7.3)

115

7. Efficient Diversification of Web Search Results

Equation (7.3) uses two concepts similar to those we have already introduced:

the probability of a query to be part of a category is very similar to our concept

of probability of specialization (see Definition 6), while quality value V (d|q, c)
resembles Ũ(d|Rq′).

It is possible to see the set of possible specializations Sq as the set of possible

categories for q mined from a query log. The utility, in this case, can be seen as

the utility of selecting resulting document d for category/specialization q′. Thus,

the problem becomes choosing a subset S of Rq with |S| = k that maximizes:

P (S|q) =
∑

q′∈Sq

P (q′|q)

(
1−

∏

d∈S

(
1− Ũ (d|Rq′)

))
(7.4)

We call this problem QL Diversify(k) to differentiate it from the original

Agrawal et al. formulation [5].

The xQuAD Diversify(k) Problem

In [131], Santos et al. propose a probabilistic framework called xQuAD. Com-

pared to [5], the proposed framework extends the measure with which documents

produced for ambiguous query q are iteratively selected. To this aim, xQuAD eval-

uates also the initial ranking of such documents for q. Formally, the problem is

the following:

xQuAD Diversify(k): Given a query q, a set of ranked documents Rq re-
trieved for q, a mixing parameter λ ∈ [0, 1], two probability distributions P (d|q)
and P (d, S̄|q) measuring, respectively, the likelihood of document d being ob-
served given q, and the likelihood of observing d but not the documents in the
solution S. Find a set of documents S ⊆ Rq with |S| = k that maximizes for
each d ∈ S

(1− λ) · P (d|q) + λ · P (d, S̄|q) (7.5)

xQuAD is a greedy algorithm that iteratively selects a new document, and

pushes it into the current solution. The selection process consists in choosing each

time the document d∗ ∈ S̄ = R \ S that maximizes Equation (7.5). Such formula

combines two probabilities: the first evaluates the relevance of a document d as

the expectation for d to be observed given the query q, namely P (d|q). The second

probability measures the diversity of a candidate document d as the product of

two components (see Equation (7.6)). The first component is, thus, the relevance

of d with respect to a set of specializations Sq, and it is obtained by multiplying

the likelihood of a specialization q′ by the likelihood of d considering a particu-

lar specialization q′. Furthermore, the second component estimates the coverage

degree of the current solution S with respect to each specialization q′.

116

7.3 Diversification using Query Logs

P (d, S̄|q) =
∑

q′∈Sq

[
P (q′|q)P (d|q′)

∏

dj∈S
1− P (dj |q′)

]
(7.6)

As for the Agrawal’s formulation, P (dj |q′) can be seen as the utility of select-

ing resulting document dj for specialization q′. Thus, we measure P (dj |q′) using

Ũ (d|Rq′). Similarly to [5], at each step, the algorithm updates the coverage degree

of solution S for each candidate document, then it scans R \ S in order to choose

the best document.

The MaxUtility Diversify(k) Problem

The problem addressed in the Agrawal’s paper, is actually the maximization of the

weighted coverage of the categories with pertinent results. The objective function

does not consider directly the number of categories covered by the result set; it

might be the case that even if the categories are less than |Sq|, some of these will

not be covered by the results set. This may happen because the objective function

considers explicitly how much a document satisfies a given category. Hence, if a

category that is a dominant interpretation of the query q is not covered adequately,

more documents related to such category will be selected, possibly at the expense

of other categories.

We believe, instead, that it is possible to maximize the sum of the various util-

ities for the chosen subset S of documents by guaranteeing that query specializa-

tions are covered proportionally to the associated probabilities P (q′|q). Motivated

by the above observation, we define the following problem.

MaxUtility Diversify(k): Given a query q, the set Rq of results for q, two
probability distributions P (d|q) and P (q′|q)∀q′ ∈ Sq measuring, respectively,
the likelihood of document d being observed given q, and the likelihood of
having q′ as a specialization of q, the utilities Ũ(d|Rq′) of documents, a mixing
parameter λ ∈ [0, 1], and an integer k. Find a set of documents S ⊆ Rq with
|S| = k that maximizes

Ũ (S|q) =
∑

d∈S

∑

q′∈Sq

(1− λ)P (d|q) + λP (q′|q) Ũ (d|Rq′) (7.7)

with the constraints that every specialization is covered proportionally to its
probability. Formally, let Rq ./ q

′ = {d ∈ Rq|U (d|Rq′) > 0}. We require that
for each q′ ∈ Sq, |Rq ./ q′| ≥ bk · P (q′|q)c.

Our technique aims at selecting from Rq the k results that maximize the overall

utility of the list of results. When |Sq| ≤ k the results are in someway split into

|Sq| subsets each one covering a distinct specializations. The more popular a spe-

cialization, the greater the number of results relevant for it. Obviously, if |Sq| > k

we select from Sq the k specializations with the largest probabilities.

117

7. Efficient Diversification of Web Search Results

7.4 Efficiency Evaluation

Efficiency of diversification algorithms is an important issue to study. Even the

best diversification algorithm can be useless if its high computational cost forbids

its actual use in a real-world IR system. In the following discussion, IASelect is

the greedy algorithm used to approximate QL Diversify(k), xQuAD refers to

the greedy algorithm used to approximate xQuAD Diversify(k), and eventually

OptSelect is our algorithm solving the MaxUtility Diversify(k) problem. We

consider diversification to be done on a set of |Rq| = n results returned by the

baseline retrieval algorithm. Furthermore, we consider |Sq|, i.e. the number of

specifications for a query q to be a constant (indeed, it is usually a small value

depending on q).

IASelect. As shown by Agrawal et al. the Diversify(k) problem, and thus also

the QL Diversify(k) problem, is NP-Hard. Since the problem’s objective func-

tion is submodular, an opportune greedy algorithm yields to a solution whose

value is smaller than (1− 1/e) times the optimal one [110]. The greedy algorithm

consists in adding to the results set the documents giving the largest marginal

increase to the objective function. Since there is an insertion operation for each

result needed in the final result set, the algorithm performs k insertions. For each

insertion the algorithm searches for the document with the largest marginal util-

ity that has not yet been selected. Since marginal utility is computed for each

candidate document in terms of the current solution and each specialization,

its value must be updated at each insertion. Hence, the computational cost of

the procedure is linear in the number of categories/specializations multiplied by

the number n of candidate documents. Thus, the solution proposed has a cost

CI (n, k) =
∑k
i=1[|Sq| · (n− i)] = k|Sq|

(
n− k+1

2

)
= O (nk).

xQuAD. It is a greedy algorithm that iteratively selects a new document, and

pushes it into the current solution. The selection process consists in choosing each

time the document d∗ ∈ R \ S that maximizes Equation (7.5). As specified in

Section 7.3.1, such formula combines the probability for a document d of being

relevant for a query q, i.e., P (d|q) and the diversity of a candidate document d,

respectively.

Similarly to the solution proposed in [5], at each step, the algorithm updates

the coverage degree of solution S for each candidate document, then it scans R\S
in order to choose the best document. The procedure is linear in the number of

items in Sq multiplied by the number of documents in R \S. Since the selection is

performed k times, the final computational cost is given by CX (n, k) =
∑k
i=1[|Sq|·

(n− i)]. As for the Agrawal’s solution, thus, CX (n, k) = O (nk).

OptSelect. While QL Diversify(k) aims to maximize the probability of cover-

ing useful categories, the MaxUtility Diversify(k) aims to maximize directly

the overall utility. This simple relaxation allows the problem to be simplified and

118

7.4 Efficiency Evaluation

solved optimally in a very simple and efficient way. Furthermore, the constraints

bounding the minimum number of results tied to a given specialization, boost the

quality of the final diversified result list, ensuring that the covered specializations

reflect the most popular preferences expressed by users in the past.

Another important difference between Equation (7.7) and Equation (7.4) is

that the latter needs to select, in advance, the subset S of documents before

computing the final score. In our case, instead, a simple arithmetic argument

shows that:

Ũ (S|q) =
∑

d∈S
Ũ (d|q) (7.8)

where Ũ (d|q) is the overall utility of document d for query q. This value is com-

puted according to the following equation:

Ũ (d|q) =
∑

q′∈Sq

(1− λ)P (d|q) + λP (q′|q) Ũ (d|Rq′) (7.9)

By combining (7.8), and (7.9) we obtain:

Ũ (S|q) = (1− λ)|Sq|
∑

d∈S
P (d|q) +

+ λ
∑

q′∈Sq

P (q′|q)
∑

d∈S
Ũ (d|Rq′)

Therefore, to maximize Ũ (S|q) we simply resort to compute for each d ∈ Rq:
i) the relevance of d for the query q, ii) the utility of d for specializations q′ ∈ Sq
and, then, to select the top-k highest ranked documents. Obviously, we have to

carefully select results to be included in the final list in order to avoid choosing

results that are relevant only for a single specialization. For this reason we use a

collection of |Sq| min-heaps each of those keeps the top bk ·P (q′|q)c+1 most useful

documents for that specialization. OptSelect (see Algorithm (4)) returns the set S

maximizing the objective function in Equation (7.7). Moreover, the running time

of the algorithm is linear in the size of the documents considered. Indeed, all the

heap operations are carried out on data structures having a constant size bounded

by k.

