
Phrase Query Optimization
on Inverted Indexes

Avishek Anand
Ida Mele

Srikanta Bedathur
Klaus Berberich

MPI–I–2014–5–002

Authors’ Addresses

Avishek Anand
L3S Research Center
Hannover, Germany

Ida Mele
Max-Planck-Institut für Informatik
Saarbrücken, Germany

Srikanta Bedathur
IIIT Delhi
New Delhi, India

Klaus Berberich
Max-Planck-Institut für Informatik
Saarbrücken, Germany

Abstract

Phrase queries are a key functionality of modern search engines. Beyond that,
they increasingly serve as an important building block for applications such as
entity-oriented search, text analytics, and plagiarism detection. Processing
phrase queries is costly, though, since positional information has to be kept
in the index and all words, including stopwords, need to be considered.

We consider an augmented inverted index that indexes selected variable-
length multi-word sequences in addition to single words. We study how
arbitrary phrase queries can be processed efficiently on such an augmented
inverted index. We show that the underlying optimization problem is NP-
hard in the general case and describe an exact exponential algorithm and
an approximation algorithm to its solution. Experiments on ClueWeb09 and
The New York Times with different real-world query workloads examine the
practical performance of our methods.

Keywords

Phrase Queries, Query Optimization

Contents

1 Introduction 2

2 Model 4

3 Indexing Framework 5

4 Query Optimization 7
4.1 Optimal Solution . 9
4.2 Approximation Algorithm . 12

5 Experimental Evaluation 13
5.1 Datasets . 13
5.2 Experimental Results . 14

6 Related Work 17

7 Conclusion 18

1

1 Introduction

As the scale of document collections such as the Web grows, more effective
tools to search and explore them are needed. Phrase queries are one such
tool. Typically expressed by enclosing a multi-word sequence with quotation
marks (e.g., “president of the united states”) they enforce that the search
engine returns only documents that literally contain the quoted phrase. Our
focus in this work is on supporting phrase queries more efficiently.

Phrase queries are supported by all modern search engines and are one of
their advanced features most popular with human users, accounting for up
to 5% of query volume [18]. Even when unknown to the user, phrase queries
can still be implicitly invoked, for instance, by means of query-segmentation
methods [10, 13]. Beyond their use in search engines, phrase queries in-
creasingly serve as a building block for other applications such as (a) entity-
oriented search and analytics [5] (e.g., to identify documents that refer to a
specific entity using one of its known labels), (b) plagiarism detection [19]
(e.g., to identify documents that contain a highly discriminative fragment
from the suspicious document), (c) culturomics [16] (e.g., to identify docu-
ments that contain a specific n-gram and compute a frequency time-series
from their timestamps).

Positional information about where words occur in documents has to be
maintained to support phrase queries, which leads to indexes that are larger
(e.g., [7] report a factor of about 4× for the inverted index) than those
required for keyword queries. Also, all words need to be considered in the
case of phrase queries, as opposed to keyword queries for which stopwords can
be ignored. Consequently, phrase queries are substantially more expensive
to process, since more data has to be obtained from the index.

The problem of substring matching, which is at the core of phrase queries,
has been studied extensively by the String Processing community. However,
the solutions developed (e.g., suffix arrays [15] and permuterm indexes [9])
are designed for main memory and cannot cope with large-scale document
collections. Solutions developed by the Information Retrieval community [20,

2

22] build on the inverted index, extending it to index selected multi-word
sequences, so-called phrases, in addition to single words.

In this work, we follow the general approach of augmenting the inverted
index with selected multi-word phrases. Given such an index, we focus
on the problem of phrase-query optimization, that is, determining for a
given phrase query an optimal set of terms to process it. Consider, as
a concrete example, the phrase query “we are the champions” and assume
that all bigrams have been indexed alongside single words. Here, the space
of possible solutions includes among others {we, are, the, champions} and
{we are, are the, champions}. Identifying a cost-minimal set of indexed terms
is the problem addressed in this work. Existing work [22] has addressed this
problem only heuristically. In contrast, we study its hardness and devise an
exact exponential algorithm and an approximation algorithm to its solution.

Contributions that we make in this work thus include

• we study the problem of phrase-query optimization, establish its NP-
hardness, and describe an exact exponential algorithm as well as an
O(log n)-approximation algorithm to its solution;

• an experimental evaluation on ClueWeb09 and a corpus from The New
York Times, as two real-world document collections and different work-
loads denoting the three kinds of tasks where phrase queries are appli-
cable, comparing our approach against state-of-the-art competitor and
establishing its efficiency and effectiveness.

Organization. The rest of this paper is organized as follows. Chapter 2
introduces our formal model. The augmented inverted index is described
in Chapter 3. Chapter 4 deals with optimizing phrase queries. Chapter 5
describes our experimental evaluation. We relate our work to existing prior
work in Chapter 6 and conclude in Chapter 7.

3

2 Model

We let V denote the vocabulary of all words. The set of all non-empty se-
quences of words from this vocabulary is denoted V+. Given a word sequence

s = 〈 s1, . . . , sn 〉 ∈ V+

we let | s | = n denote its length. We use s[i] to refer to the word si at the i-th
position of s, and s[i..j] (i ≤ j) to refer to the word subsequence 〈 si, . . . , sj 〉.

