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ABSTRACT
In this paper, we tackle the problem of predicting the “next”
geographical position of a tourist given her history (i.e., the
prediction is done accordingly to the tourist’s current trail)
by means of supervised learning techniques, namely Gradi-
ent Boosted Regression Trees and Ranking SVM. The learn-
ing is done on the basis of an object space represented by a
68 dimension feature vector, specifically designed for tourism
related data. Furthermore, we propose a thorough compari-
son of several methods that are considered state-of-the-art in
touristic recommender and trail prediction systems as well
as a strong popularity baseline. Experiments show that the
methods we propose outperform important competitors and
baselines thus providing strong evidence of the performance
of our solutions.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process

Keywords
Geographical PoI Prediction; Learning to Rank

1. INTRODUCTION
This work presents LearNext, a“next-tourist-place”pre-

dictor allowing the provisioning of the “next” most likely
place that a tourist will visit in a city. The approach we
propose could be used as a building block to build more
complex applications such as: devise suggestions regarding
places of interest when visiting a city and make effective
predictions of the touristic behavior in a city. In the latter
case, devising an effective prediction is required to antici-
pate or “pre-fetch” possible services in the next location. It
could be of help in different scenarios, e.g., i) prediction of
touristic flows, ii) location advertising. In the first scenario,
our predictor can be used to devise how tourists will visit
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a city from a macroscopic point of view thus helping the
management of the touristic resources of the city, while the
second scenario relies on exploiting a touristic prediction for
understanding the effect of the advertisement in a particular
part of the city or, more important, for choosing where to
place it in order to maximize its effects.

LearNext works by predicting touristic places according
to the current position of a tourist that is visiting a city and a
history of previously visited places (i.e., visit patterns) from
other users. For the selection of tourist sites, the system
uses a set of Points of Interest (PoI s) identified a priori. In
particular, the contributions of this paper are the following:

• we propose LearNext: a next-PoI predictor that learns
tourists’ behavior from common patterns of movements
extracted by Flickr by means of two state-of-the-art ma-
chine learning approaches. Our models are trained on a
set of 68 features using GBRT [17] and Ranking SVM [6]
as learning methods;

• we introduce an unsupervised method for mining common
patters of movements of tourists starting from geo-tagged
pictures downloaded from Flickr. This is a method which
uses i) Flickr as the most important online photo service to
gather public photos (and their metadata) from users all
around the world and ii) Wikipedia to gather information
regarding Points of Interest (PoIs) in the given geographic
area. The results of this proposed unsupervised method
is a set of structured common patterns of movements of
tourists that visited (making photos) the given area in the
past;

• we test our methods against important competitors and
a strong baseline on three datasets built by means of the
methodology above. Each collection corresponds to a pop-
ular italian touristic area. In particular, we collect data
from photos taken in Pisa, Florence, and Rome. Experi-
ments show that, in all cases, our methods based on Ma-
chine Learning techniques consistently outperform with
up to 300%, in terms of prediction accuracy, our baselines.

LearNext is structured into two modules: one operating
offline and one operating online with respect to the current
visit of a tourist. The offline module is used to create the
knowledge model that is in turn used for predicting tourist
behavior. The online module uses information from the cur-
rent visit of a tourist and the knowledge model to predict
the next location. Recommending next PoIs is a challenging
task. One would expect that suggesting the most frequently
visited set of PoIs would provide high quality recommenda-



tions. In fact, as show in Section 4, such a baseline performs
quite poorly with respect to the methods we develop.

2. RELATED WORK
This paper takes on the problem of predicting the most

likely “Point of Interest” (PoI) to be visited by a tourist dur-
ing her tour of a given city. It involves two appealing fields of
research in the touristic scenario: data analysis and PoI pre-
diction/recommendation. The first focuses on the analysis of
the photo traces left by tourists when visiting a city and the
second studies techniques to predict/recommend interesting
PoIs exploiting knowledge mined from historical data.