Similarly to the other two solutions discussed, the proposed solution is com-

puted by using a greedy algorithm. OptSelect is however computationally less

expensive than its competitors. The main reason is that for each inserted element,

it does not recompute the marginal utility of the remaining documents w.r.t. all

the specializations. The main computational cost is given by the procedure which

tries to add elements to each heap related to a specialization in Sq. Since each heap

is of at most k positions, each insertion has cost log2 k, and globally the algorithm

costs CO(n, k) = n|Sq| log2 k = O (n log2 k).

119

7. Efficient Diversification of Web Search Results

Algorithm 4 OptSelect(q, Sq, Rq, k)

01: S ← ∅;
02: M ← new Heap(k); {Heap(n) instantiates a new n-size min-heap.}
03: For Each q′ ∈ Sq Do
04: Mq′ ← new Heap(bk · P (q′|q)c+ 1);
05: For Each d ∈ Rq Do
06: If Ũ(d|Rq′) > 0 Then Mq′ .push(d); Else M.push(d);
07: For Each q′ ∈ Sq s.t. Mq′ 6= ∅ Do

08: x← pop d with the max Ũ(d|q) from Mq′ ;
09: S ← S ∪ {x};
10: While |S| < k Do

11: x← pop d with the max Ũ(d|q) from M ;
12: S ← S ∪ {x};
13: Return (S);

Table 7.1 reports and compares the theoretical complexity of the three consid-

ered methods. Our newly proposed OptSelect algorithm is faster than the previ-

ously proposed ones.

Algorithm Complexity

IASelect O (nk)
xQuAD O (nk)

OptSelect O(nlog2k)

Table 7.1. Time complexity of the three algorithms considered.

Empirical efficiency evaluation. In addition to the theoretical considerations

above, we also conducted tests in the TREC 2009 Web track’s Diversity Task

framework to empirically compare the efficiency of the three solutions proposed.

In particular, we measured the time required by OptSelect, xQuAD and IASelect

to diversify the list of retrieved documents. All the tests were conducted on a Intel

Core 2 Quad PC with 8Gb of RAM and Ubuntu Linux 9.10 (kernel 2.6.31-22).

Table 7.2 reports the average time required by the three algorithms to diversify

the initial set of documents for the 50 queries of the TREC 2009 Web Track’s Di-

versity Task. We study the performance by varying both the number of documents

which the diversified result set is chosen from (|Rq|), and the size of the returned

list S denoted by k (i.e. k = |S|). The results show that, for each value of k, the ex-

ecution time of all the tested methods is linear by varying the size of Rq. The only

difference among these trends is in favor of OptSelect which slope is lower than

its competitors. By varying, instead, the value of k, the execution times follow the

complexities resumed in Table 7.1. The most remarkable result is that, increasing

the number of documents returned, OptSelect outperforms xQuAD and IASelect

in all the conducted tests. In particular, OptSelect is two orders of magnitude

faster than its competitors.

120

7.5 Testing Effectiveness

|Rq| k
10 50 100 500 1000

OptSelect

1,000 0.34 0.58 0.66 0.89 0.98
10,000 1.36 2.13 2.46 3.32 3.57
100,000 4.81 8.32 9.57 12.94 13.92

xQuAD

1,000 0.43 1.64 3.31 14.82 30.18
10,000 3.27 16.69 32.22 148.41 298.63
100,000 36.27 143.67 285.69 1,425.82 2,849.83

IASelect

1,000 0.57 1.68 3.92 20.81 39.82
10,000 4.23 23.03 40.82 203.11 409.43
100,000 48.04 205.46 408.61 2,039.22 4,071.81

Table 7.2. Execution time (in msec.) of OptSelect, xQuAD, and IASelect by varying
both the size of the initial set of documents to diversify (|Rq|), and the size of the
diversified result set (k = |S|).

7.5 Testing Effectiveness

We conducted our experiments to measure the effectiveness of the three methods

in the context of the diversity task of the TREC 2009 Web track [58]. The goal of

this task is to produce a ranking of documents for a given query that maximizes the

coverage of the possible aspects underlying this query, while reducing its overall

redundancy with respect to the covered aspects. In our experiments, we used

ClueWeb-B, the subset of the TREC ClueWeb09 dataset2 and two query logs

(AOL and MSN).

To assess effectiveness we have followed the guidelines of the Diversity Task

of TREC. We have used the ClueWeb-B dataset, i.e. the subset of the TREC

ClueWeb09 dataset3 collection used in the TREC 2009 Web track’s Diversity Task,

comprising a total of 50 million English Web documents. A total of 50 topics were

available for this task. Each topic includes from 3 to 8 sub-topics manually iden-

tified by TREC assessors, with relevance judgements provided at subtopic level.

As an example the first TREC topic is identified by the query obama family tree,

and three subtopics are provided: i) Find the TIME magazine photo essay “Barack

Obama’s Family Tree”, ii) Where did Barack Obama’s parents and grandparents

come from?, and iii) Find biographical information on Barack Obama’s mother.

The query associated with each topic of the TREC 2009 Web track was used as

initial ambiguous/faceted query.

The two query logs used are AOL and MSN. The AOL data-set contains about

20 millions of queries issued by about 650, 000 different users. The queries were

2 http://boston.lti.cs.cmu.edu/Data/clueweb09/
3 http://boston.lti.cs.cmu.edu/Data/clueweb09/

121

http://boston.lti.cs.cmu.edu/Data/clueweb09/
http://boston.lti.cs.cmu.edu/Data/clueweb09/

7. Efficient Diversification of Web Search Results

submitted to the AOL search portal over a period of three months from 1st March,

2006 to 31st May, 2006. The MSN Search query log contains 15 millions of queries

submitted to the MSN US search portal over a period of one month in 2006. Queries

are mostly in English. Both query logs come with all the information needed to

address the diversification problem according to our approach.

The two query logs were first preprocessed in order to devise the logical user

sessions as described in Section 7.3. Moreover the sessions obtained were used

to build the model for the recommendation algorithm described in [42]. Given a

query q, such algorithm was used to compute efficiently the set and the associated

probabilities of its popular specializations Sq (see Algorithm 3).

The results obtained for the diversity task of the TREC 2009 Web track

are evaluated according to the two official metrics: α-NDCG and IA-P. The α-

normalized discounted cumulative gain (α-NDCG [59]) metric balances relevance

and diversity through the tuning parameter α. The larger the value of α, the more

diversity is rewarded. In contrast, when α = 0, only relevance is rewarded, and

this metric is equivalent to the traditional NDCG [90]. Moreover, we used the

intent-aware precision (IA-P [5]) metric, which extends the traditional notion of

precision in order to account for the possible aspects underlying a query and their

relative importance. In our evaluation, both α-NDCG and IA-P are reported at

five different rank cutoffs: 5, 10, 20, 100, and 1000. While the first four cutoffs

focus on the evaluation at early ranks which are very important in a web context,

the last cutoff gives the value of the two metrics for all the set of results. Both

α-NDCG and IA-P are computed following the standard practice in the TREC

2009 Web-Track’s Diversity Task [58]. In particular, α-NDCG is computed with

α = 0.5, in order to give an equal weight to relevance and diversity.

An ad-hoc modified version of the Terrier4 IR platform was used for both

indexing and retrieval. We extended Terrier in order to obtain short summaries of

retrieved documents, which are used as document surrogates in our diversification

algorithm. We used Porter’s stemmer and standard English stopword removal for

producing the ClueWeb-B index. We evaluate the effectiveness of our method in

diversifying the results retrieved using a probabilistic document weighting model:

DPH Divergence From Randomness (DFR) model [6].

Table 7.3 shows the results of the tests conducted with the DPH baseline

(no diversification), i) our OptSelect, ii) Agrawal’s IASelect, and iii) the xQuAD

framework. We set |Rq′ | = 20, k = 1000, and |Rq| = 25, 000. Furthermore, xQuAD

and OptSelect use a value for parameter λ equal to 0.15 (the value maximizing

α-NDCG@20 in [131]). We applied the utility function in (7.1) to the snippets re-

turned by the Terrier search engine instead of applying it to the whole documents,

and we forced its returning value to be 0 when it is below a given threshold c.

Nine different values of the utility threshold c were tested. The specializations and

4 http://www.terrier.org

122

http://www.terrier.org

7.5 Testing Effectiveness

the associated probabilities were obtained in all the cases by using the previously

described approach [42].

The results reported in the Table show that OptSelect and xQuAD behave sim-

ilarly, while IASelect performs always worse. OptSelect shows good performance

for small values of c, in particular for c ∈ {0, 0.05}. For both the two values of the

threshold, OptSelect obtains very good α-NDCG performance and the best IA-P

values. A deeper analysis of Table 7.3 shows that OptSelect noticeably outper-

forms the other two methods in terms of IA-P@5 for c = 0.05. The best α-NDCG

performances for OptSelect are instead obtained for c = 0.20. For this value of the

threshold, OptSelect shows a good trade-off between α-NDCG and IA-P, in partic-

ular for short results’ lists (@5, @10, @20). However, none of these differences can

be classified as statistically significant according to the Wilcoxon signed-rank test

at 0.05 level of significance. By increasing the value of the threshold c, effectiveness

starts to degrade. For c ≥ 0.75 all the algorithms perform basically as the DPH

baseline.