Given two word sequences r and s, we let pos(r, s) denote the set of
positions at which r occurs in s, formally

pos(r, s) = { 1 ≤ i ≤ |s| | ∀ 1 ≤ j ≤ |r| : s[i+ j − 1] = r[j] } .

For r = 〈 ab 〉 and s = 〈 cabcab 〉, as a concrete example, we have pos(r, s) =
{ 2, 5 }. We say that s contains r if pos(r, s) 6= ∅. To ease notation, we treat
single words from V also as word sequences when convenient. This allows us,
for instance, to write pos(w, s) to refer to the positions where w occurs in s.

We let the bag of word sequences C denote our document collection. Each
document d ∈ C is a word sequence from V+. Likewise, the bag of word
sequences Q denotes our workload. Each query q ∈ Q is a word sequence
from V+.

Using our notation, we now define the notion of document frequency as
common in Information Retrieval. Let S be a bag of word sequences (e.g.,
the document collection or the workload), we define the document frequency
of the word sequence r, as the number of sequences from S containing it

df(r,S) = | { s ∈ S | pos(r, s) 6= ∅ } | .

4

3 Indexing Framework

We build on the inverted index as the most widely-used index structure in
Information Retrieval that forms the backbone of many real-world systems.
The inverted index consists of two components, namely, a dictionary D of
terms and the corresponding posting lists that record for each term infor-
mation about its occurrences in the document collection. For a detailed
discussion of the inverted index we refer to [23].

To support arbitrary phrase queries, an inverted index has to contain
all words from the vocabulary in its dictionary (i.e., V ⊆ D) and record
positional information in its posting lists. Thus, the posting (d13, 〈 3, 7 〉)
found in the posting list for word w conveys that the word occurs at posi-
tions 3 and 7 in document d13. More formally, using our notation, a post-
ing (id(d), pos(w,d)) for word w and document d contains the document’s
unique identifier id(d) and the positions pos(w,d) at which the word occurs.

Query-processing performance for phrase queries on such a positional in-
verted index tends to be limited, in particular for phrase queries that contain
frequent words (e.g., stopwords). Posting lists for frequent terms are long,
containing many postings each of which with many positions therein, ren-
dering them expensive to read, decompress, and process.

Several authors [8, 20, 22] have proposed, as a remedy, to augment the
inverted index by adding multi-word sequences, so-called phrases, to the set
of terms. The dictionary D of such an augmented inverted index thus consists
of individual words alongside phrases (i.e., D ⊆ V+) as terms.

To process a given phrase query q, a set of terms is selected from the
dictionary D, and the corresponding posting lists are intersected to iden-
tify documents that contain the phrase. Intersecting of posting lists can be
done using term-at-a-time (TaaT) or document-at-a-time query processing
(DaaT). For the former, posting lists are read one after each other, and
bookkeeping is done to keep track of positions at which the phrase can still
occur in candidate documents. For the latter, posting lists are read in par-
allel and a document, when seen in all posting lists at once, is examined for

5

whether it contains the query phrase. In both cases, the cost of processing
a phrase query depends on the sizes of posting lists read and thus the set of
terms selected to process the query. Existing work [22] has addressed this
query-optimization problem, determining the set of terms that should be used
to process a given phrase query, using greedy heuristics. Our approach to
address the problem, including its formalization and a study of its hardness,
is described in Chapter 4.

6

4 Query Optimization

We now describe how a phrase query q can be processed using a given aug-
mented inverted index with a concrete dictionary D. Our objective is thus
to determine, at query-processing time, a subset P ⊆ D of terms, further
referred to as query plan, that can be used to process q.

To formulate the problem, we first need to capture when a query plan
P can be used to process a phrase query q. Intuitively, each word must be
covered by at least one term from P . We capture whether P covers q using
the predicate

covers(P ,q) = ∀ 1 ≤ i ≤ |q | : ∃ t ∈ P : ∃ j ∈ pos(q[i], t) :

∀ 1 ≤ k ≤ | t | : q[i− j + k] = t[k]

The phrase query q = 〈 abc 〉, as a concrete example, can thus be processed
using { 〈 ab 〉, 〈 bc 〉 } but not { 〈 ab 〉, 〈 cd 〉 }.

Second, we need to quantify the cost of processing a phrase query using
a specific query plan. As detailed above, in Chapter 3, different ways of
processing a phrase query (i.e., TaaT vs. DaaT) exist. In the worst case,
regardless of which query-processing method is employed, all posting lists
have to be read in their entirety. We model the cost of a query plan P as
the total number of postings that has to be read

c(P) =
∑
t∈P

df(t, C) .

While sizes of positional postings are not uniform (e.g., due to varying num-
bers of contained positions), suggesting collection frequency as a possibly
more accurate cost measure, we found little difference in practice. The sum
of document frequencies closely correlates with the response times of our sys-
tem. This is in line with [14], who found that aggregate posting-list lengths
is the single feature most correlated with response time for full query evalu-
ation, as required for phrase queries, which do not permit dynamic pruning.

7

Assembling the above definitions of coverage and cost, we now formally
define the problem of finding a cost-minimal query plan P for a phrase query
q and dictionary D as the following NP-hard optimization problem

Definition 1 Phrase-Query Optimization

arg min
P⊆D

c(P) s.t. covers(P ,q) .

