
A Trajectory-Based Recommender System
for Tourism

Ranieri Baraglia1, Claudio Frattari2, Cristina Ioana Muntean3,
Franco Maria Nardini1, and Fabrizio Silvestri1

1 ISTI–CNR, Pisa, Italy
{name.surname}@isti.cnr.it
2 University of Pisa, Pisa, Italy
claudiofrat2002@hotmail.it

3 Babes-Bolyai University, Cluj-Napoca, Romania
cristina.muntean@econ.ubbcluj.ro

Abstract. Recommendation systems provide focused information to users
on a set of objects belonging to a specific domain. The proposed recom-
mender system provides personalized suggestions about touristic points
of interest. The system generates recommendations, consisting of touris-
tic places, according to the current position of a tourist and previously
collected data describing tourist movements in a touristic location/city.
The touristic sites correspond to a set of points of interest identified a
priori. We propose several metrics to evaluate both the spatial coverage
of the dataset and the quality of recommendations produced. We assess
our system on two datasets: a real and a synthetic one. Results show
that our solution is a viable one.

Keywords: tourist recommender systems, trajectory pattern mining

1 Introduction

Recommendation systems deal with providing focused information to users that
can likely be of their interest in a set of objects belonging to a specific domain
(music, movies, books, etc.). Such systems are common in search engines and
social networks, as well as in any situation where a focused suggestion might
be of value. This work presents a recommender system that allows to provide
personalized information about locations of potential interest to a tourist. The
system generates suggestions consisting of touristic places, according to the cur-
rent position of the tourist that is visiting a city and a history of previous visiting
patterns from other users. For the selection of tourist sites, the system uses a
set of points of interest (PoI) identified a priori. The system is structured into
two modules: one operating offline and one operating online with respect to the
current visit of a tourist. The offline one is used to create the knowledge model,
that is then used for calculating suggestions. It is executed periodically when new
GPS data are available for updating the knowledge model. The online one uses
information from the current visit path of a tourist and the knowledge model to
calculate a list of suggestions as possible next locations to visit.

2 Related Work

In [11], authors perform travel recommendations by mining multiple users’ GPS
traces. They model multiple users location histories with a tree-based hierarchi-
cal graph. Based on the graph, authors propose a HITS-based inference model,
which regards the access of an individual in a location as a directed link from the
user to that location. The recommendation process uses a collaborative filtering
model that infers users’ interests in an unvisited location based on her location
histories and those of others. Results show that the HITS-based inference model
outperforms baseline approaches like rank-by-count and rank-by-frequency.

Monreale et al. propose WhereNext, a method aimed at predicting with a
certain accuracy the next location of a moving object [9]. The prediction uses
previously extracted movement patterns named Trajectory Patterns, which are
a concise representation of behaviors of moving objects as sequences of regions
frequently visited with typical travel times. A decision tree, named T-pattern
Tree [4], is built by using Trajectory Patterns and used as predictor of the next
location of a new trajectory, finding on the tree the best matching path.

Kurashima et al. use the list of locations visited in the past by a user to
incrementally build new trajectories that maximize their likelihood in the mixed
topic-Markov model [6]. The best k routes satisfying a maximum time and dis-
tance constraints are returned.

Other works on geographical recommender systems use the concept of Point
of Interest (PoI). In [3] a mobility-aware recommendation system, called PIL-
GRIM, is proposed. It uses the location of a user to filter recommended links.
The authors build models relating resources to their spatial usage pattern, used
to calculate a preference metric when the current user is asking for resources of
interest.

Lucchese et al. propose a novel random walk-based algorithm for the inter-
active generation of personalized recommendations of touristic places of interest
based on the knowledge mined from photo albums and Wikipedia [8].

Our solution blends together user friendly approaches in the above men-
tioned literature, in order to produce exhaustive tourist recommendations. We
expand trajectory mining from the simple use of GPS coordinates to the use
of significant/relevant PoIs able to bring value to users according their interest.
While WhereNext is able to produce significant predictions, we intent to deliver
a broader solution: a recommendation system able to assist and offer not only
the next step [9], but a list of suggestions from which the user can choose from.

3 The Proposed System

As Figure 1 shows, the architecture of our recommender system has two main
modules: offline and online. The first one aims to create the knowledge model,
which is the basis for computing suggestions. Its execution takes place when new
data is available for updating the knowledge model. The online module uses the
current user information and the knowledge model in order to produce a list of
suggestions.

