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Abstract This paper proposes a two-level scheduler for dynamically scheduling a con-

tinuous stream of sequential and multi-threaded batch jobs on large-scale grids, made

up of interconnected clusters of heterogeneous single-processor and/or symmetric mul-

tiprocessor machines. The scheduler aims to schedule arriving jobs respecting their

computational and deadline requirements, and optimizing the hardware and software

resource usage. At the top of the hierarchy a lightweight Meta-Scheduler classifies in-

coming jobs according to their requirements, and schedules them among the underlying

resources balancing the workload. At cluster level a Flexible Backfilling algorithm car-

ries out the job machine associations by exploiting dynamic information about the

environment. Scheduling decisions at both the levels are based on job priorities com-

puted by using different sets of heuristics. The different proposals have been compared

through simulations. Performance figures show the applicability of our approach.

Keywords Multicriteria Job scheduling · Meta-scheduler · Workload Balancing ·
Grid

1 Introduction

To build a grid infrastructure requires the development and deployment of middleware,

services, and tools. At middleware level the scheduler plays a major role in order

to efficiently and effectively schedule submitted jobs on the available resources. The
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objective of the scheduler is to assign tasks to specific resources maximizing the overall

resource utilization and guaranteeing the QoS required by the applications. In general,

we can distinguish three different scheduling architectures: Centralized, Distributed,

and Hierarchical [11], [2]. The centralized ones can be used for managing single or

multiple resources located either in a single or multiple domains. It can only support

uniform scheduling policy, and suits well for cluster management. This kind of scheduler

architecture is not suitable for grids. The distributed one exploits a distinct scheduler

to manage the machines belonging to a site. In this model, the schedulers interact

among themselves to decide on which resources to allocate jobs being executed.

However, since the information describing the status of the remote resources and

jobs is not available at a single scheduler, to build efficient schedules can be a not easy

task. This scheduler architecture is suitable for grids. The hierarchical model is also

suitable for grids. It is a combination of the centralized and distributed models. The

scheduler at the top of the hierarchy is called meta-scheduler, it interacts with the

local schedulers to make scheduling decisions. This model is considered to be the more

suitable for grid environments.

In this paper we describe the study conducted to develop a two-level scheduler

to dynamically schedule a continuous stream of independent batch jobs in large-scale

grids. We investigated a novel solution to schedule jobs on a set of clusters by balancing

the workload and respecting the job QoS requirements. The scheduler aims to schedule

arriving jobs respecting their deadlines, and optimizing the utilization of hardware

resources as well as software resources.

At the top of the hierarchy, a Meta-Scheduler assigns a priority value to each job,

and then dispatches jobs to the underling clusters by means of two scheduling functions.

At cluster level, a Flexible Backfilling algorithm [6] is adopted as local schedulers.

The rest of the paper is organized as follows. Section 2 describes some of the

most common job schedule solutions. Section 3 gives a description of the scheduling

problem we consider. Section 4 describes the solution we propose. Section 5 outlines and

evaluates the proposed solutions through simulations. Finally, conclusion and future

work are described in Section 6.

2 Related work

In the past, a lot of research effort was devoted to understand and develop job schedul-

ing algorithms [7], [8], [10], [12] that are classified according to several taxonomies [5],

[9].

EASY Backfilling [14] is one of the common used scheduling algorithm. It requires

that each job specifies an estimation of its execution time. It selects queued jobs ac-

cording to the First-Come-First-Served (FCFS) policy [16], and in case of resource

shortage to execute the first queued job, it makes for such job a resource reservation.

Jobs back in the queue may be scheduled out of order only if they do not delay the job

at the top of the queue. A variant of Backfilling is the Flexible Backfilling one. This

variant was obtained from the original EASY Backfilling by prioritizing jobs according

to scheduler goals. Jobs are then queued according to their priority values, and selected

for scheduling (including candidates for backfilling) according to this priority order.

In the literature different schedule approaches exploiting a hierarchical architecture

are proposed. In [15], a multi-level scheduler integrated in the YML framework is
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described. YML focuses on two major aspects: the development of parallel applications

and their execution on grid environments. It has multiple objectives:

– to schedule a set of YML components with input data and precedence constraints

issued from one or more users;

– to provide computing resources for these components in a multi-middleware envi-

ronment;

– to offer users a guarantee in terms of the application completion time;

– to dynamically reorganize the schedule if unexpected events occur.

YML is based on an economic approach on resources, and defines different entities

(e.g. resource provider/consumer) that interact within the grid infrastructure.