Theorem 1 Phrase-Query Optimization is NP-hard.

Proof 1 (of Theorem 1) (NP-hardness of Phrase-Query Optimiza-
tion) Our proof closely follows Neraud [17], who establishes that deciding
whether a given set of strings is elementary is NP-complete. We show
through reduction from Vertex Cover that the decision variant of Phrase-
Query Optimization (i.e., whether a P with c(P) ≤ τ exists) is NP-
complete.

Let G(V,E) be an undirected graph with vertices V and edges E. We
assume that there are no isolated vertices, that is, each vertex has at least
one incident edge. Vertex Cover asks whether there exists a subset of
vertices V C ⊆ V having cardinality |V C | ≤ k, so that ∀ (u, v) ∈ E : u ∈
V C ∨ v ∈ V C, that is, for each edge one of its connected vertices is in the
vertex cover. We obtain an instance of Phrase-Query Optimization
from G(V,E) as follows:

• V = V ∪E – we introduce a word to the vocabulary for each vertex (v)
and edge (uv) in the graph;

• q =
⊎

(u,v)∈E
u uv v – we obtain the query q as a concatenation of all edge

words uv bracketed by the words of their source (u) and target (v);

• C = {q } – the document collection contains only a single document
that equals our query;

• D = V ∪
⋃

(u,v)∈E
{ 〈u uv 〉 } ∪

⋃
(u,v)∈E

{ 〈uv v 〉 } – each vertex word

(v) and edge word (uv) is indexed as well as each combination of edge
and source (uuv) and edge and target (uv v).

This can be done in polynomial time and space. Note also that, by con-
struction, ∀ t ∈ D : df(t, C) = 1 holds. We now show that G(V,E) has
a vertex cover with cardinality |V C | ≤ k iff there is a query plan P with
c(P) ≤ k + |E |.

8

(⇒) Observe that V C contains at least one of u or v for each u uv v
from the query, which incurrs a cost of |V C | ≤ k. We can complement
this to obtain a query plan P by adding exactly one term (〈uv 〉, 〈uuv 〉,
or 〈uv v 〉) for each u uv v from the query, incurring a cost of |E |. Thus,
c(P) ≤ k + |E | holds.

(⇐) Observe that P must cover each u uv v from the query in one of four
ways: (i) 〈u 〉〈uv 〉〈 v 〉, (ii) 〈u 〉〈uv v 〉, (iii) 〈uuv 〉〈 v 〉 (iv) 〈uuv 〉〈uv v 〉.
Whenever a u uv v from the query is covered as 〈uuv 〉〈uv v 〉, we replace
〈uuv 〉 by 〈u 〉, thus reducing case (iv) to case (ii). We refer to the query
plan thus obtained as P ′. Note that c(P ′) ≤ c(P), since all terms have the
same cost. P ′ contains exactly one term (〈uv 〉, 〈uuv 〉, or 〈uv v 〉) for each
u uv v from the query, incurring a cost of |E |. Let V C be the set of vertices
whose words are contained in P ′. We can thus write c(P ′) = |V C | + |E |.
V C is a vertex cover, since after eliminating case (iv), each u uv v from the
query is covered using either 〈u 〉 or 〈 v 〉. Thus, c(P ′) = |V C | + |E | ≤
c(P) ≤ |E |+ k ⇒ |V C | ≤ k.

4.1 Optimal Solution

If an optimal query plan P∗ exists, so that every term therein occurs exactly
once in the query, we can determine an optimal query plan using dynamic
programming based on the recurrence

Opt(i)=

df(q[1..i], C) : q[1..i] ∈ D

min
j<i

Opt(j) +min
k≤j+1∧
q[k..i]∈D

df(q[k..i], C)

 : otherwise

in time O(n2) and space O(n) where |q | = n. Opt(i) denotes the cost
of an optimal solution to the prefix subproblem q[1..i] – once the dynamic-
programming table has been populated, an optimal query plan can be con-
structed by means of backtracking. In the first case, the prefix subproblem
can be covered using a single term. In the second case, the optimal solution
combines an optimal solution to a smaller prefix subproblem, which is the
optimal substructure inherent to dynamic programming, with a single term
that covers the remaining suffix.

Theorem 2 If an optimal query plan P∗ for a phrase query q exists such
that

∀ t ∈ P∗ : | pos(t,q) | = 1 ,

then c(P∗) = Opt(|q |), that is, an optimal solution can be determined using
the recurrence Opt.

9

Proof 2 (of Theorem 2) Observe that Theorem 2 is a special case of The-
orem 3 for F = ∅. We therefore only prove the more general Theorem 3.

It entails that we can efficiently determine optimal query plans for phrase
queries with no repeated words.

Corollary 1 We can compute an optimal query plan for a phrase query q
in polynomial time and space, if

∀ 1 ≤ i ≤ |q | : | pos(q[i],q) | = 1 .

In practice this special case is important, since a large fraction of phrases
queries in typical workloads do not contain repeated words.