The xQuAD framework obtains good α-NDCG and IA-P performance for c =

0.05. xQuAD performs well also for c = 0.20. Note that our formulation of the

xQuAD framework performs better than reported in the original paper by Santos et

al. [131]. Essentially, this behavior could be explained by the following two reasons:

i) our method for measuring the “diversity” of a document based on Equation (7.1)

is superior to the one used in [131], ii) our method for deriving specializations, and

their associated probabilities is able to carry out more accurate results. We leave

this analysis to a future work. By comparing OptSelect (c = 0.20) and xQuAD

(c = 0.05), we highlight better performances for OptSelect in terms of IA-P@5,

and IA-P@20, while the xQuAD framework slightly outperforms OptSelect for α-

NDCG, with an exception for α-NDCG@5 where the two methods behave similarly.

Agrawal’s IASelect shows its best performances when the threshold c is not

used. However, it never outperforms OptSelect and xQuAD. Both α-NDCG and

IA-P values measured improve over the DPH baseline, but are always remarkably

lower than the best values obtained using OptSelect and xQuAD.

7.5.1 Evaluation based on Query Log Data

A second evaluation we propose exploits the user sessions and the query special-

izations coming from the query logs of two commercial search engines. The aim of

this evaluation is to show the importance of having a good diversification method

based on real users’ interests.

The two query logs were split into two different subsets. The first one (contain-

ing approximatively the 70% of the queries) was used for training (i.e., to build the

data structures described in the previous section), and the second one for testing.

For any ambiguous query q obtained by applying the Algorithm 3 to the test set

of each query log, we first submitted the query to the Yahoo! BOSS search engine,

123

7. Efficient Diversification of Web Search Results

c
α-NDCG IA-P

@5 @10 @20 @100 @1000 @5 @10 @20 @100 @1000

DPH Baseline - 0.190 0.212 0.240 0.303 0.303 0.092 0.093 0.088 0.058 0.006

OptSelect

0 0.213 0.227 0.255 0.318 0.352 0.111 0.100 0.092 0.061 0.012
0.05 0.213 0.228 0.256 0.319 0.352 0.112 0.101 0.091 0.061 0.012
0.10 0.195 0.220 0.246 0.312 0.343 0.102 0.097 0.090 0.062 0.012
0.15 0.190 0.216 0.246 0.305 0.341 0.101 0.098 0.090 0.061 0.012
0.20 0.214 0.241 0.262 0.324 0.359 0.110 0.101 0.090 0.060 0.012
0.25 0.190 0.213 0.238 0.305 0.339 0.095 0.098 0.087 0.058 0.012
0.35 0.186 0.206 0.235 0.302 0.335 0.089 0.090 0.086 0.058 0.012
0.50 0.186 0.208 0.236 0.300 0.334 0.091 0.091 0.087 0.058 0.012
0.75 0.190 0.212 0.240 0.303 0.337 0.092 0.093 0.088 0.058 0.012

xQuAD

0 0.211 0.241 0.260 0.320 0.354 0.103 0.102 0.090 0.058 0.012
0.05 0.214 0.242 0.260 0.323 0.355 0.108 0.103 0.089 0.058 0.012
0.10 0.193 0.226 0.249 0.308 0.341 0.101 0.101 0.090 0.058 0.012
0.15 0.200 0.227 0.253 0.315 0.348 0.099 0.095 0.087 0.058 0.012
0.20 0.204 0.234 0.262 0.321 0.354 0.096 0.099 0.087 0.058 0.012
0.25 0.181 0.211 0.236 0.303 0.336 0.090 0.095 0.085 0.058 0.012
0.35 0.185 0.209 0.239 0.302 0.335 0.091 0.092 0.088 0.058 0.012
0.50 0.190 0.212 0.240 0.303 0.336 0.092 0.093 0.087 0.058 0.012
0.75 0.190 0.212 0.240 0.303 0.337 0.092 0.093 0.088 0.058 0.012

IASelect

0 0.206 0.215 0.245 0.302 0.334 0.097 0.089 0.079 0.044 0.009
0.05 0.205 0.214 0.243 0.299 0.330 0.098 0.090 0.078 0.044 0.009
0.10 0.193 0.200 0.227 0.279 0.309 0.098 0.088 0.075 0.039 0.008
0.15 0.169 0.185 0.207 0.259 0.288 0.089 0.078 0.064 0.039 0.008
0.20 0.182 0.197 0.229 0.284 0.314 0.085 0.074 0.067 0.046 0.009
0.25 0.198 0.214 0.243 0.301 0.332 0.092 0.083 0.076 0.052 0.011
0.35 0.192 0.208 0.241 0.299 0.332 0.095 0.093 0.087 0.057 0.012
0.50 0.192 0.214 0.243 0.306 0.338 0.093 0.091 0.087 0.058 0.012
0.75 0.190 0.212 0.240 0.303 0.337 0.092 0.093 0.088 0.058 0.012

Table 7.3. Values of α-NDCG, and IA-P for OptSelect, xQuAD, and IASelect by varying
the threshold c.

then we re-ranked the results list by means of the Algorithm 4 to obtain the corre-

sponding diversified list of results. Finally, we compared the two lists obtained by

means of the utility function as in Definition 7. The goal is to show that our diver-

sification technique can provide users with a list of k documents having a utility

greater than the top-k results returned by the Yahoo! BOSS Search Engine.

To assess the impact of our diversification strategy on the utility of the diver-

sified results list, we computed the ratio between the normalized utilities of the

results in S and the top-k results in Rq, i.e., the diversified and the original one.

More formally, we computed

∑k
i=1 Ũ(di ∈ S)

∑k
i=1 Ũ(di ∈ Rq)

124

7.6 A Search Architecture Enabling Efficient Diversification of Search Results

where S is the diversified list produced by OptSelect, whereas Rq is the original

list of results obtained from Yahoo! BOSS. It is clear that if the two lists share all

the results, the ratio is equal to 1.

In our tests, we set the number of results retrieved from Yahoo! BOSS (|Rq|)
equal to 200, while both |Rq′ | and k equal to 20.

 3

 7

 11

 15

 2 4 6 8 10 12 14 16 18 20 22 24 26 28

A
v

er
ag

e
U

ti
li

ty

Number of Specializations

AOL
MSN

Fig. 7.1. Average utility per number of specializations referring to the AOL and MSN
query logs.

Figure 7.1 shows the average utility per number of specializations for the two

query logs considered in our experiments. In all cases taken into account, our

method diversifies the final list by improving the usefulness measure for a factor

ranging from 5 to 10 with respect to the usefulness of the original result set.

Furthermore, we measured the number of times our method is able to provide

diversified results when they are actually needed, i.e., a sort of recall measure.

This was done by considering the number of times a user, after submitting an

ambiguous/faceted query, issued a new query that is a specialization of the previous

one. In both cases we are able to provide diversified results for a large fraction of

the queries. Concerning AOL, we are able to diversify results for the 61% of the

cases, whereas for MSN this recall measure raises up to 65%.

7.6 A Search Architecture Enabling Efficient Diversification
of Search Results

In the previous sections we have sketched the OptSelect algorithm as an efficient

and effective solution for the diversification task. Here, we show how such a so-

lution needs to be adapted in order to be plugged in a modern Machine Learned

125

7. Efficient Diversification of Web Search Results

Ranking (MLR) system having a pipelined architecture. In modern WSE query

response time constraints are satisfied employing a two-phase scoring. The first

phase inaccurately selects a small subset of potentially relevant documents from

the entire collection (e.g. a BM25 variant). In the second phase, resulting candidate

documents are scored again by a complex and accurate MLR architecture. The fi-

nal rank is usually determined by additive ensembles (e.g. boosted decision trees

[179]), where many scorers are executed sequentially in a chain and the results of

the scorers are added to compute the final document score.

Let us assume that, given a query q, MLR algorithms are used to rank a set

D = {d1, . . . , dm} of documents according to their relevance to q. Then the k

documents with the highest score are returned. To this end, additive ensembles

are used to compute the final score s(di) of a document di as a sum over many,

simple scorers, i.e. s(di) =
∑n
j=1 fj(di), where fj is a scorer that belongs to a set

of n scorers executed in a sequence. Moreover, the set of scorers is expected to be

sorted by decreasing order of importance. This because, as argued in [47], if we

can estimate the likelihood that di will end up within the top-k documents, we

can early exit the s(di) computation at any position t < n, computing a partial

final score using only the first t scorers. For these reasons, it is important to define

a solution that is fully integrable with the existing systems. Another important

aspect to consider is the cost of each fj that must be sustainable w.r.t. the others

scorers. In particular, we assume that the cost c of computing fj(di) is constant

and the total cost of scoring all documents in D is, thus C(D) = c ·m ·n. For tasks

with tight constraints on execution time, this cost is not sustainable if both m and

n are high (e.g. m > 105 and n > 103 as shown in [47]).