OAR [4] is a multilevel batch scheduler based on Backfilling. Jobs priorities are

managed through submission queues.

Each queue has its own admission rules, scheduling policy and priority. Reservations

are a special case in which users ask for a time slot on a specific resource. The jobs

schedule is computed by a module called “meta-schedule” which manages reservations

and queues.

KOALA [13] is a two-level grid scheduler that assigns to each submitted job a

priority value that could be high or low. The job priority is used to determine the

importance of a job relative to other jobs in the system w.r.t. their QoS requirements.

The submitted jobs can belong to the low-priority queue or the high-priority queue.

KOALA scans the queues to find jobs that can be scheduled.

VIOLA [1], [17] is characterized by a meta-scheduling service, which is able to

co-allocate tasks on different resources in multiple domains. The meta-scheduler can

interact with different scheduling systems exploited in each domain. Its main function

is to negotiate the reservation of accessible resources, which are managed by their

respective local scheduling systems. The goal of the negotiation is to determine a

common time slot where all required resources are available to start a job execution.

3 Problem description

In our study, we consider a continuous stream of batch jobs, which arrive to the system

and are stored into a single job queue. We suppose that a job j may be sequential or

multi-threaded, that jobs are allocated to a machine according to the space sharing pol-

icy, and that each job is independent, i.e the execution of a job does not depend on the

execution or results of others jobs. We also assume that all jobs are not preemptable,

and that mechanisms to notify configuration changes, such as job submission/ending,

are available in the computing platform. The computing grid is a dedicated one com-

posed by many independent clusters of heterogeneous processing nodes, which can be

a single-processor and/or SMP machines. Each cluster includes machines located at a

specific site. Links among machines belonging to the same cluster are low-latency and

high-bandwidth, while clusters are connected by the internet infrastructure. Further-

more, we suppose to have a set L of available software licenses (referred as license/s in

the rest of the paper), with each license l ∈ L executable on each machine present in

the system, and that, at any time, the number of active licenses must not be greater

than their availability. Each job can require a subset lc ⊆ L of licenses to be executed.

Submitted jobs, machines and licenses are annotated with information describing

computational requirements and hardware/software features, respectively. Each job is
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described by an identifier, a submission and deadline time, an estimation of its du-

ration, a benchmark score, which represents the computational power of the machine

used for the time estimation, and the number and type of processors and licenses re-

quested. Machines are described by a benchmark score, the number and type of CPUs

and licenses they can run. Each license is described by a type and its availability. The

scheduler aims to schedule arriving jobs respecting their deadlines and user peculiari-

ties, and optimizing license and machine usage.

4 The two-level scheduler architecture

Figure 1 shows the proposed two-level scheduler architecture. At the highest level there

is the Meta-Scheduler (MS), which manages the queue to which users submit their jobs,

and makes decisions to dispatch jobs to the lower-level scheduling instances, the Local

Schedulers (LSs). A LS manages a job queue local to a cluster. It makes decisions to

schedule jobs on the cluster machines. MS and LS classify incoming jobs according

to two different sets of heuristics, in which each heuristics manages a specific problem

constraint (e.g. deadline, requested licenses, user peculiarities). To each heuristics is as-

sociated a weight, which fixes the importance of the heuristics according to the system

management policies adopted by an installation. The classification phase at both the

levels exploits the same job attributes, because they are representative of the job QoS

requirements. MS computes job priorities only using information describing the sub-

mitted jobs. Afterwards, jobs are dispatched to LSs according to the MS’s classification

and the workload on each cluster. At LS level, the computation of job priorities also

exploits dynamic information about the status of hardware/software resources, and job

queued times. As a result, the complexity of the heuristics at LS level is greater than

those used at MS level. According to the LS’s classification and the hardware/software

resource usage, queued job are scheduled to the available computational resources.

Job priorities are computed at LS level at each new scheduling event, which is job

queued or ending. In the considered context, since new jobs can be submitted to the

system at any time, the job stream length changes dynamically. Therefore, in order to

meet job deadlines and to avoid wasting resources, fast scheduling decisions are needed

to prevent computational resources from remaining idle, and scheduling decisions from

aging. Moreover, computing the priority value at each new scheduling event allows to

better meet the scheduler goals [3].