Otherwise, when there is no optimal query plan P∗ according to Theo-
rem 2, dynamic programming can not be directly applied, since there is no
optimal substructure. Consider, as a concrete problem instance, the phrase
query q = 〈 abxayb 〉 with dictionary D = { 〈 a 〉, 〈 b 〉, 〈x 〉, 〈 y 〉, 〈 ab 〉 } and
assume df(t, C) > 1 for t ∈ { 〈 a 〉, 〈 b 〉, 〈x 〉, 〈 y 〉 } and df(〈 ab 〉, C) = 1. Here,
the optimal solution P∗ = { 〈 a 〉, 〈 b 〉, 〈x 〉, 〈 y 〉 } does not contain an optimal
solution to any prefix subproblem q[1..i] (1 < i < |q |), which all contain the
term 〈 ab 〉.

However, as we describe next, an optimal query plan can be computed,
in the general case, using a combination of exhaustive search over sets of
repeated terms and a variant of our above recurrence.

For a phrase query q let the set of repeated terms be formally defined as

R = { t ∈ D | | pos(t,q) | > 1 } .

Let further F ⊆ R denote a subset of repeated terms. We now define a
modified document frequency that is zero for terms from F , formally

df ′(t, C) =

{
0 : t ∈ F

df(t, C) : otherwise

and denote by Opt′ the variant of our above recurrence that uses this mod-
ified document frequency.

Algorithm 1 considers all subsets of repeated terms and, for each of them,
extends it into a query plan for q by means of the recurrence Opt′. The
algorithm keeps track of the best solution seen and eventually returns it. Its
correctness directly follows from the following theorem.

Theorem 3 Let P∗ denote an optimal query plan for the phrase query q and
F = { t ∈ P∗ | | pos(t,q) | > 1 } be the set of repeated terms therein, then

c(F) + Opt′(|q |) ≤ c(P∗) .

10

Algorithm 1: Phrase-Query Optimization

Input: Phrase query q, dictionary D
Output: Cost optCost of optimal query plan

1 R = { t ∈ D : | pos(t,q) | > 1 }
2 optCost =∞
3 for F ∈ 2R do
4 cost = c(F) + Opt′(|q|)
5 if cost < optCost then
6 optCost = cost

7 return optCost

Proof 3 (of Theorem 3) Let P∗ denote an optimal query plan for the phrase
query q and

F = { t ∈ P∗ | | pos(t,q) | > 1 }
be the set of repeated terms and F̄ = P∗ \ F be the set of non-repeated
terms therein. Without loss of generality, we assume that q ends in a non-
repeated terminal term # having df(#, C) = 0 – this can always be achieved
by “patching” the query. We order non-repeated terms t ∈ F̄ by their single
item in pos(t,q) to obtain the sequence 〈 t1, . . . , tm 〉 with m =

∣∣ F̄ ∣∣. We
refer to the first position covered by ti, corresponding to the single item in
pos(t,q), as bi and to the last position as ei = (bi + | ti | − 1).

We now show by induction that

Opt′(ei) ≤
i∑

j=1

df(tj, C) = c(P∗)− c(F) .

(i = 1) We have to distinguish two cases: (i) b1 = 1, that is, q[1..e1] is
covered using a single non-repeated term – Opt’ selects this term according
to its first case. (ii) b1 > 1, that is, there is a set of repeated terms from
F that covers q[1..k] for some b1 − 1 ≤ k < e1 – Opt’ can select the same
repeated terms at zero cost and combine it with t1 that covers q[b1..e1]. Thus,
in both cases, Opt′(e1) ≤ df(t1, C).

(i → i + 1) We assume Opt′(ei) ≤
∑i

j=1 df(tj, C). Again, we have to
distinguish two cases: (i) ei ≥ bi+1 − 1, that is, the term before ti+1 is also
a non-repeated term. Thus, our recurrence considers Opt′(ei) + df(ti+1, C)
as one possible solution. (ii) e1 < bi+1 − 1, that is, there is a gap covered
by repeated terms between ti and ti+1 – Opt’ can select the same repeated
terms at zero cost and thus considers Opt′(ei)+0+df(ti+1, C) as one solution.
Thus, in both cases, Opt′(ei+1) ≤

∑i+1
j=1 df(tj, C).

11

The cost of Algorithm 1 depends on the number of repeated terms |R |,
which is small in practice and can be bounded in terms of the number of
positions in q occupied by a repeated word

r = | { 0 ≤ i ≤ |q | | | pos(q[i],q) | > 1 } | .

For our above example phrase query q = 〈 abxayb 〉 we obtain r = 4. Note

that |R | ≤ r·(r+1)
2

holds. Algorithm 1 thus has time complexity O(2
r·(r+1)

2 n2)
and space complexity O(n2) where |q | = n.

4.2 Approximation Algorithm

Computing an optimal query plan can be computationally expensive in the
worst case, as just shown. It turns out, however, that we can efficiently
compute an O(log n)-approximation, reusing results for Set Cover [21].

To this end, we convert an instance of our problem, consisting of a phrase
query q and a dictionary D with associated costs, into a Set Cover in-
stance. Let the universe of items U = { 1, . . . , |q | } correspond to positions
in the phrase query. For each term t ∈ D, we define a subset S t ⊆ U of
covered positions as

S t = { 1 ≤ i ≤ |q | | ∃ j ∈ pos(t,q) : j ≤ i < j + | t | } .