To achieve the previously specified goal, WSE needs some additional modules

in order to enable the diversification stage, see Figure 7.2. Briefly, our idea is

the following. Given a query q, perform simultaneously both the selection of the

documents potentially relevant for q from the entire collection (module BM25) and

the retrieve of the specializations for q (module SS). Assuming that SS performs

faster than both DR and BM25, the module fDVR can be placed in any position of the

MLR pipeline, i.e. f1 →... fn. The target of fDVR is, then, to exploit Equation (7.1)

for properly increasing the rank of the incoming documents as the other pipelined

scorers do. Note that in this case, that is different from OptSelect running context,

the final extraction of top-k documents is left to the MLR pipeline that already

performs this operation automatically. In the following, we give more detail on our

approach.

For any given query q submitted to the engine, we dispatch q to the document

retriever DR that processes the query on the inverted index, and to the module SS

that generates the specializations Sq for q. SS processes q on a specific inverted

index structure derived from query logs: the same proposed in [42]. SS returns a

set of specializations Sq, a distribution of probability P (q′|q)∀q′ ∈ Sq, and a set

Rq′∀q′ ∈ Sq of sketches representing the most relevant documents for each special-

126

7.6 A Search Architecture Enabling Efficient Diversification of Search Results

BM25

SS

DR f1 fDVR fn

〈 q′, P (q′|q), Rq′ 〉∀q′∈Sq

D

query

q

q

Fig. 7.2. A sketch of the WSE architecture enabling diversification.

ization. Concerning the feasibility in space of the inverted index in SS, note that

each set Rq′ related to a specialization q′ ∈ Sq is very small compared to the set of

whole documents Rq to re-rank, i.e. |Rq′ | � |Rq|. Furthermore, using shingles [46],

only a sketch of a few hundred bytes, and not the whole documents, can be used to

represent a document without significant loss in the precision of our method5. Re-

suming, let ` be the average size in bytes of a shingle representing a document and

let h be the average space needed to store the set Sq of specializations for a query

q by using the related inverted index, we need at most (N · |Sq̂| · |Rq̂ ′ | · ` + N ·h)

bytes for storing N ambiguous query along with the data needed to assess the

similarity among results lists. For example, considering a number of ambiguous

queries of order of hundreds of thousands, tens of specializations per query, and

hundreds of documents per specialization, we need an inverted index for SS of

about 10 GB.

Now, let us focus on fDVR. As the other modules belonging to the MLR pipeline,

also fDVR receives a set of documents D as a stream from its preceding module,

scores the elements, then release the updated set. However, contrarily to other di-

versifying methods analyzed in [50], fDVR is able to compute on the fly the diversity-

score for each document d. In fact, exploiting the knowledge retrieved from the

query log, our approach does not require to know in advance the composition of D

to diversify the query result because SS provides the proper mix of different means

related to q. In particular, we firstly compute for each d ∈ D the related shingle.

As stated in [46], the related sketch can be efficiently computed (in time linear in

the size of the document d) and, given two sketches, the similarity 1 − δ(d, d′) of

the corresponding documents (i.e. d ∈ D and each document d′ returned by SS,

i.e. d′ ∈ Rq′ ∀q′ ∈ Sq) can be computed in time linear in the size of the sketches.

The resulting similarity thus concurs to compute U(d|Rq′), i.e. the variation of

final score of the document d.

5 note that shingles are already maintained by the WSE for near duplicate document
detection.

127

7. Efficient Diversification of Web Search Results

7.7 Summary

We studied the problem of diversifying search results by exploiting the knowledge

derived from query logs. We presented a general framework for query result diver-

sification comprising: i) an efficient and effective methodology, based on state-of-

the-art query recommendation algorithms, to detect ambiguous queries that would

benefit from diversification, and to devise all the possible common specializations

to be included in the diversified list of results along with their probability distri-

bution, ii) OptSelect: a new diversification algorithm which re-ranks the original

results list on the basis of the mined specializations, iii) a Web search architecture

based on additive Machine Learned Ranking (MLR) systems extended with a new

module computing the diversity score of each retrieved document.

A novel formulation of the problem has been proposed and motivated. It al-

lows the diversification problem to be modeled as a maximization problem. The

approach is evaluated by using the metrics and the datasets provided for the TREC

2009 Web Track’s Diversity Task. Our experimental results show that our approach

is both efficient and effective. In terms of efficiency, our approach performs two

orders of magnitude faster than its competitors and it remarkably outperforms its

competitors in all the tests.

In terms of effectiveness, our approach outperforms the Agrawal’s IASelect,

and it shows the best results in terms of IA-P [5]. It produces also results that are

comparable with the xQuAD framework in terms of α-NDCG [59].

Finally, we sketched a Web search architecture based on additive Machine

Learned Ranking (MLR) systems enabling query result diversification, and we

outline a first preliminary study on the feasibility of the technique.

128

8

Conclusions and Future Work

Queries and their clicked results implicitly reveal the opinion of users about their

searches. This information is provided implicitly by users and recorded in search

engine query logs. By mining query logs it is possible to derive a knowledge repre-

senting one of the most used ways of enhancing the users’ search experience.

In this thesis we introduced four new contributions in two important fields:

Web information retrieval and query log mining.

We studied the effect of time on recommendations generated using Query Flow

Graphs [35] (QFGs) (see Chapter 4). We showed how to extend QFG-based rec-

ommendation models to evolving data. We showed that the interests of search

engine users change over time and new topics may become popular, while other

interests that focused for some time the attention of the crowds can suddenly

loose importance. The knowledge extracted from query logs can thus suffer from

an aging effect, and the models used for recommendations rapidly become unable

to generate useful and interesting suggestions. We showed that the building of a

new fresh QFG from scratch is expensive. To overcome this problem we introduced

an incremental algorithm for updating an existing QFG. The solution proposed

allows the recommendation model to be kept always updated by incrementally

adding fresh knowledge and deleting the aged one.

In order to validate our claims and assess our methodology, we built different

QFGs from the query log of a real-world search engine, and we analyzed the

quality of the recommendation models obtained from these graphs to show that

they inexorably age. Then, we proposed a general methodology for dealing with

aging QFG models that allows the recommendation model to be kept up-to-dated

in a remarkably lower time than that required for building a new model from

scratch. As a side result we proposed a parallel/distributed solution allowing to

make QFG creation/update operations scalable.

In Chapter 4 we proved that the knowledge extracted from historical usage data

can suffer an aging effect. In Chapter 5 we thus studied the effects of incremental

model updates on the effectiveness of two query suggestion algorithms. We intro-

8. Conclusions and Future Work

duced a new class of query recommender algorithms that update incrementally the

model on which recommendations are drawn. Starting from two state-of-the-art

algorithms, we designed two new query recommender systems that continuously

update their models as queries are issued. The two incremental algorithms differ

from their static counterparts by the way in which they manage and use data to

build the model.

In addition, we proposed an automatic evaluation mechanism based on four

new metrics to assess the effectiveness of query recommendation algorithms. The

experimental evaluation conducted by using a large real-world query log shows that

the incremental update strategy for the recommendation model yields better re-

sults for both coverage (more than 20% queries covered by both IAssociationRules,

and ICoverGraph) and effectiveness due to the “fresh” data that are added to the

recommendation models. Furthermore, this improved effectiveness is accomplished

without compromising the efficiency of the query suggestion process.

In Chapter 6 we proposed a very efficient solution for generating effective sug-

gestions to Web search engine users based on the model of Search Shortcut [22].

Our original formulation of the problem allows the query suggestion generation

phase to be re-conducted to the processing of a full-text query over an inverted

index. The current query issued by the user is matched over the inverted index,

and final queries of the most similar satisfactory sessions are efficiently selected

to be proposed to the user as query shortcuts. The way a satisfactory session is

represented as a virtual document, and the IR-based technique exploited, allows

our technique to generate in many cases effective suggestions even to rare or not

previously seen queries.

By using the automatic evaluation approach based on the metric defined in

Equation (6.1), SS outperforms QFG in quality of a 0.17, while the improvement

over CG was even greater (0.22). In 36 evaluated sessions out of 100, SS generates

useful suggestions when its competitors CG and QFG fails to produce even a single

useful recommendation.

An additional contribution of the chapter regards the evaluation methodology

used, based on a publicly-available test collection provided by a highly reputed

organization such as the NIST. On the basis of the evaluation conducted by means

of the user-study, SS remarkably outperforms both QFG and CG in almost all

the tests conducted. In particular, suggestions generated by SS covers the same

number or more TREC subtopics than its two counterparts in 44 cases out of

50. In 36 cases the number of subtopics covered by SS suggestions was strictly

greater. Only in 5 cases QFG outperforms SS, while this never happens with

CG. Also when considering effectiveness, i.e. the number of relevant suggestions

among the top-10 returned, SS results the clear winner with an average number of

relevant suggestions equal to 8.3, versus 4.3, and 4.2 for QFG, and CG, respectively.

Moreover, differently from competitors SS results to be very robust w.r.t. data

130

sparsity, and can produce relevant suggestions also to queries which are rare or

not present in the query log used for training.