Building the Knowledge Model: The data processed by the offline mod-
ule consists of a dataset of trajectories representing the movements of users
in a certain period of time, as detected by their GPS devices, and a set of
PoIs with their coordinates. The trajectories initially have the following format:
T =< (x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn) >, where (x, y) are the coordinates
on the Cartesian plane, and t is the timestamp. To facilitate the trajectory
mining process, we define the following distance function: N : <2 → P (<2),
describing whether the points of a trajectory are related to a PoI. In order to
do this, the Cartesian plane is divided into regions so that if a point falls in
the region of a PoI, then this point is assigned to that region. This function al-
lows us to simplify the process of mining, which manages trajectories expressed
as: T ′′ =< (A, t1), (B., t2), ..., (C, tn) >, where capital letters represent regions
and t timestamps, instead of trajectories expressed as coordinates. It reduces
the cardinality of the set of elements on which the knowledge model is com-
puted. To divide the plane into regions [2] we exploited the QuadTree technique,
which consists of a class of hierarchical data structures that have the common
characteristic of recursive division of space [10]. The adopted QuadTree-based
algorithm divides the plane into regions of the same shape, but of different sizes.

Regions can be very small where there are several close PoIs. Their size
depends on the PoIs distribution, and especially on the distance from one PoI to
another. The QuadTree technique is very efficient, it performs data comparison
and data insertion with a complexity equal to O(logn), where n are the number
of PoIs in input. In the worse cases, corresponding to poor PoIs distributions,
thus unbalanced trees, it can run in O(n).

For constructing the knowledge model we first transform the dataset of tra-
jectories of regions according to the QuadTree division of space. This allows
us to identify points that fall in a specific region with identifier id. Thus the
trajectories are represented as: Aα−→B, where A and B are two regions and α
is the estimated time needed to move from A to B. Then, to build the knowl-
edge model the T-Pattern Tree is used. Frequent trajectories are trajectories
with a support greater than a threshold value σ. The T-pattern Tree is built

!"#$%&'(&)*#'&%)
+,-./0&1"),1&&2)

.#3"45)67)
8"4&1&54)+.#82)

,1/9&:4#1;)
</4/5&4)

</4/).1&=1#:&553"()>)
*#'&%)?@3%'3"()
+A@/'),1&&2)

6B3"&)*#'@%&)
+C&:#DD&"'/E#")F&1G&12)

6"%3"&)*#'@%&)
+*#H3%&)<&G3:&2)

C&:#DD&"'&1)I"(3"&)
,1/9&:4#1;)J#%%&:4#1)+K.F2)

C&:#DD&"'/E#")L3&$&1)

Fig. 1. Architecture of the proposed recommender system.

incrementally and trajectories having a prefix in common are overlapped on
the tree to avoid unnecessary branches duplication. Each node is identified by
a tuple < id, region, support >, where id is the node identifier, region is the
concerned region and support is the sum of the supports of the various tra-
jectories that have region in that position. Each edge has associated a tuple
< [tmin, tmax], P (A → B)] >, where [tmin, tmax] represents the estimated time
needed to pass from a parent region to a child one, and P (A→ B) indicates the
probability of moving from region A to region B. The probability value is com-
puted as the trajectories support value of a child node divided by the trajectories
support value of its parent node. The T-pattern Tree can thus be modeled as a
Markov chain and is used to find the similarity between trajectories frequently
traveled and the current-analyzed one.

Computing Suggestions: User locations are obtained from GPS systems and
sent to the offline module whenever a new position is detected. The recent move-
ments of a user are used to set up the current trajectory, which is then compared
with each practicable T-pattern Tree path. For each pattern match, a score,
called Punctual Score, is calculated by assigning a value to each node of the
current trajectory, which is then compared with those contained in T-pattern
Tree. As in [9], the use of this score is designed to measure the reachability of a
node r by a trajectory T which has already reached the parent node r − 1. The
punctual score indicates the matching of a node compared with the trajectory
taken into consideration. The comparison may lead to three different cases for
the calculation of the punctual score: 1) The current region is equal to the cur-
rent node, and reached within the expected time. The punctual score is equal to
the support associated to the node; 2) The current region is equal to the current
node, but not reached within the maximum expected time. The punctual score
is computed as: node.support/β∗dt, where β is a constant and dt is the distance in
time between the end interval and the time when the current region is reached;
3) The current region is not equal to that of the current node, the punctual
score is computed as: node.support/(β∗dt+α∗ds), where α is a constant. Moreover,
we specify the distance time tolerance tht and distance space tolerance ths as
the maximum value that dt and ds can assume; when they exceed the specified
values the punctual score of the current node is set equal to 0. The total pattern
tree score PathScore is computed as follows. Given a trajectory tr, a path P =
[p1,p2, ..., pk] and a Punctual Score PScorek defined on each pk ∈ P , the three in-