Data Analysis. A significant number of papers relies on
mining geo-spatial and textual metadata associated with
Flickr images. Important efforts have been spent in an-
alyzing the dynamics of people moving through cities [5].
Rattenbury et al. [14] analyze the geo-temporal dynamics
of Flickr tags in order to distinguish between tags describ-
ing places and events. Popescu and Grefenstette [13] deduce
visit times at landmarks based on timestamps of Flickr pho-
tos. Moreover, Ahern et al. [1] plot aggregated textual
metadata associated with geo-referenced Flickr images on a
map interface.

PoI Prediction/Recommendation. A first approach to
solve the PoI prediction problem uses trajectory pattern
mining to devise temporally-annotated common patterns
(trajectories) of movements from data. Trajectories are a
concise representation of the behavior of moving objects as
sequences of regions frequently visited with typical travel
time. Trajectory-based models are exploited in [11], [3], [7]
to predict the most likely locations that are of interest for a
user.

Monreale et al. propose “WhereNext”, a method predict-
ing the next location of a moving object [11]. A decision
tree, named T-pattern Tree, is built and evaluated with a
formal training and test process. The tree is learned from
the trajectory patterns within a certain area, and it is used
as a predictor for the next location of a new trajectory by
finding, on the tree, the best matching path. Finally, the
authors show an exhaustive set of experiments and results
on real-world datasets.

Krumm and Horvitz propose a trajectory-based system,
called Predestination [7]. It tries to predict the location
of a certain vehicle as a natural progression of a trip, by
exploiting previous covered trajectories.

Noulas et al. [12] study the problem of predicting the
next venue a mobile user will visit (in foursquare-like ter-
minology, the next check-in), by exploring the predictive
power offered by different aspects of the user behavior. The
authors propose a set of 12 features that aims to capture
the factors that may drive users’ movements. They model
transitions between types of places, mobility flows between
venues, and spatio-temporal characteristics of user check-in
patterns. Furthermore, they exploit such features in two
supervised learning models, based on linear regression and
M5 model trees, resulting in a higher overall prediction accu-
racy. They model the task as a binary classification problem,
whereas we model it as a next PoI ranking problem that is
based on the likelihood of each PoI to be next in the user
trail. Moreover, we propose a broader set of features, orig-
inated from a Flickr dataset, capturing more dimensions of
the touristic behavior. We cast the prediction problem into
a“learning to rank”task, which allows us to use two effective

Machine Learning techniques (Ranking SVM [6] and GBRT
[17]) to solve it.

Similar efforts have been spent in solving the PoI recom-
mendation task. Here, the problem deals with generating
a list of possible PoIs that are of interest for a tourist. It
differs from the prediction task as it aims at maximizing the
satisfaction of the user during her tour of the city, while the
first one aims at identifying only one PoI as the first can-
didate to be visited. In [8], a location-aware recommender
system (LARS) that uses location-based ratings to produce
recommendations is proposed. Ye et al. [15] realize loca-
tion recommendation services for large-scale location-based
social networks, by exploiting the social and geographical
characteristics of users and locations/places. Zheng et al.
perform travel recommendations by mining multiple users’
GPS traces [16]. They model multiple users’ location histo-
ries with a tree-based hierarchical graph.

Lucchese et al. propose an algorithm which interactively
generates personalized recommendations of touristic places
based on the knowledge mined from photo albums and Wiki-
pedia [10]. The authors introduce the model as a graph-
based representation of the knowledge, and exploits random
walks with restart to select the most relevant PoIs for a spe-
cific user.

3. OUR SOLUTION
Let P = {p1, p2, . . . , pn} be a set of Points of Interest

(PoIs) for a given touristic location. Let U = {u1, u2, . . . , um}
be a set of users. We assume a tourist ui has visited a subset
of the available PoIs, Vi ⊆ P , Vi =

{
vi1, v

i
2, . . . , v

i
k

}
. With-

out loss of generality, we can assume that PoIs in V are
ordered according to their visit ordering. In other words ui

visited vi1 then vi2, etc. When the user id is clear from the
context, we drop the superscript and we simply refer to vis-
ited PoIs as vj . Let Y V = 〈y1, y2, . . . , y|P\V |〉 be an ordering
(i.e., a permutation) for the PoIs not yet visited by ui, such
that y1 is the PoI that the tourist will likely visit after vk, y2
the second one, etc. Finally, let Y be a general permutation
of PoIs in P \ V . We can define the LearNext problem as
follows.