As future work we intend to evaluate the use the whole head of the user session

for producing query recommendations. Furthermore, we want to study if the shar-

ing of the same final queries induces a sort of “clustering” of the queries composing

the satisfactory user sessions. By studying such relation which is at the basis of

our query shortcut implementation, we could probably find ways to improve our

methodology. Finally, it would be interesting to investigate how IR-like diversifi-

cation algorithms (e.g., [5]) could be integrated in our query suggestion technique

in order to obtain diversified query suggestions [102, 38].

Finally, in Chapter 7 we studied the problem of diversifying search results by ex-

ploiting the knowledge derived from query logs. We presented a general framework

for query result diversification comprising: i) an efficient and effective methodology,

based on state-of-the-art query recommendation algorithms, to detect ambiguous

queries that would benefit from diversification, and to devise all the possible com-

mon specializations to be included in the diversified list of results along with their

probability distribution, ii) OptSelect: a new diversification algorithm which re-

ranks the original results list on the basis of the mined specializations.

A novel formulation of the problem has been proposed and motivated. It al-

lows the diversification problem to be modeled as a maximization problem. The

approach is evaluated by using the metrics and the datasets provided for the TREC

2009 Web Track’s Diversity Task. Our experimental results show that our approach

is both efficient and effective. In terms of efficiency, our approach performs two

orders of magnitude faster than its competitors and it remarkably outperforms its

competitors in all the tests.

In terms of effectiveness, our approach outperforms the Agrawal’s IASelect,

and it shows the best results in terms of IA-P [5]. It produces also results that are

comparable with the xQuAD framework in terms of α-NDCG [59].

Finally, we sketched a Web search architecture based on additive Machine

Learned Ranking (MLR) systems enabling query result diversification, and we

outline a first preliminary study on the feasibility of the technique.

Some possible research directions can be drawn on this topic. Firstly, we will

conduct a deeper analysis of the feasibility of our proposed Web search architec-

ture based on additive Machine Learned Ranking (MLR) systems. Secondly, we

will study how to exploit users’ search history for personalizing their results di-

versification. Finally, we are planning to use click-through data to improve the

effectiveness of our method.

131

References

1. E. Adar. User 4xxxxx9: Anonymizing query logs. In Query Logs Workshop, WWW,
volume 7. Citeseer, 2007.

2. Eytan Adar, Daniel Weld, Brian Bershad, and Steven Gribble. Why we search:
Visualizing and predicting user behavior. In In Proc. WWW’07, pages 161–170,
Banff, Canada, 2007.

3. Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions.
IEEE TKDE, 17(6):734–749, 2005.

4. R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of
items in large databases. ACM SIGMOD Record, 22(2):207–216, 1993.

5. Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. Diversi-
fying search results. In Proc. WSDM’09. ACM, 2009.

6. Gianni Amati, Edgardo Ambrosi, Marco Bianchi, Carlo Gaibisso, and Giorgio Gam-
bosi. FUB, IASI-CNR and university of Tor Vergata at trec 2007 blog track. In
Proc. TREC, 2007.

7. Aris Anagnostopoulos, Andrei Z. Broder, and David Carmel. Sampling search-
engine results. In Proc. WWW’05. ACM, 2005.

8. V. Authors. About web analytics association. http://www.

webanalyticsassociation.org/?page=aboutus, retrieved on December 2010.
9. R. Baeza-Yates. Applications of web query mining. Advances in Information Re-

trieval, pages 7–22, 2005.
10. R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri. Chal-

lenges in distributed information retrieval. In International Conference on Data
Engineering (ICDE), 2007.

11. R. Baeza-Yates, C. Hurtado, and M. Mendoza. Ranking boosting based in query
clustering. In Atlantic Web Intelligence Conference, Cancun, Mexico, 2004.

12. R. Baeza-Yates, C. Hurtado, and M. Mendoza. Improving search engines by query
clustering. Journal of the American Society for Information Science and Technology,
58(12):1793–1804, 2007.

13. Ricardo Baeza-Yates. Graphs from search engine queries. In Proc. SOFSEM’07,
pages 1–8, Harrachov, CZ, 2007.

14. Ricardo Baeza-Yates. Web mining or the wisdom of the crowds. In Proceeding of
the 2008 conference on Artificial Intelligence Research and Development: Proceed-
ings of the 11th International Conference of the Catalan Association for Artificial
Intelligence, pages 3–3, Amsterdam, The Netherlands, The Netherlands, 2008. IOS
Press.

http://www.webanalyticsassociation.org/?page=aboutus
http://www.webanalyticsassociation.org/?page=aboutus

References

15. Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdock, Vassilis
Plachouras, and Fabrizio Silvestri. The impact of caching on search engines. In
Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’07, pages 183–190, New York,
NY, USA, 2007. ACM.

16. Ricardo Baeza-Yates and Alessandro Tiberi. Extracting semantic relations from
query logs. In Proc. KDD’07. ACM, 2007.

17. Ricardo Baeza-Yates and Alessandro Tiberi. Extracting semantic relations from
query logs. In KDD ’07, pages 76–85, New York, NY, USA, 2007. ACM.

18. Ricardo A. Baeza-yates, Carlos A. Hurtado, and Marcelo Mendoza. Query recom-
mendation using query logs in search engines. In Proc. EDBT’04, pages 588–596,
2004.

19. Evelyn Balfe and Barry Smyth. Improving web search through collaborative query
recommendation. In Proc. ECAI’04. IOS Press, 2004.

20. Evelyn Balfe and Barry Smyth. A comparative analysis of query similarity metrics
for community-based web search. In Héctor Muñoz-Avila and Francesco Ricci,
editors, ICCBR, volume 3620 of Lecture Notes in Computer Science, pages 63–77.
Springer, 2005.

21. J. Bar-Ilan. Access to query logs-an academic researchers point of view. In Query
Log Analysis: Social And Technological Challenges Workshop at WWW, 2007.

22. Ranieri Baraglia, Fidel Cacheda, Victor Carneiro, Diego Fernandez, Vreixo For-
moso, Raffaele Perego, and Fabrizio Silvestri. Search shortcuts: a new approach
to the recommendation of queries. In Proceedings of the third ACM conference on
Recommender systems, RecSys ’09, pages 77–84, New York, NY, USA, 2009. ACM.

23. Ranieri Baraglia, Carlos Castillo, Debora Donato, Franco Maria Nardini, Raffaele
Perego, and Fabrizio Silvestri. Aging effects on query flow graphs for query sugges-
tion. In Proc. CIKM’09. ACM, 2009.

24. Ranieri Baraglia, Carlos Castillo, Debora Donato, Franco Maria Nardini, Raffaele
Perego, and Fabrizio Silvestri. The effects of time on query flow grraph-based models
for query suggestion. In Proc. RIAO’10., 2010.

25. L.A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The Google cluster
architecture. IEEE micro, 23(2):22–28, 2003.

26. Doug Beeferman and Adam Berger. Agglomerative clustering of a search engine
query log. In Proc. KDD’00. ACM, 2000.

27. Steven M. Beitzel, Eric C. Jensen, Abdur Chowdhury, Ophir Frieder, and David
Grossman. Temporal analysis of a very large topically categorized web query log.
J. Am. Soc. Inf. Sci. Technol., 58:166–178, January 2007.

28. Steven M. Beitzel, Eric C. Jensen, Abdur Chowdhury, David Grossman, and Ophir
Frieder. Hourly analysis of a very large topically categorized web query log. In In
Proc. SIGIR’04, pages 321–328. ACM Press, 2004.

29. Steven M. Beitzel, Eric C. Jensen, Abdur Chowdhury, David Grossman, Ophir
Frieder, and Nazli Goharian. Fusion of effective retrieval strategies in the same
information retrieval system. J. Am. Soc. Inf. Sci. Technol., 55:859–868, August
2004.

30. Steven M. Beitzel, Eric C. Jensen, Ophir Frieder, David D. Lewis, Abdur Chowd-
hury, and Aleksander Kolcz. Improving automatic query classification via semi-
supervised learning. In Proceedings of the Fifth IEEE International Conference on
Data Mining, ICDM ’05, pages 42–49, Washington, DC, USA, 2005. IEEE Com-
puter Society.

31. Steven M. Beitzel, Eric C. Jensen, David D. Lewis, Abdur Chowdhury, and Ophir
Frieder. Automatic classification of web queries using very large unlabeled query
logs. ACM Trans. Inf. Syst., 25, April 2007.

134

References

32. Bodo Billerbeck, Falk Scholer, Hugh E. Williams, and Justin Zobel. Query expan-
sion using associated queries. In Proceedings of the twelfth international conference
on Information and knowledge management, CIKM ’03, pages 2–9, New York, NY,
USA, 2003. ACM.

33. P. Boldi, F. Bonchi, C. Castillo, and S. Vigna. Query reformulation mining: models,
patterns, and applications. Information Retrieval, pages 1–33, 2010.

34. P. Boldi and S. Vigna. The webgraph framework i: compression techniques. In Proc.
WWW’04. ACM Press, 2004.

35. Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, Aristides Gionis,
and Sebastiano Vigna. The query-flow graph: model and applications. In Proc.
CIKM’08. ACM, 2008.

36. Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, and Sebastiano
Vigna. Query suggestions using query-flow graphs. In Proc. WSCD’09. ACM,
2009.

37. Paolo Boldi, Francesco Bonchi, Carlos Castillo, and Sebastiano Vigna. From ’dango’
to ’japanese cakes’: Query reformulation models and patterns. In Proc. WI’09.
IEEE, September 2009.

38. Ilaria Bordino, Carlos Castillo, Debora Donato, and Aristides Gionis. Query simi-
larity by projecting the query-flow graph. In Proc. SIGIR’10. ACM, 2010.

39. Ilaria Bordino and Daniele Laguardia. Algebra for the joint mining of query log
graphs. http://www.dis.uniroma1.it/∼bordino/qlogs algebra/, 2008.

40. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine*
1. Computer networks and ISDN systems, 30(1-7):107–117, 1998.

41. Daniele Broccolo, Ophir Frieder, Franco Maria Nardini, Raffaele Perego, and Fab-
rizio Silvestri. Incremental algorithms for effective and efficient query recommen-
dation. In Proc. SPIRE’10, volume 6393 of LNCS, pages 13–24. Springer, 2010.

42. Daniele Broccolo, Lorenzo Marcon, Franco Maria Nardini, Raffaele Perego, and
Fabrizio Silvestri. An efficient algorithm to generate search shortcuts. Technical
Report N. /cnr.isti/2010-TR-017, CNR ISTI Pisa Italy, 2010.

43. Andrei Broder. A taxonomy of web search. SIGIR Forum, 36:3–10, September
2002.

44. Andrei Broder, Peter Ciccolo, Evgeniy Gabrilovich, Vanja Josifovski, Donald Met-
zler, Lance Riedel, and Jeffrey Yuan. Online expansion of rare queries for sponsored
search. In Proc. WWW’09. ACM, 2009.

45. Andrei Z. Broder, Marcus Fontoura, Evgeniy Gabrilovich, Amruta Joshi, Vanja
Josifovski, and Tong Zhang. Robust classification of rare queries using web knowl-
edge. In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’07, pages 231–238, New
York, NY, USA, 2007. ACM.

46. Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syn-
tactic clustering of the web. Comput. Netw. ISDN Syst., 29:1157–1166, September
1997.

47. B.B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. De-
genhardt. Early exit optimizations for additive machine learned ranking systems.
In Proceedings of the third ACM international conference on Web search and data
mining, pages 411–420. ACM, 2010.

48. John Canny. Collaborative filtering with privacy via factor analysis. In Proceedings
of the 25th annual international ACM SIGIR 2002 Conference, pages 238–245, New
York, NY, USA, 2002. ACM.

49. Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and Hang
Li. Context-aware query suggestion by mining click-through and session data. In
KDD ’08: Proceeding of the 14th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 875–883, New York, NY, USA, 2008. ACM.

135

References

50. Gabriele Capannini, Franco Maria Nardini, Raffaele Perego, and Fabrizio Silvestri.
Efficient diversification of search results using query logs. In Proc. WWW’11, New
York, NY, USA, 2011. ACM.

51. Gabriele Capannini, Franco Maria Nardini, Raffaele Perego, and Fabrizio Silvestri.
Efficient diversification of web search results. Proceedings of the VLDB, Volume 4,
Issue 7, April 2011.

52. Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based reranking
for reordering documents and producing summaries. In Proc. SIGIR’98. ACM,
1998.

53. Claudio Carpineto, Stanislaw Osiński, Giovanni Romano, and Dawid Weiss. A
survey of web clustering engines. ACM Comput. Surv., 41(3):1–38, 2009.

54. Aysegul Cayci, Selcuk Sumengen, Cagatay Turkay, Selim Balcisoy, and Yucel Say-
gin. Temporal dynamics of user interests in web search queries. ICAINAW, 0:762–
767, 2009.

55. D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 554–560. ACM, 2006.

56. Steve Chien and Nicole Immorlica. Semantic similarity between search engine
queries using temporal correlation. In In Proc. WWW’05, pages 2–11, New York,
NY, USA, 2005. ACM Press.

57. Paul Alexandru Chirita, Claudiu S. Firan, and Wolfgang Nejdl. Personalized query
expansion for the web. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’07, pages
7–14, New York, NY, USA, 2007. ACM.

58. C. Clarke, N. Craswell, and I. Soboroff. Preliminary report on the TREC 2009 Web
track. In Proc. TREC’09. ACM, 2009.

59. Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova, Azin
Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and diversity in information
retrieval evaluation. In Proc. SIGIR’08. ACM, 2008.

60. Paul Clough, Mark Sanderson, Murad Abouammoh, Sergio Navarro, and Monica
Paramita. Multiple approaches to analysing query diversity. In Proc. SIGIR’09.
ACM, 2009.

61. Kevyn Collins-Thompson and Jamie Callan. Query expansion using random walk
models. In Proceedings of the 14th ACM international conference on Information
and knowledge management, CIKM ’05, pages 704–711, New York, NY, USA, 2005.
ACM.

62. A. Cooper. A survey of query log privacy-enhancing techniques from a policy per-
spective. ACM Transactions on the Web (TWEB), 2(4):1–27, 2008.

63. S. Cucerzan and R.W. White. Query suggestion based on user landing pages. In
Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 875–876. ACM, 2007.

64. H. Cui, J.R. Wen, J.Y. Nie, and W.Y. Ma. Probabilistic query expansion using
query logs. In Proceedings of the 11th international conference on World Wide
Web, pages 325–332. ACM, 2002.

65. Doug Downey, Susan Dumais, and Eric Horvitz. Heads and tails: studies of web
search with common and rare queries. In Proc. SIGIR’07. ACM, 2007.

66. Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri, and Salvatore Orlando. Boosting
the performance of web search engines: Caching and prefetching query results by
exploiting historical usage data. ACM Trans. Inf. Syst., 24:51–78, January 2006.

67. C.H. Fenichel. Online searching: Measures that discriminate among users with
different types of experiences. Journal of the American Society for Information
Science, 32(1):23–32, 1981.

136

References

68. L. Fitzpatrick and M. Dent. Automatic feedback using past queries: social search-
ing? In Proceedings of the 20th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 306–313. ACM, 1997.

69. Bruno M. Fonseca, Paulo Golgher, Bruno Pôssas, Berthier Ribeiro-Neto, and Nivio
Ziviani. Concept-based interactive query expansion. In Proc. CIKM’05. ACM, 2005.

70. Bruno M. Fonseca, Paulo B. Golgher, Edleno S. de Moura, and Nivio Ziviani. Using
association rules to discover search engines related queries. In LA-WEB’03. IEEE
CS, 2003.

71. Ophir Frieder, David A. Grossman, Abdur Chowdhury, and Gideon Frieder. Effi-
ciency considerations for scalable information retrieval servers. J. Digit. Inf., 1(5),
2000.

72. G.P.C. Fung, J.X. Yu, P.S. Yu, and H. Lu. Parameter free bursty events detection
in text streams. In Proceedings of the 31st international conference on Very large
data bases, pages 181–192. VLDB Endowment, 2005.

73. Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diver-
sification. In Proc. WWW’09. ACM, 2009.

74. Luis Gravano, Vasileios Hatzivassiloglou, and Richard Lichtenstein. Categorizing
web queries according to geographical locality. In Proceedings of the twelfth inter-
national conference on Information and knowledge management, CIKM ’03, pages
325–333, New York, NY, USA, 2003. ACM.

75. Taher H. Haveliwala. Topic-sensitive pagerank. In Proc. WWW’02. ACM, 2002.
76. Daqing He and Ayse Göker. Detecting session boundaries from web user logs. In

BCS-IRSG, pages 57–66, 2000.
77. Daqing He, Ayse Göker, and David J. Harper. Combining evidence for automatic

web session identification. Inf. Process. Manage., 38:727–742, September 2002.
78. Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Trans.

Inf. Syst., 22:89–115, January 2004.
79. Lngrid Hsieh-yee. Effects of search experience and subject knowledge on the search

tactics of novice and experienced searchers. Journal of the American Society for
Information Science, 44:161–174, 1993.

80. Bernard J. Jansen. Understanding User-Web Interactions via Web Analytics. Syn-
thesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Clay-
pool Publishers, 2009.

81. Bernard J. Jansen and Marc Resnick. An examination of searcher’s perceptions of
nonsponsored and sponsored links during ecommerce web searching. J. Am. Soc.
Inf. Sci. Technol., 57:1949–1961, December 2006.

82. Bernard J. Jansen and Amanda Spink. An analysis of web searching by european
alltheweb.com users. Inf. Process. Manage., 41:361–381, March 2005.

83. Bernard J. Jansen and Amanda Spink. How are we searching the world wide web?:
a comparison of nine search engine transaction logs. Inf. Process. Manage., 42:248–
263, January 2006.

84. Bernard J. Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic. Real life
information retrieval: a study of user queries on the web. SIGIR Forum, 32:5–17,
April 1998.