dexes are computed as: 1) AvgScore(tr, P) =
∑n

1 PScorek
n ; 2) SumScore(tr, P) =∑n

1 PScorek; 3) MaxScore(tr, P) = max {PScore1, . . . , PScorek}. AvgScore
generalizes the concept of similarity by averaging the distance between the actual
trajectory and the T-pattern Tree’s pattern; SumScore is based on the concept
of depth, the highest score is assigned to the longest path that intersects the ac-
tual trajectory; MaxScore considers only the node with the highest score based
on the fact that if a trajectory has a good match with a node, it will probably
have a good overall match. In our tests we use the SumScore method and assign
the highest score to the longest path that intersects the trajectory. To carry out
suggestions, candidates with higher PathScore and their children are returned,

indicating the next regions that one can get from the current position. Once
the regions are found, we look for the associated PoIs, which are suggested to a
tourist. For our solution, we create a knowledge model for the category of PoIs
that represent tourist sites. Then, by default the user will receive suggestions
on tourist places that are updated according to his moves. Moreover, by using
the information associated to the edges we can also provide, as a function of the
available means of transport, an approximate time and cost needed to reach a
suggested place. There are three cases where the system fails to make a predic-
tion: 1) The current trajectory is longer than each T-pattern Tree’s trajectory;
2) The current trajectory is spatially too distant from any trajectory on the
T-pattern Tree; 3) The current trajectory is temporally too far away from any
trajectory on the T-pattern Tree. These events are directly dependent on the
quality of the T-Pattern used. It is therefore necessary to evaluate a priori the
predictive power of the set of T-Pattern used as the quality of the predictions
depends on the spatial and temporal characteristics of this set. The T-pattern
are sequences of spatial regions of different sizes and intervals of time. The sizes
of these regions are the key to being able to produce the predictions of good
quality. For example, considering only T-pattern covering a small portion of the
total space, can not be processed predictions reliable.

4 Evaluation

We measure the effectiveness and the efficiency of the proposed solution by using
two trajectory sets: synthetic and real, and a set of predefined PoIs. Moreover,
the performance results obtained by the proposed solution were compared with
those obtained by a greedy solution that carries out a list of suggestions made
up of regions closer to the current location.

The synthetic dataset was created using a trajectory generator for a specific
geographic area. It takes as input a dataset of PoIs, which are combined in
sequences that form trajectories. The set of PoIs adopted during the tests include
all the most important (monumental/artistic) PoIs in Florence, generated using
information from Wikipedia. Through the Wikipedia API, we are able to retrieve
the spatial coordinates of a list of PoIs in Florence.

By setting the parameters like the distance threshold d and the number
of trajectories to build, it is possible to customize the dataset. This flexible
mechanism allows us to generate a dataset of a predetermined size. Accordingly,
for building a trajectory the following steps are required: i) we randomly select
the starting point from 1022 PoIs extracted from Wikipedia, ii) we identify the
starting point neighbors from the set of PoIs closer than d, iii) we rank the
neighboring points by means of a function that minimizes the distance between
the candidate PoI and the one currently analyzed; we select the next step in
the trajectory according to the score associated to each candidate PoI - the
higher the score, the higher the probability of selection, and iv) we terminate
the trajectory building when the desired length is reached. The decision to model

the interest for a PoI by the distance was influenced by the good results shown
in [7]. The resulting synthetic dataset contains 20000 trajectories.

The real dataset is made up of data coming from Flickr. The trajectories
are built using the photos submitted by users. A photo may have additional
data such as the time it was taken and the geospatial coordinates of the object
depicted. We considered the subject in the photos as potential real PoIs.

We built the dataset from information relating to photos taken in Florence
from January 2004 to January 2010. With the data obtained it was possible to
build daily trajectories for each user. The spatial coordinates associated with
an individual photo may not exactly coincide with the PoI photographed. In
order to build trajectories a data structure called R-Tree [5] was used which
permits us to assign a rectangular area to each PoI belonging to the set of PoIs.
If the coordinates of a PoI extracted from the dataset of photos fall into one of
these rectangular areas, the representative corresponding PoI is assigned to the
trajectory. Building the real dataset consists of three phases: 1) Build the R-Tree.
Each node represents a geographical area and its children represent sub-areas.
2) Extract information from photos: user id, date and spatial coordinates. 3)
Extract the PoI. For each pair of spatial coordinates contained in the list of PoIs
from Flickr, we verify whether it is contained in one of the R-Tree’s leaf nodes.
If so, the PoI identifying that bounding box is added to the user’s trajectory.