Meta-Scheduler. The MS dispatches jobs to clusters according to a policy based

on two functions: Load and Ordering. Load aims to dispatch jobs among clusters bal-

Fig. 1 Structure of the two-level scheduler architecture.
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ancing the workload by assigning a job to the less loaded cluster. The workload on a

cluster is estimated by summing the load due to the jobs queued to it. The load due to

a job is defined as its estimated execution time multiplied by the benchmark value of

the machine on which this time is computed. Ordering aims to balance the number of

jobs with equal priority in each cluster queue. When the clusters workload is balanced,

Ordering allows to spread jobs with the same priority to different clusters, in such a

way that higher priority jobs can be executed before the lower priority ones. According

to Load, clusters are ranked, and a job is scheduled to the cluster with the smallest

rank. It works according to the following principle:

The best cluster to assign a job is the idle one or the one with the minimum load,

due to the jobs with priority equal to or greater than the priority of the job currently

analyzed.

To estimate the workload on each cluster, an array of max positions is defined

for each one. max is the number of possible priority values that MS can assign to

submitted jobs. Each priority value corresponds to an array position, which stores the

amount of workload due to jobs with the corresponding priority value, plus the amount

of load due to jobs with higher priority. Accordingly, the first array position (when the

array elements are arranged in increasing order) stores the workload due to all the jobs

queued to a LS. When a job is assignable to some eligible clusters, the problem is to

find the cluster that can run it as soon as possible, also improving the number of jobs

that are executed respecting their QoS requirements. Supposing to have a job j with

priority P . Load uses P to access the cluster arrays. The first found cluster with 0 in

the P -th array position is the chosen one for the job assignment. Indeed, according to

the above principle, it is considered an idle cluster, and it is the one that potentially

can quickly start the execution of the job. This approach is also valid when there are

some queued jobs that have lower priority than the analyzed one. When the value

stored in the P -th position of each array is greater than 0, the job is queued to the LS

whose array stores in that position the lowest value. It will be selected to be scheduled

later, when the execution of higher priority jobs, and of jobs with the same priority,

but early arrived, is completed.

When there are more clusters with the same value in the P -th position, Load cannot

be enough to guarantee that jobs are executed by respecting their QoS requirements.

Randomly choosing a cluster in such subset, it can happen that a number of jobs with

the same priority could be assigned to only few clusters. This way could lead slower

priority jobs to be executed before than higher priority ones. To balance the number

of jobs with equal priority in each cluster queue, the Ordering function is exploited. It

works according to the following principle:

The best cluster to assign a job is the one with the minimum number of queued

jobs, with priority equal to the priority of the job currently analyzed.

Ordering exploits a technique analogous to that used by the Load function. It

uses an array of max positions for each cluster. Each priority value corresponds to an

array position, which stores the number of queued jobs with the corresponding priority

value, plus the number of queued jobs with higher priority than the one specified by

the array position. When there are more clusters with the same number of jobs with

equal priority in the P -th position, the one to dispatch a job is randomly selected.

In order to classify submitted jobs, at this level we exploit three heuristics: Dead-

Line, Licenses and User, with each one managing an aspect of the considered problem.

The job priority is computed summing the partial priority values ∆p,j computed by

each heuristics.
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Fig. 2 Graphical representation of the [0, E[margin] ∗ 2] interval subdivision.

Deadline aims to improve the number of jobs that execute respecting their deadline.

Jobs closer to their deadline get a boost in preference that gives them an advantage

in scheduling. Deadline requires an estimation of the job execution time in order to

evaluate its completion time with respect to the current wall-clock time. It evaluates

how much a job is “faraway” from the time at which it has to start its execution to

respect its deadline. Its contribution ∆p,j to the priority of a job j is proportional to

the “proximity” of the time at which it has to start its execution to meet its deadline.

Since MS has no knowledge about resources, Deadline classifies jobs as a function of

information describing the job computational requirements.

Let marginj be the difference between the time at which j must start its execution

in order to respect its deadline, and its submission time. The average margin value

E[margin] is computed as: E[margin] = (
∑N

j=1marginj)/N , where N is the window

size, which specifies the number of jobs analyzed before j, and contributes to compute

E[margin]. A job j is considered a “proximity” one if marginj < E[margin], other-

wise it is considered to be a “faraway” one. To compute ∆p,j , Deadline considers the

double value of E[margin], and a job classification policy according to an exponential

distribution, in which the number of jobs with priority p is exponentially greater than

the number of jobs with priority p − 1. The use of E[margin] ∗ 2 permits us to over-

estimate the time interval in which a job is a “proximity” one, while the exponential

priority distribution permits us to limit the number of jobs to which the highest priority

is assigned. This way allows to better satisfy the job QoS requirements, by exploiting

a finer granularity in the job priority process assignment.