The collection of subsets of U is then defined as S = {S t | t ∈ D } and we
define cost(S t) = df(t, C) as a cost function.

For our concrete problem instance from above, we obtain U = { 1, . . . , 6 }
and S = { { 1, 4 } , { 2, 6 } , { 3 } , { 5 } , { 1 } } as a Set Cover instance.

We can now use the greedy algorithm that selects sets from S based
on their benefit-cost ratio, which is known to be a O(log n)-approximation
algorithm [21]. This can be implemented in O(n2) time and O(n2) space
where | q | = n.

Note that, as a key difference to the greedy algorithm described in [22],
which to the best of our knowledge does not give an approximation guaran-
tee, our greedy algorithm selects subsets (corresponding to terms from the
dictionary) taking into account the number of additional items covered and
the coverage already achieved by selected subsets.

12

5 Experimental Evaluation

We now describe our experimental evaluation. We begin with the description
of the datasets, followed by a comparison of the query-optimization methods
from Chapter 4.

5.1 Datasets

Document Collections. We use two real-world document collections for
our experiments:

• ClueWeb09-B [2] (CW) – more than 50 million web documents in En-
glish language crawled in 2009;

• The New York Times Annotated Corpus [4] (NYT) – more than 1.8
million newspaper articles published by The New York Times between
1987 and 2007.

Both document collections were processed using Stanford CoreNLP [3] for
tokenization. To make CW more handleable, we use boilerplate detection as
described in [12] and available in the DefaultExtractor of boilerpipe [1].

Queries # Distinct ø Length

YAGO 5,720,063 4,599,745 2.45
MSN 10,428,651 5,627,838 3.58

MSNP 131,857 105,825 3.37
NYTS 1,000,000 970,051 21.66
CWS 1,000,000 929,607 20.55

Table 5.1: Workload characteristics

13

Workloads. To reflect different use cases including web search, entity-
oriented search, and plagiarism detection, we consider four different work-
loads for our experimental evaluation:

• MSN is a query workload made available for research by a commer-
cial web search engine in 2009. It contains queries routed to the US
Microsoft search site and sampled over one month (May 2006).

• MSNP as the subset of explicit phrase queries from the aforementioned
query workload, i.e., queries enclosed in quotes (e.g., “national pandemic
influenza response plan”).

• YAGO is a workload of entity labels from the YAGO2 knowledge
base [11]. In its rdfs:label relation, it collects strings that may refer
to a specific entity, which are mined from anchor texts in Wikipedia.
For the entity Bob Dylan, as a concrete example, it includes among oth-
ers the entity labels “bob dylan”, “bob allen zimmerman”, and “robert
allen zimmerman”.

• NYTS/CWS as workloads consisting of 1,000,000 sentences randomly
sampled from the NYT and CW document collection, respectively.

Table 5.1 reports characteristics of the different workloads. Note that
we excluded single-word queries from all workloads. Interestingly, queries
are on average shorter in the YAGO workload (2.45 words) than in the web
search query workloads. By design, the NYTS and CWS workloads consist
of substantially longer phrase queries. We use document frequency as a
cost measure for all our experiments. As mentioned earlier, one could use
collection frequency instead. In practice, though, the two measures are highly
correlated and we did not observe big differences. Also, as a one-time pre-
processing performed using Hadoop and made available to all methods, we
compute n-gram statistics for the workload and document collection using
the method described in [6].

5.2 Experimental Results

The experiment examines the effect that the choice of query-optimization
method can have on query-processing performance. We consider three query-
optimization methods for this experiment: the greedy algorithm (GRD)
from [22], our greedy algorithm (APX) that comes with an approximation
guarantee, and our exponential exact algorithm (OPT). GRD considers terms

14

in increasing order of their document frequency, thus based on their selectiv-
ity, and chooses a term if it covers any yet-uncovered portion of the phrase
query. Originally designed to deal with bigrams only, we extend GRD to
break ties based on term length, and thus favor the longer term, if two terms
have the same document frequency.

To compare the three query-optimization methods, we built augmented
inverted indexes whose dictionaries include all phrases up to a specific maxi-
mum length l ∈ { 2, 3, 4, 5 }. Thus, for l = 5, all phrases of length five or less
are indexed. This allows us to study the behavior of the methods as more
terms to choose from become available.

Table 5.1 reports average query-processing costs for all sensible combi-
nations of our document collections and workloads for different choices of
l. When studying the behavior of the different query-optimization methods
on an augmented inverted index obtained for a specific choice of l, we ex-
clude queries from all workloads that consist of fewer than l words. This is
reasonable, since those queries can simply be processed by looking up the
corresponding n-gram and there is nothing to optimize.

As we can see from the table, the approximate solutions (GRD and APX)
work well, and their costs are close to the ones obtained with the optimal
algorithm (OPT). As expected, the performance of APX, our approxima-
tion algorithm, is closer to optimal than the performance of the heuristic
GRD. This difference is more pronounced on the NYTS and CWS workloads
consisting, by construction, of verbose queries.

Also, as expected, we observe that with increasing l, the number of post-
ing read per query decreases for all query optimizers. The improvements are
drastic when considering sentence workloads for all optimizers. For shorter
queries there is less room for query optimization, as observed in the YAGO
and MSNP workloads. For longer queries, in contrast, there is more room
for query optimization and thus an opportunity for OPT and APX to make
better choices, as observed on the NYTS/CWS workloads consisting of ver-
bose queries. This is even more noticeable for larger choices of l, as can be
seen from the results obtained for l = 4 on CWS where OPT processes less
than 50% of postings than GRD.