Evaluating the Quality of the Trajectory Set: The quality of the trajectory
set is a key element for building the knowledge model with which the recom-
mendations are computed. Therefore, it is important to understand in advance
whether a set is valid for the effective evaluation of suggestions. To this end, in
[9] the authors have proposed a method to establish a correspondence between
the accuracy and the value of the support for a set of association rules. In our
case, the ability to make accurate predictions also depends on the spatial char-
acteristics of a set of T-pattern, not only on support. We refer to it as Coverage.
The following indexes were adopted by us for assessing the Coverage:

– SpatialCoverage (SC) measures the fraction of the total space covered by

the trajectory set as: SpatialCoverage =
∪Tp∈TpsetSpace(Tp)

TotalSpace , where Space(Tp)
is the function that assigns to each T-pattern a portion of the plane that it
fails to cover. TotalSpace is the total space where tourists move around;

– DataCoverage (DC) defines the fraction of trajectories that go over the

support value. This is computed as: DataCoverage = |T |−Tpset
|T | , where T is

the trajectory set and Tpset is the number of extracted trajectories which
satisfy the support value.

– RegionSeparation (RS) measures the prediction accuracy as function of
the prediction granularity. It is computed as:RegionSeparation = MinimalRegion

AV Gr∈Tp∈Tpset
,

where MinimalRegion is the minimum spatial granularity corresponding to
a PoI within the considered space and AV Gr∈Tp∈Tpset is the average size of
regions belonging to the trajectory set.

– Rate correlates all above three metrics as follows:
Rate = SpatialCoverage ·DataCoverage ·RegionSeparation

As can be seen from Table 1, as the number of PoIs per region increases,
the Rate value decreases. Even if the SpatialCoverage index increases, the other
two indexes RegionSeparation and DataCoverage decrease. In fact, the higher
values for Rate, i.e 0.06 for the real trajectory set and 0.08 for the synthetic
trajectory set, are obtained when there are five PoIs per region. This is because
RegionSeparation, and consequently Rate, rewards the correspondence between
PoIs and regions. Almost identical Rate values were obtained for the same test
with synthetical sets 5000 and 10000 trajectories. It shows that RegionSeparation
is independent of the size of the trajectory set. The value of the support used to
conduct the test is equal to 1.

Evaluating the Effectiveness and Efficiency: To evaluate the effectiveness
of suggestions we adopted an empirical approach that estimates the percentage
of errors in making recommendations using a test set [9]. The set of samples
is divided into two disjoint subsets, a training set used to build the knowledge
model (90%) and a test set (10%) used for evaluation. Each trajectory in the
test set is iteratively divided into two parts: the first part represents the cur-
rent trajectory on which we want to receive recommendations, and the second
part is used for comparisons with the suggested regions. Initially, the current
trajectory is represented by the first region of the analyzed trajectory and the
remaining regions are used for comparison. A trajectory is divided in this way
until the second part contains a single region. The tests to evaluate the efficacy
of the proposed solution were conducted by computing a list of 10 regions as a
suggestion. For evaluating the effectiveness, we adopted the following metrics:

– Prediction Rate (PR) is the percentage of trajectories for which the system
is able to make a prediction.

– Accuracy (A) is the percentage of trajectories for which the system returns
a list of suggestions containing the region that, in the test set, immediately
follows the last region of the current trajectory.

– Modified Accuracy (MA) refines Accuracy. In [7] is shown that people
tend to minimize the distance between locations. Accordingly, a tourist in
a region may move to another PoI in the same region or in a different one.
The region where the tourist is located is added to the suggestions.

– Average Error (AE) is the average error percentage computed for each
trajectory. A trajectory of n regions is divided n− 1 times, and n− 1 com-
parisons are made. The result of each comparison is true, if the list of sugges-

PoIs Region Real Dataset Synthetic Dataset

SC(%) RS(%) DC(%) Rate SC(%) RS(%) DC(%) Rate

5 0,70 0,12 0,75 0,06 0,91 0,92 0,71 0,08
10 0,67 0,06 0,75 0,03 0,96 0,05 0,64 0,03
20 0,86 0,03 0,69 0,02 0,97 0,03 0,61 0,02
30 0,83 0,02 0,66 0,01 1 0,02 0,06 0,01
Table 1. Coverage value for the real and synthetic trajectory sets

tions contains the next region, and false otherwise. Let a the number of false
comparisons, the error rate for the related trajectory is equal to a/n− 1.