85. Bernard J. Jansen, Amanda Spink, Chris Blakely, and Sherry Koshman. Defining
a session on web search engines: Research articles. J. Am. Soc. Inf. Sci. Technol.,
58(6):862–871, 2007.

86. Bernard J. Jansen, Amanda Spink, and Sherry Koshman. Web searcher interaction
with the dogpile.com metasearch engine. J. Am. Soc. Inf. Sci. Technol., 58:744–755,
March 2007.

137

References

87. Bernard J. Jansen, Amanda Spink, and Bhuva Narayan. Query modifications pat-
terns during web searching. In Proceedings of the International Conference on Infor-
mation Technology, ITNG ’07, pages 439–444, Washington, DC, USA, 2007. IEEE
Computer Society.

88. Bernard J. Jansen, Mimi Zhang, and Amanda Spink. Patterns and transitions of
query reformulation during web searching. IJWIS, 3(4):328–340, 2007.

89. Anni Järvelin, Antti Järvelin, and Kalervo Järvelin. s-grams: Defining generalized
n-grams for information retrieval. IPM, 43(4):1005 – 1019, 2007.

90. Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir
techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

91. R. Jones, R. Kumar, B. Pang, and A. Tomkins. I know what you did last summer:
query logs and user privacy. In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, pages 909–914. ACM, 2007.

92. Rosie Jones and Kristina L. Klinkner. Beyond the session timeout: automatic hier-
archical segmentation of search topics in query logs. In CIKM ’08, pages 699–708.
ACM, 2008.

93. Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Generating query
substitutions. In Proc. WWW’06. ACM, 2006.

94. J.M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604–632, 1999.

95. Jon Kleinberg. Bursty and hierarchical structure in streams. In Proc. KDD’02.
ACM, 2002.

96. Sherry Koshman, Amanda Spink, and Bernard J. Jansen. Web searching on the
vivisimo search engine. J. Am. Soc. Inf. Sci. Technol., 57:1875–1887, December
2006.

97. M. Koster. ALIWEB-Archie-like indexing in the Web. Computer Networks and
ISDN Systems, 27(2):175–182, 1994.

98. R. Kumar, J. Novak, B. Pang, and A. Tomkins. On anonymizing query logs via
token-based hashing. In Proceedings of the 16th international conference on World
Wide Web, pages 629–638. ACM, 2007.

99. Tessa Lau and Eric Horvitz. Patterns of search: analyzing and modeling web query
refinement. In Proceedings of the seventh international conference on User modeling,
pages 119–128, Secaucus, NJ, USA, 1999. Springer-Verlag New York, Inc.

100. Ronny Lempel and Shlomo Moran. Predictive caching and prefetching of query
results in search engines. In Proceedings of the 12th international conference on
World Wide Web, WWW ’03, pages 19–28, New York, NY, USA, 2003. ACM.

101. Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and
Gabriele Tolomei. Identifying task-based sessions in search engine query logs. In
Proc. WSDM’11, pages 277–286, New York, NY, USA, 2011. ACM.

102. Hao Ma, Michael R. Lyu, and Irwin King. Diversifying query suggestion results. In
Proc. AAAI’10. AAAI, 2010.

103. C.D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval.
Cambridge University Press New York, NY, USA, 2008.

104. C.D. Manning, H. Sch
”utze, and MITCogNet. Foundations of statistical natural language processing, vol-
ume 59. MIT Press, 1999.

105. Evangelos P. Markatos. On caching search engine query results. In Computer
Communications, page 2001, 2000.

106. Mazlita Mat-Hassan and Mark Levene. Associating search and navigation behavior
through log analysis: Research articles. J. Am. Soc. Inf. Sci. Technol., 56:913–934,
July 2005.

138

References

107. O.A. McBryan. GENVL and WWWW: Tools for Taming the Web. In Proceedings
of the First International World Wide Web Conference, volume 341. Citeseer, 1994.

108. Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query suggestion using hitting
time. In Proc. CIKM’08. ACM, 2008.

109. S. Muthukrishnan. Data streams: algorithms and applications. Found. Trends
Theor. Comput. Sci., 1(2):117–236, 2005.

110. G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for
maximizing submodular set functions. Mathematical Programming, 14:265–294,
1978.

111. H. Cenk Ozmutlu and Fatih Çavdur. Application of automatic topic identification
on excite web search engine data logs. IPM, 41(5):1243–1262, 2005.

112. H. Cenk Ozmutlu, Amanda Spink, and Seda Ozmutlu. Analysis of large data logs:
an application of poisson sampling on excite web queries. Inf. Process. Manage.,
38:473–490, July 2002.

113. S. Ozmutlu, H.C. Ozmutlu, and A. Spink. Multitasking Web searching and implica-
tions for design. Proceedings of the American Society for Information Science and
Technology, 40(1):416–421, 2003.

114. Seda Ozmutlu, Amanda Spink, and Huseyin C. Ozmutlu. A day in the life of web
searching: an exploratory study. Inf. Process. Manage., 40:319–345, March 2004.

115. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

116. Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In Proceed-
ings of the 1st international conference on Scalable information systems, InfoScale
’06, New York, NY, USA, 2006. ACM.

117. A. Paterek. Improving regularized singular value decomposition for collaborative
filtering. In Proceedings of KDD Cup and Workshop, volume 2007. Citeseer, 2007.

118. Benjamin Piwowarski and Hugo Zaragoza. Predictive user click models based on
click-through history. In Proc. CIKM’07. ACM, 2007.

119. Barbara Poblete, Myra Spiliopoulou, and Ricardo A. Baeza-Yates. Privacy-
preserving query log mining for business confidentiality protection. TWEB, 4(3),
2010.

120. F. Radlinski, M. Szummer, and N. Craswell. Inferring query intent from reformula-
tions and clicks. In Proceedings of the 19th international conference on World wide
web, pages 1171–1172. ACM, 2010.

121. Filip Radlinski and Susan Dumais. Improving personalized web search using result
diversification. In Proc. SIGIR’06. ACM, 2006.

122. Filip Radlinski and Thorsten Joachims. Query chains: learning to rank from implicit
feedback. In Proc. KDD’05. ACM Press, 2005.

123. Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rank-
ings with multi-armed bandits. In Proc. ICML’08. ACM, 2008.

124. Davood Rafiei, Krishna Bharat, and Anand Shukla. Diversifying web search results.
In Proc. WWW’10. ACM Press, 2010.

125. Jasson D. M. Rennie and Nathan Srebro. Fast maximum margin matrix factoriza-
tion for collaborative prediction. In Proceedings of the 22nd ICML 2005 Conference,
pages 713–719, New York, NY, USA, 2005. ACM.

126. Matthew Richardson. Learning about the world through long-term query logs. ACM
TWEB, 2(4):1–27, 2008.

127. S.E. Robertson and S. Walker. Okapi/keenbow at trec-8. NIST SPECIAL PUBLI-
CATION SP, pages 151–162, 2000.

128. Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework:
Bm25 and beyond. Found. Trends Inf. Retr., 3(4):333–389, 2009.

139

References

129. E. Sadikov, J. Madhavan, L. Wang, and A. Halevy. Clustering query refinements
by user intent. In Proceedings of the 19th international conference on World wide
web, pages 841–850. ACM, 2010.

130. M. Sanderson and S. Dumais. Examining repetition in user search behavior. Ad-
vances in Information Retrieval, pages 597–604, 2007.

131. Rodrygo Santos, Craig Macdonald, and Iadh Ounis. Exploiting query reformulations
for web search result diversification. In Proc. WWW’10. ACM Press, 2010.

132. Rodrygo Santos, Jie Peng, Craig Macdonald, and Iadh Ounis. Explicit search result
diversification through sub-queries. In Proc. ECIR’10. ACM Press, 2010.

133. Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. Selectively diversifying
web search results. In Proc. CIKM’10, New York, USA, 2010. ACM.

134. Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based col-
laborative filtering recommendation algorithms. In Proc. WWW’01. ACM, 2001.

135. A. Scime. Web Mining: Applications and Techniques. IGI Publishing Hershey, PA,
USA, 2004.

136. Upendra Shardanand and Pattie Maes. Social information filtering: algorithms for
automating “word of mouth”. In Proc. SIGCHI’95. ACM, 1995.

137. Dou Shen, Rong Pan, Jian-Tao Sun, Jeffrey Junfeng Pan, Kangheng Wu, Jie Yin,
and Qiang Yang. Q2C@UST: our winning solution to query classification in kddcup
2005. SIGKDD Explor. Newsl., 7:100–110, December 2005.

138. Xuehua Shen, Bin Tan, and Chengxiang Zhai. Implicit user modeling for personal-
ized search. In CIKM ’05, pages 824–831, New York, NY, USA, 2005. ACM Press.

139. S. Siegfried, M.J. Bates, and D.N. Wilde. A profile of end-user searching behavior
by humanities scholars: The Getty Online Searching Project Report No. 2. Journal
of the American Society for Information Science, 44(5):273–291, 1993.

140. Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. Analysis
of a very large web search engine query log. SIGIR Forum, 33:6–12, September
1999.