We also observe that a majority of queries does not contain repeated
words. Even otherwise the number of repetitions is typically small. This
has a favorable impact on the execution time of OPT. We observe that all
query-optimization methods perform similarly in terms of execution time.
Our optimization methods are thus robust and achieve superior performance
to GRD.

15

N
Y

T

G
R

D
A

P
X

O
P

T

l
=

2
l

=
3

l
=

4
l

=
5

l
=

2
l

=
3

l
=

4
l

=
5

l
=

2
l

=
3

l
=

4
l

=
5

Y
A

G
O

23
,0

70
18

,7
93

16
,9

78
15

,6
93

22
,9

97
18

,7
75

16
,9

70
15

,6
82

22
,8

54
18

,7
07

16
,9

61
15

,6
74

M
S

N
P

32
,4

66
21

,4
15

19
,8

66
19

,7
34

32
,1

77
21

,3
92

19
,8

57
19

,7
26

31
,7

96
21

,3
33

19
,8

44
19

,7
14

M
S

N
29

,7
55

22
,6

35
21

,5
96

21
,4

42
29

,5
96

22
,6

21
21

,5
90

21
,4

36
29

,3
00

22
,5

90
21

,5
82

21
,4

27
N

Y
T

S
23

8,
27

0
10

,4
66

1,
03

5
20

3
22

8,
11

7
9,

83
3

95
5

18
2

21
7,

06
8

9,
13

5
89

5
17

0

C
W

G
R

D
A

P
X

O
P

T

l
=

2
l

=
3

l
=

4
l

=
5

l
=

2
l

=
3

l
=

4
l

=
5

l
=

2
l

=
3

l
=

4
l

=
5

Y
A

G
O

14
2,

45
1

67
,0

46
58

,4
63

55
,6

51
14

0,
65

9
66

,3
98

58
,3

74
55

,5
72

13
8,

88
9

65
,9

38
58

,3
27

55
,5

37
M

S
N

P
28

1,
42

7
87

,7
05

77
,6

95
95

,1
80

27
5,

84
1

86
,9

86
77

,6
34

95
,1

45
26

8,
99

4
86

,4
13

77
,5

52
95

,1
03

M
S

N
28

5,
82

3
15

0,
52

6
16

3,
28

6
20

9,
29

4
28

2,
21

7
15

0,
13

0
16

3,
25

7
20

9,
27

8
27

7,
67

6
14

9,
82

9
16

3,
21

9
20

9,
25

0
C

W
S

2,
84

6,
71

1
22

1,
08

9
83

,1
70

53
,7

95
2,

69
2,

29
6

19
5,

13
2

43
,2

56
33

,1
67

2,
57

6,
27

3
18

6,
09

5
41

,8
74

32
,2

52

T
ab

le
5.

2:
Q

u
er

y
op

ti
m

iz
at

io
n

re
su

lt
s

(#
p

os
ti

n
gs

re
ad

)

16

6 Related Work

Williams et al. [22] put forward the combined index to support phrase queries
efficiently. It assembles three levels of indexing: (i) a first-word index as a
positional inverted index, (ii) a next-word index that indexes all bigrams con-
taining a stopword, and (iii) a phrase index with popular phrases from a query
log. Its in-memory dictionary is kept compact by exploiting common first
words between bigrams. Query processing escalates through these indexes –
first it consults the phrase index and, if the phrase query is not found therein,
processes it using bigrams and unigrams from the other indexes. Transier
and Sanders [20] select bigrams to index based only on characteristics of the
document collection. Selecting bigrams makes sense in settings where phrase
queries are issued by human users and tend to be short – as observed for
web search by Spink et al. [18]. Variable-length multi-word sequences have
previously been considered by Chang and Poon [8] in their common phrase
index, which builds on [22], but indexes variable-length phrases common in
the workload.

17

7 Conclusion

We have presented a comprehensive approach to process phrase queries using
an inverted index whose dictionary is augmented by variable-length word
sequences. We studied the problem of query optimization, to determine cost-
efficient plans for phrase queries on a given index. We also proposed solutions
to select an optimal (or close to optimal) query plan for processing a phrase
query over an augmented inverted index. Lastly, we performed an extensive
evaluation of our approaches using real-world datasets.

18

Bibliography

[1] Boilerpipe
http://code.google.com/p/boilerpipe/.

[2] ClueWeb09
http://corpus.nytimes.com.

[3] Stanford CoreNLP
http://nlp.stanford.edu/software/corenlp.shtml.

[4] The New York Times Annotated Corpus
http://corpus.nytimes.com.

[5] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti. Scalable ad-
hoc entity extraction from text collections. PVLDB, 1(1):945–957, 2008.

[6] K. Berberich and S. J. Bedathur. Computing n-gram statistics in mapre-
duce. In EDBT, pages 101–112, 2013.

[7] S. Büttcher, C. L. A. Clarke, and G. V. Cormack. Information Retrieval
- Implementing and Evaluating Search Engines. The MIT Press, 2010.