– Omega (Ω) measures the immediate utility of the generated suggestions [1].
It is computed as:

Ω =

Ns∑
i=1

∑nk

k=1[pk ∈ {S1,k
i ∩Rk+1,nk

i }] f(k)nk

Ns
(1)

where Ns is the number of trajectories of the test set, nk is the number of
regions in the current trajectory, f(k) is a function assigning a weight to a
suggested region and pk is a functions that returns 1 for a correct prediction
and 0 on the contrary.

Table 2 shows the values of the metrics evaluated to measure the efficacy
of the computed suggestions. They were computed by varying the number of
PoIs per region and using a knowledge model built with the value of the support
equal to 1. The number of PoIs in a region significantly affects the effectiveness
of the system. Increasing the number of PoIs per region, the regions become
larger and the prediction becomes easier because the knowledge model needs
fewer examples to correctly predict the regions. Accordingly, the probability
that a region is correctly suggested increases. The best value for MA and A is
achieved with 30 PoIs per region, reaching a maximum value of 80.19% for MA,
66.21% for A, and 56.49% for PR. As can be seen from Table 2, AE decreases
as the number of PoIs in the regions increases, leading to a higher accuracy in
suggestions. The values for Ω indicate that the immediate utility of suggestions
varies little by changing the number of PoIs per region. PR computed on the
synthetic set is greater than the one on the real set.

Table 3 shows the performance evaluated by varying the support value σ,
used to generate the knowledge model. Increasing σ, the percentage of trajecto-
ries correctly predicted decreases, revealing the non monotonic property of the
support. Also, the number of trajectories used to build the knowledge model
decreases and the model loses part of its predictive power. Even if for small
values of the support PR is high enough, A never increases above 50%, instead
decreases progressively. The support value that ensures the best A is equal to 1
for both the real and synthetic trajectory sets.

Concerning the real trajectory set, better results are obtained for σ = 4,
when PR is equal to 36.18%. A for high support values is related to a small

PoIs Region Real Dataset Synthetic Dataset

PR(%) A(%) MA(%) AE(%) Ω PR(%) A(%) MA(%) AE(%) Ω

5 48,24 30,45 35,00 74,35 5,74 100 49,52 55,32 46,12 4,53
10 48,24 47,27 57,95 63,29 4,59 100 47,46 56,32 49,40 4,37
20 56,47 59,80 71,65 48,10 5,31 100 67,55 70,34 30,15 5,36
30 56,49 66,21 80,19 39,39 4,15 100 81,36 83,01 16,15 4,84

Table 2. Effectiveness by varying the number of POIs per region.

percentage of predicted trajectories, less than half of the available trajectories.
In fact, a peak (67.27%) of the MA index correspond to only 36.18% of the total
trajectories. Moreover, MA w.r.t A increases of about the 10%, it means that
there are at least 10% of users move to a PoI within the same current region.

The AE values varies between 63.29% and 76.80%. It is important to note
that this measure of error is only related to the percentage of suggested trajec-
tories. Ω has a similar value for the first three tests, and then decreases to 1.31,
showing that the suggestions related to the support value equal to 10 have the
highest immediate utility. Ω is referred only to trajectories that have a correct
prediction, so for the support value equal to 10, Ω refers only to 26.32% of the
suggested trajectories.

Concerning the synthetic set, PR is always equal to 100%, A has a trend
inversely proportional w.r.t. the support. The synthetic dataset maintains a PR
greater than the one obtained on the real dataset.

The system efficiency was evaluated measuring the average elapsed time to
compute a list of suggestions on a trajectory. This time depends highly on the
cardinality of T-pattern Tree. The bigger and deeper the tree, the more the
execution time grows and the cost of prediction rises. Tests were conducted by
considering 100, 150, 200, and 300 requests per minute. In such tests the proposed
system demonstrate to be able to respond quickly, with an average elapsed time
of 1500 ms. For 100 requests per minute the average response time remains
constant below 500 ms, then slightly increasing in the case of 150 requests per
minute. Reasonable values are obtained also in the case of 200 and 300 requests
per minute, with average response time values between 1500 and 2000 ms.