The following expression formalizes the priority distribution we used to configure

the Deadline heuristics. Let s and z be two integers representing two different priority

values, with s < z, let #jobz be the number of jobs with priority value equal to z, then

Deadline behaves at the best when:

#jobz =
#jobs
2z−s

In order to assign priority values to jobs using their margin values, the interval

[0, E[margin] ∗ 2] is divided into s as depicted in Figure 2. The subintervals interval

are computed as: interval(max−k) = [Sk, Sk+1] with k = 0, ...,max− 1, where max is

the highest priority value a job can assume, and Sk is computed as:


S0 = 0

Sk = Sk−1 +minunity · 2k

where minunity is given by: minunity = (2 ∗ E[margin])/
∑max

k=1 2k.
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Finally, ∆p,j is fixed equal to (max−k), i.e. equal to the index of interval to which

the job margin value belongs to. In this way, ∆p,j is computed not considering the

estimated job execution time. As a result, jobs with both large estimated execution

time and large margin value obtain lower priorities than jobs with small estimated

execution time and small margin. It can lead to execute large jobs not respecting

their deadline. To face this aspect we refine the computation of ∆p,j . We consider the

ratio rj computed as: rj = marginj/estimatedj , where estimatedj is the estimated

execution time of j. rj ≥ 1 means that the job j can be classified as a “faraway” one,

and, in this case, ∆p,j is decreased as:


∆p,j = ∆p,j −

⌊
rj
⌋

if (∆p,j −
⌊
rj
⌋
) ≥ 0

∆p,j = 0 if (∆p,j −
⌊
rj
⌋
) < 0

rj < 1 means that the job j can be classified as a “proximity” one, and ∆p,j

is increased as follows. Let consider the interval [0, 1] divided into subintervals subw
computed as: subw = [ 1

2w+1 ,
1

2w ] with w = 0, ...,max− 1, where w is the index of the

subinterval. Then we identify to which subw ri belongs to, and ∆p,j is updated as:

∆p,j = ∆p,j + w if (∆p,j + w) ≤ max

∆p,j = max if (∆p,j + w) > max

The License heuristics computes ∆p,j to favor the execution of jobs that improve

the contention on the licenses usage. ∆p,j is computed as a function of the number

of licenses required by a job. Jobs asking for a high number of licenses get a boost in

preference that gives them an advantage in scheduling. This pushes jobs using many

licenses to be scheduled first, this way releasing a number of licenses.

Without lost of generality, at this level, we assume that all the grid machines are

able to run all the available licenses. When licenses need to be considered for job

assignment to individual clusters, a simple filter could be used to select the subset of

machines, and the related clusters, that support the execution of the licenses requested

by a job.

To compute ∆p,j the heuristics considers the number |L| of different kind of licenses

available in the system. The interval [0, |L|] is divided in max subintervals of the

same size. Each subinterval corresponds to a priority value (e.g. at the first subinterval

corresponds to the lowest priority value). ∆p,j is computed as a function of the number

of licenses requested by a job, and it is fixed equal to the related subinterval index.

The User heuristics computes ∆p,j in order to execute a job j respecting the user

peculiarities. We defined three classes of users: Gold, Silver, and Regular, to which

are assigned decreasing priority values. Such priority values can be function of several

parameters, such as user importance, kind of resources/services requested, kind of

project.

Local-Scheduler. As local scheduler we adopted a Flexible Backfilling algorithm

that selects the machines suitable to perform a job considering the number of processors

and the licenses exploitable on a machine. At this level, the priority value assigned to

each job j is the weighted sum of the contributions ∆p,j computed by four heuristics:

Aging, Deadline, Licenses, and Wait Minimization, which are obtained from the ones
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proposed in [3]. Job priorities may be recomputed at each new scheduling event, which

is job queued or ending.

The goal of Aging is to avoid job starvation. It computes ∆p,j as a function of the

age that a job reached in the system, higher scores are assigned to jobs queued for a

longer time. ∆p,j of a job j is computed as:

∆p,j = WA · (wallclock − submitj)

where WA is the heuristics weight, wallclock is the value of the system wall-clock

at which the heuristics is computed, and submitj is the time at which the job j was

submitted to the scheduler.

The Deadline heuristics aims to maximize the number of jobs that terminate their

execution within their deadline. It requires an estimation of the job execution time.

The heuristics assigns a minimum value min to any job whose deadline is far from

its estimated termination time. When the distance between the completion time and

the deadline is smaller than a threshold value max, the score assigned to the job is

increased in inverse proportion with respect to such distance. The min and max values

are defined by system administrators. They identify the weight of the heuristics. The

∆p,j value is set to min for jobs exceeding their deadline before to be scheduled.