The problem is to learn a function n : V → Y over a
class of functions H, such that a loss function ∆

(
Y, Y V

)
is

minimized. The loss function measures the penalty of having
ordered PoIs in P \ V as in Y instead of having outputted
the correct ordering Y V . Suppose that our data is sampled
from a distribution P (V, Y ), then the goal is to minimize
the risk:

n = argmin
f∈H

∫
∆
(
f (V ) , Y V

)
dP (V, Y ) (1)

Rather than evaluating the whole set of possibilities, we re-
strict our optimization problem to the samples in a training
set S ⊆ 2P and we seek to minimize the empirical error

n = argmin
f∈H

∑
V ∈S

∆
(
f (V ) , Y V

)
(2)

Our goal is to find the best function n that can predict the
ranking of PoIs, which a user has not yet visited, according
to the probability of being the next PoI in the trail.

Machine-learned models. The above LearNext prob-
lem can be cast into a learning to rank formulation that
allows to build models able to order PoIs following their
decreasing likelihood of being visited as the next PoI for



a given user. A trail is represented in a 68-dimension fea-
ture space. Accordingly, models are trained on a dataset
containing feature vectors corresponding to touristic trails.
Machine Learning, in fact, allows to learn from data the
function n that minimizes the error of a given loss function
∆
(
Y, Y V

)
. In particular, as already said, we resort to study

the problem as a “Learning To Rank” one [9]. We adopted
a learning to rank solution as it allows the automatic con-
struction of ranking models from training data. Indeed, this
model can order new objects according to their degrees of
relevance for the tourist. This way, the LearNext prob-
lem becomes a supervised Machine Learning problem that
is solved by building a model that ranks highest the PoI
with the highest likelihood of being visited as next by the
tourist. In particular, each example is represented by a high-
dimensional feature vector and its label indicates the PoI’s
degree of relevance to the user. The learning algorithm is
trained to predict the relevance from the feature vector.

We build the ranking models by relying on two well-know
techniques: Ranking SVM [6] and Gradient Boosted Re-
gression Trees (GBRT) [17]. Ranking SVM is a pairwise
learning to rank technique based on the well-known Sup-
port Vector Machines. Gradient Boosted Regression Trees
(GBRT) work by building an ensemble of regression trees,
typically of limited depth. During each iteration a new tree
is added to the ensemble, minimizing the specified cost func-
tion. GBRT defines the current state-of-the-art approach in
learning to rank. In the Yahoo! Learning to Rank Challenge
2010 [4] all winning methods incorporated GBRT.

Features of PoIs and tourist trails. An important as-
pect to take into account for an accurate solution of the
LearNext problem using learning to rank consists of care-
fully designing the feature space so that the main charac-
teristics of the dataset are captured. This is important as
it defines the signals that are the basic step for learning the
prediction model. In particular, in our tourism scenario we
believe that different dimensions can be useful to determine
how tourists choose PoIs in a city. When visiting a city, in
fact, a tourist takes into account the popularity of a PoI,
the distance of a given PoI with respect to her current posi-
tion, how much a particular PoI matches her interests, the
time needed to reach it, the time needed to visit it, etc. To
model all these dimensions of tourist behavior we define a
set of 68 different features. Each feature aims at capturing
a particular signal available in the data. We broadly classify
features in two main categories, namely “Session” and “PoI”.
Session features are meant to model the tourist behavior
and capture concepts like groups of PoI visited, distances
among PoIs, etc. It is based on the characteristics of each
PoI within that user session (trail). On the other hand, PoI
features model the characteristics of a candidate PoI, also
taking into account the past activities of the tourist. Ac-
cordingly, PoI features model the characteristics of the PoI
to be suggested.