We present a comparison of the proposed solution versus a greedy solution,
Nearest. Due to the scarcity of recommendation systems available and low avail-
ability of datasets used in other articles, we developed a simple recommender
called Nearest, which returns a list of suggestions containing regions closest to
the current region of the tourist, thus not adopting any process of mining.

Both methods, ours and Nearest, are evaluated on the synthetic dataset and
best performance values for parameters, namely σ equal to 1 and number of PoIs
per region equal to 30. In the case of our system we obtain a PR of 100%, an
A of 81.36% and a MA of 83.01%, while Nearest obtained a PR of 100%, an A
of 60.40% and a MA of 63.40%. Due to the fact that tests were conducted on

σ Real Dataset Synthetic Dataset

PR(%) A (%) MA (%) AE (%) Ω PR (%) A (%) MA (%) AE (%) Ω

1 48,24 47,27 57,95 63,29 4,59 100 47,46 53,32 49,40 4,37
2 48,24 43,18 53,41 64,68 4,57 100 42,70 48,15 52,63 3,91
4 36,18 51,51 67,27 63,82 4,18 100 37,76 42,30 57,42 3,50
6 36,18 45,45 61,82 71,32 2,71 100 33,74 38,41 61,10 3,11
8 36,18 36,36 53,94 76,80 1,93 100 30,92 35,21 63,75 2,73
10 36,18 26,36 46,06 63,82 1,31 100 28,80 33,16 67,65 2,27

Table 3. Results varying the support and 10 POIs per region.

synthetic data sets, PR for both system is 100%. However a clear performance
of our system in respect with Nearest can be acknowledged from an increased A
and MA.

5 Conclusions

We proposed a recommendation system that can assist a tourist visiting a city.
It is able to generate suggestions of potential PoIs, depending on the current
position of a tourist, and a set of trajectories describing the paths previously
made by other tourists. The best effectiveness is achieved when the support σ
is equal to 1 and when the number of PoIs per region is equal to 30. We also
evaluated our proposed system against a simple baseline solution, which produces
a suggestion list of regions closer to the tourist’s current position. Results show
that our solution clearly outperforms that one. We also proved that the response
time enables it to be used interactively.

Our research has been funded by the POR-FESR 2007-2013 No 63748 (VIS-
ITO Tuscany) project and POSDRU/88/1.5/S/60185 (Investing in people!).

References

1. R. Baraglia and F. Silvestri. An online recommender system for large web sites. In
Proc. of IEEE/WIC/ACM WI’04, Washington, DC, USA, 2004. IEEE Computer
Society.

2. Ranieri Baraglia, Claudio Frattari, Cristina Ioana Muntean, Franco Maria Nardini,
and Fabrizio Silvestri. Rectour: a recommender system for tourists. In Proceed-
ings of the First Workshop on Tourism Facilities (TF’12) colocated with the 2012
IEEE/WIC/ACM International Conference on Web Intelligence, 2012.

3. M. Brunato and R. Battiti. Pilgrim: A location broker and mobility-aware recom-
mendation system. In Proc. of PerCom, pages 265–272. IEEE, 2003.

4. F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory pattern mining.
In Pavel Berkhin, Rich Caruana, and Xindong Wu, editors, KDD, pages 330–339.
ACM, 2007.

5. A. Guttman. R-trees: a dynamic index structure for spatial searching. SIGMOD
Rec., 14(2):47–57, June 1984.

6. T. Kurashima, T. Iwata, G. Irie, and K. Fujimura. Travel route recommendation
using geotags in photo sharing sites. In In Proc. CIKM, pages 579–588. ACM,
2010.

7. K. Lee, S. Hong, S.J. Kim, I. Rhee, and S. Chong. Slaw: A new mobility model
for human walks. In Proc. IEEE INFOCOM, pages 855–863. IEEE, 2009.

8. C. Lucchese, R. Perego, F. Silvestri, H. Vahabi, and R. Venturini. How random
walks can help tourism. In In Proc. ECIR. LNCS, 2012.

9. A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext: a location
predictor on trajectory pattern mining. In Proc. of KDD, pages 637–646. ACM,
2009.

10. H. Samet. Hierarchical spatial data structures. Design and Implementation of
Large Spatial Databases, pages 191–212, 1990.

11. Y. Zheng and X. Xie. Learning travel recommendations from user-generated gps
traces. ACM TIST, 2(1):2, 2011.