[8] M. Chang and C. K. Poon. Efficient phrase querying with common
phrase index. Inf. Process. Manage., 44(2):756–769, 2008.

[9] P. Ferragina and R. Venturini. The compressed permuterm index. ACM
Transactions on Algorithms, 7(1):10, 2010.

[10] M. Hagen, M. Potthast, A. Beyer, and B. Stein. Towards optimum query
segmentation: in doubt without. In CIKM, pages 1015–1024, 2012.

[11] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2:
A spatially and temporally enhanced knowledge base from wikipedia.
Artif. Intell., 194:28–61, 2013.

19

[12] C. Kohlschütter, P. Fankhauser, and W. Nejdl. Boilerplate detection
using shallow text features. In WSDM, pages 441–450, 2010.

[13] Y. Li, B.-J. P. Hsu, C. Zhai, and K. Wang. Unsupervised query seg-
mentation using clickthrough for information retrieval. In SIGIR, pages
285–294, 2011.

[14] C. Macdonald, N. Tonellotto, and I. Ounis. Learning to predict response
times for online query scheduling. In SIGIR, pages 621–630, 2012.

[15] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line
string searches. SIAM J. Comput., 22(5):935–948, 1993.

[16] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B.
Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant,
S. Pinker, M. A. Nowak, and E. L. Aiden. Quantitative Analysis of
Culture Using Millions of Digitized Books. Science, 2010.

[17] J. Neraud. Elementariness of a finite set of words is co-np-complete.
ITA, 24:459–470, 1990.

[18] A. Spink, D. Wolfram, M. B. J. Jansen, and T. Saracevic. Searching the
web: The public and their queries. Journal of the American Society for
Information Science and Technology, 52(3):226–234, 2001.

[19] E. Stamatatos. Plagiarism detection based on structural information.
In CIKM, pages 1221–1230, 2011.

[20] F. Transier and P. Sanders. Out of the box phrase indexing. In SPIRE,
pages 200–211, 2008.

[21] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[22] H. E. Williams, J. Zobel, and D. Bahle. Fast phrase querying with
combined indexes. ACM Trans. Inf. Syst., 22(4):573–594, 2004.

[23] J. Zobel and A. Moffat. Inverted files for text search engines. ACM
Comput. Surv., 38(2):6, 2006.

20

Below you find a list of the most recent research reports of the Max-Planck-Institut für Informatik. Most
of them are accessible via WWW using the URL http://www.mpi-inf.mpg.de/reports. Paper copies
(which are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address
below.

Max-Planck-Institut für Informatik
– Library and Publications –
Campus E 1 4

D-66123 Saarbrücken

E-mail: library@mpi-inf.mpg.de

MPI-I-2014-5-001 M. Dylla, M. Theobald Learning Tuple Probabilities in Probabilistic Databases

MPI-I-2013-RG1-002 P. Baumgartner, U. Waldmann Hierarchic superposition with weak abstraction

MPI-I-2013-5-002 F. Makari, B. Awerbuch, R. Gemulla,
R. Khandekar, J. Mestre, M. Sozio

A distributed algorithm for large-scale generalized
matching

MPI-I-2013-1-001 C. Huang, S. Ott New results for non-preemptive speed scaling

MPI-I-2012-RG1-002 A. Fietzke, E. Kruglov, C. Weidenbach Automatic generation of inductive invariants by
SUP(LA)

MPI-I-2012-RG1-001 M. Suda, C. Weidenbach Labelled superposition for PLTL

MPI-I-2012-5-004 F. Alvanaki, S. Michel, A. Stupar Building and maintaining halls of fame over a database

MPI-I-2012-5-003 K. Berberich, S. Bedathur Computing n-gram statistics in MapReduce

MPI-I-2012-5-002 M. Dylla, I. Miliaraki, M. Theobald Top-k query processing in probabilistic databases with
non-materialized views

MPI-I-2012-5-001 P. Miettinen, J. Vreeken MDL4BMF: Minimum Description Length for Boolean
Matrix Factorization

MPI-I-2012-4-001 J. Kerber, M. Bokeloh, M. Wand,
H. Seidel

Symmetry detection in large scale city scans

MPI-I-2011-RG1-002 T. Lu, S. Merz, C. Weidenbach Towards verification of the pastry protocol using TLA+

MPI-I-2011-5-002 B. Taneva, M. Kacimi, G. Weikum Finding images of rare and ambiguous entities

MPI-I-2011-5-001 A. Anand, S. Bedathur, K. Berberich,
R. Schenkel

Temporal index sharding for space-time efficiency in
archive search

MPI-I-2011-4-005 A. Berner, O. Burghard, M. Wand,
N.J. Mitra, R. Klein, H. Seidel

A morphable part model for shape manipulation

MPI-I-2011-4-003 J. Tompkin, K.I. Kim, J. Kautz,
C. Theobalt

Videoscapes: exploring unstructured video collections

MPI-I-2011-4-002 K.I. Kim, Y. Kwon, J.H. Kim,
C. Theobalt

Efficient learning-based image enhancement :
application to compression artifact removal and
super-resolution

MPI-I-2011-4-001 M. Granados, J. Tompkin, K. In Kim,
O. Grau, J. Kautz, C. Theobalt