Tables 1 and 2 summarize the set of features we introduce.
Session features (Table 1) are based on the current trail of
the user; they can be, for example, the transfer time and the
actual visit time spent by a tourist in her session, the number
of unique categories for all PoIs in that session, the euclidean
and latitude/longitude distance of consecutively visited PoIs
in a session (average, max, min, total), time and length of
the current session, number of photos per PoI in a session
(average, max, min, total), length of the sessions belonging

Feature Name Description

actualTransferTime
Total transfer time from a PoI
to the next one in a session.

actualVisitTime
The visit time for all PoIs in a
session.

categsPerSess
Number of categories per
session.

distLat Avg

Average, Max, Min, Total Lat-
itude and Longitude distance
between PoIs in a session.

distLat Max
distLat Min
distLat Tot
distLen Avg
distLen Max
distLen Min
distLen Tot

euclideanDist Avg
Average, Max, Min, Total Eu-
clidean distance between PoIs
in a session.

euclideanDist Max
euclideanDist Min

euclideanDist Total
phPoISess Avg

Average, Max, Min, Total
number of photos of PoIs in a
session.

phPoISess Max
phPoISess Min
phPoISess Tot

uniqueCategsPerSess
The number of unique
categories per session.

sessLen Number of PoIs in a session.

sessTime
Total time for a session, from
beginning to end.

userSessLen Avg
Average, Max, Min, Total
length of sessions belonging to
a user.

userSessLen Max
userSessLen Min

userSessLen Total

userSessRatio

The ratio between the number
of sessions made by the user
and the maximum number of
sessions for a user.

Table 1: List of “session” features used to model the
behavior of a tourist in a city.

to the same tourist (average, max, min, total) making the
current visit.

On the other hand, PoI features are based on the next
PoI to be suggested and model the distance of the next PoI
from the first PoI of the session, whether the PoI belongs to
the top ten categories visited by users, the number of times
a tourist visits that PoI in the training set, the conditional
probability of observing that PoI given the last PoI visited
by a user, the probability of observing the PoI as first (resp.
last) PoI in the training set, number of photos of the PoI
(average, max, min), number of past photos of the PoI from
the same user, and the visit time of the PoI (average, max,
min, total).

4. EXPERIMENTAL EVALUATION
To assess the effectiveness of our proposed techniques, we

use three different datasets built in a fully automatic pro-
cess by exploiting both photos from Flickr1, a photo shar-
ing portal, and Wikipedia pages. We build three datasets
containing tourist movements covering three Italian cities,
important from a touristic point of view: Pisa, Florence,
and Rome. They are chosen so as to guarantee a variety of
topologies and sizes: small (Pisa), medium (Florence), and
large (Rome, i.e., a capital city). The rationale of the choice

1
http://www.flickr.com



Feature Name Description

cat1, cat2, ..., cat10
Top 10 most frequent
categories.

distFromFirstPoI Eucl

Latitude, Longitude and Eu-
clidean distance from last and
first PoI of the session.

distFromFirstPoI Lat
distFromFirstPoI Len
distFromLastPoI Eucl
distFromLastPoI Lat
distFromLastPoI Len

entropy
The entropy of the last PoI in
the session.

freqBigrams
The frequency of the PoI
given the last PoI in session.

freqTrigrams
The frequency of the PoI given
the last two PoIs in session.

middleProbab
The probability that the PoI
is within a trail and not in the
extremes.

numCategories
The number of categories
assigned to the PoI.

numPhotos Avg
Average, Max, Min and Total
number of photos of the PoI in
the collection.

numPhotos Max
numPhotos Min

numPhotos Total

noOfVisits
The total number of visits of a
PoI in the collection.

photosPerUser
The total number of photos of
belonging to a user.

photosPoI userId Avg Average and total number of
photos of a PoI for a user.photosPoI userId Total

ratioPhotosPoI

The ratio between the number
of photos for the PoI and the
maximum number of photos
for a PoI.

ratioPoIInUserPhotos

The ratio between the number
of photos of a PoI for a user
and all the photos belonging
to the user.

ratioSessWithPoI

The ratio between the number
of sessions containing the PoI
and the total number of
sessions.

ratioUsersVisitingPoI
The ratio between the number
of users visiting the PoI and
the total number of users.

startProb The probability that a PoI is
first or last in a trail.stopProb

visitTimePoI User
The total visit time of a PoI
for a user.

visitTime Avg

Average, Max, Min, StdDev
and Total visit time of the PoI.

visitTime Max
visitTime Min

visitTime StdDev
visitTime Total

Table 2: List of “PoI” features used to model the
characteristics of each candidate destination.

is to propose a complete evaluation of our techniques and its
competitors by varying the size of the cities we are dealing
with. The datasets have been made available for download
to encourage its use within the community allowing the re-
producibility of results2.