141. Fabrizio Silvestri. Mining query logs: Turning search usage data into knowledge.
Foundations and Trends in Information Retrieval, 1(1-2):1–174, 2010.

142. Fabrizio Silvestri. Mining query logs: Turning search usage data into knowledge.
Foundations and Trends in Information Retrieval, 1(1-2):1–174, 2010.

143. Barry Smyth. A community-based approach to personalizing web search. Computer,
40(8):42–50, 2007.

144. Barry Smyth, Evelyn Balfe, Oisin Boydell, Keith Bradley, Peter Briggs, Maurice
Coyle, and Jill Freyne. A live-user evaluation of collaborative web search. In IJCAI,
2005.

145. Yang Song and Li-wei He. Optimal rare query suggestion with implicit user feed-
back. In Proc. WWW’10. ACM, 2010.

146. A. Spink and T. Saracevic. Interaction in information retrieval: selection and effec-
tiveness of search terms. Journal of the American Society for Information Science,
48(8):741–761, 1997.

147. Amanda Spink, Bernard J. Jansen, Dietmar Wolfram, and Tefko Saracevic. From
e-sex to e-commerce: Web search changes. Computer, 35:107–109, March 2002.

148. Amanda Spink, H. Cenk Ozmutlu, and Daniel P. Lorence. Web searching for sexual
information: an exploratory study. Inf. Process. Manage., 40:113–123, January 2004.

149. Amanda Spink, Minsoo Park, Bernard J. Jansen, and Jan Pedersen. Multitasking
during web search sessions. IPM, 42(1):264–275, 2006.

150. Amanda Spink, Dietmar Wolfram, Major B. J. Jansen, and Tefko Saracevic. Search-
ing the web: the public and their queries. J. Am. Soc. Inf. Sci. Technol., 52:226–234,
February 2001.

140

References

151. Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan. Web
usage mining: discovery and applications of usage patterns from web data. SIGKDD
Explor. Newsl., 1:12–23, January 2000.

152. Yizhou Sun, Kunqing Xie, Ning Liu, Shuicheng Yan, Benyu Zhang, and Zheng
Chen. Causal relation of queries from temporal logs. In In Proc. WWW’07, pages
1141–1142, New York, NY, USA, 2007. ACM Press.

153. L. Sweeney. k-ANONYMITY: a model for protecting privacy. World, 10(5):557–570,
2002.

154. Jaime Teevan, Eytan Adar, Rosie Jones, and Michael Potts. History repeats itself:
repeat queries in yahoo’s logs. In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, SIGIR ’06,
pages 703–704, New York, NY, USA, 2006. ACM.

155. Jaime Teevan, Eytan Adar, Rosie Jones, and Michael A. S. Potts. Information
re-retrieval: repeat queries in yahoo’s logs. In Proceedings of the 30th annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’07, pages 151–158, New York, NY, USA, 2007. ACM.

156. Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart
and its applications. In Proc. ICDM’06. IEEE CS, 2006.

157. L. Ungar and D. Foster. Clustering methods for collaborative filtering. In Pro-
ceedings of the Workshop on Recommendation Systems. AAAI Press, Menlo Park
California, 1998.

158. Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram, Prashant Bhat, and Si-
hem Amer Yahia. Efficient computation of diverse query results. In Proc. ICDE’08.
IEEE CS, 2008.

159. V.S. Verykios, E. Bertino, I.N. Fovino, L.P. Provenza, Y. Saygin, and Y. Theodor-
idis. State-of-the-art in privacy preserving data mining. ACM Sigmod Record,
33(1):50–57, 2004.

160. M. Vlachos, P.S. Yu, V. Castelli, and C. Meek. Structural periodic measures for
time-series data. Data Mining and Knowledge Discovery, 12(1):1–28, 2006.

161. Michail Vlachos, Suleyman S. Kozat, and Philip S. Yu. Optimal distance bounds
for fast search on compressed time-series query logs. ACM Trans. Web, 4:6:1–6:28,
April 2010.

162. Michail Vlachos, Christopher Meek, Zografoula Vagena, and Dimitrios Gunopulos.
Identifying similarities, periodicities and bursts for online search queries. In In Proc.
SIGMOD’04, pages 131–142, New York, NY, USA, 2004. ACM.

163. David Vogel, Steffen Bickel, Peter Haider, Rolf Schimpfky, Peter Siemen, Steve
Bridges, and Tobias Scheffer. Classifying search engine queries using the web as
background knowledge. SIGKDD Explor. Newsl., 7:117–122, December 2005.

164. Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. Unifying user-based
and item-based collaborative filtering approaches by similarity fusion. In Proc.
SIGIR’06. ACM, 2006.

165. Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. Clustering user queries of a
search engine. In Proc. WWW’01. ACM, 2001.

166. Ryen W. White, Mikhail Bilenko, and Silviu Cucerzan. Studying the use of popular
destinations to enhance web search interaction. In In Proc. SIGIR’07, pages 159–
166, New York, NY, USA, 2007. ACM.

167. L. Xiong and E. Agichtein. Towards privacy-preserving query log publishing. In
Query Log Analysis: Social And Technological Challenges Workshop in WWW, 2007.

168. J. Xu and W.B. Croft. Improving the effectiveness of information retrieval with local
context analysis. ACM Transactions on Information Systems (TOIS), 18(1):79–112,
2000.

141

References

169. Jack L. Xu and Amanda Spink. Web research: The excite study. In Gordon Davies
and Charles B. Owen, editors, WebNet, pages 581–585. AACE, 2000.

170. O. Za
”ıane and A. Strilets. Finding similar queries to satisfy searches based on query
traces. Advances in Object-Oriented Information Systems, pages 349–359, 2002.

171. Oren Zamir and Oren Etzioni. Grouper: a dynamic clustering interface to web
search results. In Proc. WWW’99. Elsevier North-Holland, Inc., 1999.

172. Cheng Xiang Zhai, William W. Cohen, and John Lafferty. Beyond independent
relevance: methods and evaluation metrics for subtopic retrieval. In Proc. SIGIR’03.
ACM, 2003.

173. ChengXiang Zhai. Risk minimization and language modeling in Information Re-
trieval. PhD thesis, CMU, 2002.

174. ChengXiang Zhai and John Lafferty. A risk minimization framework for information
retrieval. IP&M, 42(1):31–55, 2006.

175. Ying Zhang, Bernard J. Jansen, and Amanda Spink. Time series analysis of a web
search engine transaction log. Inf. Process. Manage., 45:230–245, March 2009.

176. Yuye Zhang and Alistair Moffat. Some observations on user search behavior. In
Proceedings of the 11th Australasian Document Computing Symposium. Brisbane,
Australia, 2006.

177. Z. Zhang and O. Nasraoui. Mining search engine query logs for query recommen-
dation. In Proceedings of the 15th international conference on World Wide Web,
pages 1039–1040. ACM, 2006.

178. Q. Zhao, S.C.H. Hoi, T.Y. Liu, S.S. Bhowmick, M.R. Lyu, and W.Y. Ma. Time-
dependent semantic similarity measure of queries using historical click-through data.
In Proceedings of the 15th international conference on World Wide Web, pages 543–
552. ACM, 2006.

179. Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun. A general boosting
method and its application to learning ranking functions for web search. Advances
in Neural Information Processing Systems, 19, 2007.

180. Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Im-
proving recommendation lists through topic diversification. In Proc. WWW’05.
ACM, 2005.

142

	Introduction
	Contributions of the Thesis
	Outline

	Web Search Engines
	Architecture of a Web Search Engine

	Query Log Mining
	A Characterization of Web Search Engine Queries
	Time Analysis of the Query Log
	Search Sessions
	Time-series Analysis of the Query Log
	Some Applications of Query Log Mining
	Query Expansion
	Query Recommendation

	Privacy Issues in Query Logs

	The Effects of Time on Query Flow Graph-based Models for Query Suggestion
	Introduction
	Related Work
	The Query Flow Graph
	Experimental Framework
	Evaluating the Aging Effect
	Combating Aging in Query-Flow Graphs
	Distributed QFG Building
	Divide-and-Conquer Approach

	Summary

	Incremental Algorithms for Effective and Efficient Query Recommendation
	Introduction
	Main Contributions

	Related Work
	Incremental algorithms for query recommendation
	Static solutions
	Incremental algorithms

	Quality Metrics
	Experiments
	Experimental Setup
	Correlation of Metrics
	Results

	Summary

	Generating Suggestions for Queries in the Long Tail with an Inverted Index
	Introduction
	Related Work
	An Efficient Algorithm for the Query Shortcuts Problem
	The Search Shortcuts Problem
	The Search Shortcuts Generation Method

	Assessing Search Shortcuts Quality
	Experimental Settings
	TREC queries statistics
	Search Shortcuts metric
	Suggestions Quality on TREC topics

	Summary
	Acknowledgements

	Efficient Diversification of Web Search Results
	Introduction
	Related Work
	Diversification using Query Logs
	Mining Specializations from Query Logs

	Efficiency Evaluation
	Testing Effectiveness
	Evaluation based on Query Log Data

	A Search Architecture Enabling Efficient Diversification of Search Results
	Summary

	Conclusions and Future Work
	References