How not to be seen inpainting dynamic objects in
crowded scenes

MPI-I-2010-RG1-001 M. Suda, C. Weidenbach,
P. Wischnewski

On the saturation of YAGO

MPI-I-2010-5-008 S. Elbassuoni, M. Ramanath,
G. Weikum

Query relaxation for entity-relationship search

MPI-I-2010-5-007 J. Hoffart, F.M. Suchanek,
K. Berberich, G. Weikum

YAGO2: a spatially and temporally enhanced
knowledge base from Wikipedia

MPI-I-2010-5-006 A. Broschart, R. Schenkel Real-time text queries with tunable term pair indexes

MPI-I-2010-5-005 S. Seufert, S. Bedathur, J. Mestre,
G. Weikum

Bonsai: Growing Interesting Small Trees

MPI-I-2010-5-004 N. Preda, F. Suchanek, W. Yuan,
G. Weikum

Query evaluation with asymmetric web services

MPI-I-2010-5-003 A. Anand, S. Bedathur, K. Berberich,
R. Schenkel

Efficient temporal keyword queries over versioned text

MPI-I-2010-5-002 M. Theobald, M. Sozio, F. Suchanek,
N. Nakashole

URDF: Efficient Reasoning in Uncertain RDF
Knowledge Bases with Soft and Hard Rules

MPI-I-2010-5-001 K. Berberich, S. Bedathur, O. Alonso,
G. Weikum

A language modeling approach for temporal
information needs

MPI-I-2010-1-001 C. Huang, T. Kavitha Maximum cardinality popular matchings in strict
two-sided preference lists

MPI-I-2009-RG1-005 M. Horbach, C. Weidenbach Superposition for fixed domains

MPI-I-2009-RG1-004 M. Horbach, C. Weidenbach Decidability results for saturation-based model building

MPI-I-2009-RG1-002 P. Wischnewski, C. Weidenbach Contextual rewriting

MPI-I-2009-RG1-001 M. Horbach, C. Weidenbach Deciding the inductive validity of ∀∃∗ queries

MPI-I-2009-5-007 G. Kasneci, G. Weikum, S. Elbassuoni MING: Mining Informative Entity-Relationship
Subgraphs

MPI-I-2009-5-006 S. Bedathur, K. Berberich, J. Dittrich,
N. Mamoulis, G. Weikum

Scalable phrase mining for ad-hoc text analytics

MPI-I-2009-5-005 G. de Melo, G. Weikum Towards a Universal Wordnet by learning from
combined evidenc

MPI-I-2009-5-004 N. Preda, F.M. Suchanek, G. Kasneci,
T. Neumann, G. Weikum

Coupling knowledge bases and web services for active
knowledge

MPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for scalable management of RDF
data

MPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for scalable management of RDF
data

MPI-I-2009-5-002 M. Ramanath, K.S. Kumar, G. Ifrim Generating concise and readable summaries of XML
documents

MPI-I-2009-4-006 C. Stoll Optical reconstruction of detailed animatable human
body models

MPI-I-2009-4-005 A. Berner, M. Bokeloh, M. Wand,
A. Schilling, H. Seidel

Generalized intrinsic symmetry detection

MPI-I-2009-4-004 V. Havran, J. Zajac, J. Drahokoupil,
H. Seidel

MPI Informatics building model as data for your
research

MPI-I-2009-4-003 M. Fuchs, T. Chen, O. Wang,
R. Raskar, H.P.A. Lensch, H. Seidel

A shaped temporal filter camera

MPI-I-2009-4-002 A. Tevs, M. Wand, I. Ihrke, H. Seidel A Bayesian approach to manifold topology
reconstruction

MPI-I-2009-4-001 M.B. Hullin, B. Ajdin, J. Hanika,
H. Seidel, J. Kautz, H.P.A. Lensch

Acquisition and analysis of bispectral bidirectional
reflectance distribution functions

MPI-I-2008-RG1-001 A. Fietzke, C. Weidenbach Labelled splitting

MPI-I-2008-5-004 F. Suchanek, M. Sozio, G. Weikum SOFIE: a self-organizing framework for information
extraction

MPI-I-2008-5-003 G. de Melo, F.M. Suchanek, A. Pease Integrating Yago into the suggested upper merged
ontology

MPI-I-2008-5-002 T. Neumann, G. Moerkotte Single phase construction of optimal DAG-structured
QEPs

MPI-I-2008-5-001 G. Kasneci, M. Ramanath, M. Sozio,
F.M. Suchanek, G. Weikum

STAR: Steiner tree approximation in
relationship-graphs

MPI-I-2008-4-003 T. Schultz, H. Theisel, H. Seidel Crease surfaces: from theory to extraction and
application to diffusion tensor MRI

MPI-I-2008-4-002 D. Wang, A. Belyaev, W. Saleem,
H. Seidel

Estimating complexity of 3D shapes using view
similarity

MPI-I-2008-1-001 D. Ajwani, I. Malinger, U. Meyer,
S. Toledo

Characterizing the performance of Flash memory
storage devices and its impact on algorithm design

MPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenbach Superposition for finite domains

MPI-I-2007-5-003 F.M. Suchanek, G. Kasneci,
G. Weikum

Yago : a large ontology from Wikipedia and WordNet