We build the datasets by identifying the PoIs in a certain
geographical region and the corresponding photos available
on Flickr. Given an area of interest, we firstly collect all the

2Links to the trail datasets: http://hpc.isti.cnr.it/
~muntean/datasets/LearNext.tar.gz

geo-referenced Wikipedia pages falling within this region.
We assume each geo-referenced Wikipedia page, whose geo-
graphical coordinates falls into the given area, to be a Point
of Interest in the city we are analyzing. For each PoI, we
retrieve its descriptive label as the named entity associated
with it, its geographic coordinates as the ones specified in
the Wikipedia page, and the set of categories the PoI belongs
to, listed in the page3. The method is thus able to build a
list of PoIs within a given geographical bounding box in a
fully automatic way by exploiting Wikipedia as an external
source of knowledge.

To devise tourist trails in the area of interest we query
Flickr to retrieve the metadata (user id, timestamp, tags,
geographic coordinates, etc.) of the photos taken in the
given area. The assumption we are making is that photo
albums made by Flickr users implicitly represent touristic
itineraries within a given city. To strengthen the assumption
and thus the accuracy of our method, we retrieve only photos
having the highest geo-referenced precision in the given area
of interest. Then, we collect geo-tagged photo albums from
Flickr users. We discard photo albums containing only one
photo and those containing photos with no GPS information
associated. Eventually, photos are mapped to the set of
PoIs previously collected from Wikipedia. This is done by
associating a photo to a PoI if that photo is in the ball
having the PoI as its center and r = 100 meters as its radius.
Moreover, since several photos by the same user are usually
taken close to the same PoI, we collapse them by considering
the timestamps associated with the first and last of these
photos as the starting and ending time of the user visit to
the PoI. The results of the assignment above produce, for
each Flickr user, a stream of PoIs she visited.

Finally, in order to build the trail sets, we need a way
to split the stream of PoIs visited by each user in a mean-
ingful and realistic time-wise set of trails. We employ a
time-based cutting method that produces the list of trails
a user performed, by considering the inter-arrival time of
each pair of sequential photos in her stream. To do so, for
each city, we compute the distribution of probability of the
inter-arrival time x to be less then a given time threshold
k, i.e., P (x ≤ k). Then for each dataset we devise the time
threshold k corresponding to P (x ≤ k) = 0.9. Regarding
Rome, it corresponds to 5 hours, for Florence 6 hours, while
for Pisa 3 hours.

Table 3 shows the main properties of the datasets we use
to evaluate our techniques. We report the number of PoIs
(column “PoIs”) that have been found for each of the three
cities. Furthermore, columns “Users” and “Photos” report
the number of distinct users and public photos we crawled
from Flickr. Table 4 shows the main properties of the trails
we extracted using pictures in the dataset. We report the
number of trails containing two or more PoIs, the number of
PoIs visited at least once and the average number of trails
going through each PoI.

Dataset PoIs Users Photos

Pisa 124 1,825 18,170
Florence 1,022 7,049 102,888
Rome 671 13,772 234,616

Table 3: Properties of the three datasets we use.

3Wikipedia provides a fine-grained categorization of its geo-
referenced pages.



Dataset Trails ≥ 2 Visited PoIs Avg. Trails per PoI

Pisa 992 110 9.01
Florence 5,984 888 6.73
Rome 12,565 490 25.64

Table 4: Properties of the trail datasets we build.

The set of possible destinations, given a PoI, is an im-
portant information that we may exploit in order to detect
the most likely next PoI a tourist will visit. Figure 1 shows
the outlinks entropy of the three datasets computed on the
distribution of PoIs reached from previous ones. In this case
the lower the entropy the higher the likelihood that a user
will select a frequently visited PoI.

 0
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 0  100  200  300  400  500  600  700  800  900
Outlinks entropy

Pisa
Florence
Rome

Figure 1: Distribution of the outlinks entropy of the
PoIs in the three datasets.

Effectiveness Evaluation. The evaluation of our solution
to the LearNext problem is aimed at answering the follow-
ing research question: are learning to rank techniques
effective for predicting the next PoI?

We intend to answer the questions above by adopting
a standard training/test evaluation strategy over the three
datasets of trails available. For each of the three cities, we
generate a training set (80%) and a test set (20%) of trails.
The effectiveness of the methods is assessed by means of
Success@k (i.e., the percentage of times that the correct
answer is in the top-k ranked PoIs), MRR (@k), and to-
tal MRR [2]. Moreover, we compare our solutions against a
probability baseline and two important state-of-the-art tech-
niques, i.e. WhereNext [11] and Random Walk [10]. All the
methods have been tested by using the same datasets and
the same training/test methodology described above. The
results have been validated by means of a standard 10-fold
cross validation.

For comparing our solution to the state of the art we use
three different baselines.

• “Prob” uses the training set to build a directed graph
where nodes are PoIs of the given city and edges are trans-
actions from a source PoI to a destination PoI. Each edge
is weighted with the probability to observe the transaction
from the source PoI to a destination PoI (if any) in the
training set. Given the PoI currently visited by a tourist,
Prob predicts the most likely PoI to be visited next by
selecting, from the set of the current PoI’s outlinks, the
one with highest probability.

• “WhereNext” [11] uses trajectory pattern mining to de-
vise T-Patterns, i.e., frequent behaviors of movement in

the city, from data. T-Patterns constitute the knowledge
model used to compute the prediction. In this paper, we
use the original implementation of the predictor presented
in [11] kindly provided to us by the authors. We test differ-
ent combinations of parameters to mine T-Patterns from
our datasets.

• “Random Walk” [10] employs a graph-based representa-
tion of the PoIs in a city. Authors named it “itinerary
graph” and exploit it by using a random walk with restart
to select the most relevant PoIs for a given tourist. As
for WhereNext, we use the original implementation of the
method presented in [10], provided by the authors. We
build the itinerary graph over each of the cities we are
considering and, for each trail in the test set, we compute
the list of the top-10 recommendations. The list of rec-
ommended PoIs is then used to evaluate how good is the
method at predicting the next candidate PoI. For the two
methods above, we report only the best performances we
obtain.

The evaluation strategy we use to assess how the proposed
techniques behave in terms of effectiveness is the following:
each model for the three cities has been trained on the cor-
responding training set. A training set contains positive
and negative examples of candidate next PoI, represented by
its features. Given a trail of length N , training set contains
both session features (computed on the first N − 1 PoIs of
the trail) and PoI features. The latter are computed con-
sidering both the actual next PoI visited by the tourist, i.e.,
the N -th PoI of the trail (as a positive example) and a few
negative examples, with PoIs different from the ones seen
in the actual trail. Negative examples have been selected
on a distance basis. Two negative examples have been se-
lected from PoIs close to the N -th one while one has been
selected far from the N -th one. For building the test set
we adopt the following process. Given a trail of length N in
the test set, we use the first N −1 PoIs of the trail to profile
the tourist history and re-rank all final PoIs observed in the
training, according to the prediction model. The resulting
sorted list is then evaluated by using the metrics introduced
before. The aim of this evaluation is thus to measure how
many times our models are able to re-rank correctly, i.e., to
rank in the first positions of the whole list of PoIs the actual
next PoI.

We measure metrics like: Success@k, MRR@k and total
MRR, i.e. MRR computed on the complete list of re-ranked
PoIs. Results are computed for all the techniques, our pro-
posed solutions to the LearNext problem along with three
methods we choose as baselines. Table 5 shows the re-
sults of the experiment. WhereNext and Random Walk
never outperform Prob in terms of Success@1. Instead,
the techniques we propose consistently outperform all the
baselines. For Pisa, in terms of Success@1, Ranking SVM
scores 32.66% and GBRT scores 40.70%, while Prob scores
16.08%. Important results should be highlighted also for
Success@2. Here, our methods are able to score 49.74%
(Ranking SVM), and 55.27% (GBRT). Roughly speaking,
in half of the cases our methods are able to rank the ac-
tual next PoI in the two highest positions of the list. Per-
formance improves when considering higher values for the
cut-off parameter. In particular, if we look at the perfor-
mance in terms of Success@5, Random Walk attains a score
of 46.73%, whereas Ranking SVM scores 73.36%, and GBRT



City Predictor
Success (MRR)

MRR
@1 @2 @3 @5 @10

Pisa

Prob 16.08% - - - - -
WhereNext [11] 12.56% - - - - -
Random Walk [10] 15.07% (0.15) 20.60% (0.17) 25.12% (0.19) 31.65% (0.20) 46.73% (0.22) -
Ranking SVM 32.66% (0.32) 49.74% (0.41) 55.77% (0.43) 65.82% (0.45) 73.36% (0.46) 0.47
GBRT 40.70% (0.40) 55.27% (0.47) 63.81% (0.50) 75.87% (0.53) 88.44% (0.55) 0.56

Florence

Prob 4.59% - - - - -
WhereNext [11] 2.90% - - - - -
Random Walk [10] 3.25% (0.03) 6.09% (0.04) 8.77% (0.05) 11.69% (0.06) 20.13% (0.07) -
Ranking SVM 33.91% (0.33) 41.01% (0.37) 44.27% (0.38) 48.20% (0.39) 53.29% (0.40) 0.41
GBRT 37.76% (0.37) 46.78% (0.42) 53.04% (0.44) 59.31% (0.45) 69.34% (0.47) 0.48

Rome

Prob 12.93% - - - - -
WhereNext [11] 6.37% - - - - -
Random Walk [10] 8.43% (0.08) 13.76% (0.11) 19.22% (0.12) 26.38% (0.14) 38.12% (0.16) -
Ranking SVM 21.88% (0.21) 30.24% (0.26) 36.37% (0.28) 46.95% (0.30) 59.49% (0.32) 0.33
GBRT 30.95% (0.30) 40.07% (0.34) 47.15% (0.38) 56.34% (0.40) 67.68% (0.41) 0.42

Table 5: Effectiveness (%) in terms of Success@k, MRR@k, and total MRR of the proposed techniques along
with the competitors.

scores 88.44%. GBRT is the technique showing the best
performance, while Ranking SVM is second, and both tech-
niques perform considerably better than the baselines we
chose. Furthermore, the result for total MRR points out
that, even if Ranking SVM and GBRT in some cases are
not able to place the next PoI in a high position in the list,
the overall ranking does not degrade significantly. The same
behavior could be highlighted for Florence and Rome where
both Ranking SVM and GBRT are always outperforming
the baselines. In particular, while for Florence, GBRT per-
forms about 7 times better w.r.t. Prob, when considering
Rome, GBRT only doubles the performance of Prob. Look-
ing at the entropy plotted in Figure 1 we would expect that
Prob would perform better for Pisa than for Florence and
Rome. Indeed, from results in Figure 1 we can observe that
Prob behaves as expected. Nevertheless, entropy distribu-
tion is very skewed and we expect that in many cases proba-
bility features are not enough for a good performance. This
is confirmed once again by the effectiveness of our Learning
based techniques.

From the results shown above we conclude that learning
to rank techniques are effective for predicting the next PoI
in a trail.

5. CONCLUSIONS AND FUTURE WORK
We proposed to apply machine learning techniques to tackle

the problem of predicting the “next” touristic attraction a
user will visit on the basis of her visit history (i.e., the predic-
tion is done accordingly to what the user has already visited
in the touristic attraction). We modeled the problem as an
instance of learning to rank and we defined a feature space
composed of 68 features capturing both the touristic behav-
ior and the peculiar characteristics of candidate PoIs. GBRT
and Ranking SVM constantly outperform the Prob baseline
in terms of prediction accuracy. An immediate extension of
this research is to devise a method to plan a visit in a city
ahead of time by using LearNext as a building block.
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