A job is scheduled on the first found eligible machine with the highest computing

power. Since jobs with a closer deadline receive higher priority, this strategy should im-

prove the number of jobs executed within their deadline. Let estimatedj and deadlinej
be the estimated execution time and the deadline of job j, respectively. Let us define:

nxtj = estimatedj ·
bmm̄

bmm

extj = wallclock + nxtj

tj = deadlinej − k · nxtj

where bmm is the most powerful cluster machine m (optimistic prediction), and

bmm̄ is the power of the machine m̄ used to estimate the execution time of j, nxtj
denotes the job’s estimated execution time, extj denotes the estimated termination

time of the job with respect to the current wall-clock time, and tj is the time from

which the job must be evaluated to meet its deadline (i.e. the job priority is updated

also considering its deadline). k is a constant value fixed by system administrator,

which permits to over estimate nxtj . ∆p,j is computed as:

∆p,j =


min if extimej ≤ tj

a(extj − tj) +min if γ = true

min if extj > deadlinej

where a is the angular coefficient of the straight line passing through the points

(tj ,min), and (deadlinej ,max) and γ is true if tj < extj ≤ deadlinej .

The Licenses heuristics computes ∆p,j to favor the execution of jobs that increase

the critical degree of licenses. The rationale is that when these jobs end their execution,

a set of licenses may become non critical, and the scheduler is able to take more flexible



9

scheduling choices. A license becomes critical when there is a number of requests greater

than the available number of its copies. The priority updating value is computed as a

function of the licenses, critical and not critical, requested by a job. It assigns a higher

score to jobs requiring a larger number of critical licenses. Let us define:

ρl = requestsl/totall

lc,j = l ∈ licenses required by j|ρl > 1

lc̄,j = l ∈ licenses required by j|ρl ≤ 1

where requestsl specifies how many jobs are requesting the license l, totall specifies

how many copies of l can be simultaneously active, and a license is considered critical

if ρl > 1. ∆pj is computed as:

∆p,j = WL · (
∑
l∈lc̄,j

ρl + d ·
∑
l∈lc,j

ρl)

where WL is the heuristics weight, and d = max|
⋃
∀j lc̄,j |, 1.

The Wait Minimization heuristics aims to favor jobs with a shorter estimated exe-

cution time. The rationale is that shorter jobs are executed as soon as possible in order

to release the resources they have reserved, and to improve the average waiting time

of the jobs in the scheduling queue. ∆p,j is computed as:

∆p,j = WWM ·
minextj
estimatedj

where WWM is the heuristics weight, and minextj = min(estimatedj | j ∈ NJQ),

with NJQ set of jobs queued to a cluster.

5 Performance Evaluation

In this section we present the evaluation of the scheduling solution carried out by

the proposed two-level scheduler. The objective is to investigate the feasibility of the

scheduling policies and the job classifications we propose. To this end, experiments

were conducted by using the event-based simulator described in [3]. Three different

cases were evaluated:

1. MS Heuristics: MS classifies submitted jobs and dispatches them to LSs. At LS

level, scheduling decision are made by means of a Flexible Backfilling algorithm,

which exploits job priorities computed by MS. Any job prioritization is performed

at LS level. Higher the job priority is, higher the position of the job in LSs’ queues

is.

2. LS Heuristics: MS classifies submitted jobs and dispatches them to LSs, which

prioritize incoming job. LSs recompute job priorities at each scheduling event (sub-

mission/ending of a job). This introduce a computational cost not present in the

previous case. LS queued jobs are scheduled by means of a Flexible Backfilling

algorithm.



10

3. NO Heuristics: Jobs are scheduled at both MS and LS level according to the FCFS

order without computing priorities. At LS an EASY Backfilling algorithm is used.

The quality of the schedules computed by the proposed scheduler was evaluated by

using the following metrics:

– Percentage of workload elaborated by each cluster. It shows the ability of the poli-

cies adopted at MS level to dispatch jobs by balancing the workload among clusters.

– Percentage of jobs executed not respecting their deadline. It shows the ability of

the proposed solution to schedule jobs in such a way it maximizes the number of

jobs executed respecting this QoS requirements.

– Percentage of system and license usage. It shows how the job classification and

scheduling solutions adopted both at MS and LS level allow a fruitful exploitation

of the available processors and licenses.

– Average slowdown of jobs without deadline. It shows how the system load delays

the execution of such jobs. It is computed as: AverageSlowdown(j) = (Twj +

Tej/Tej)/# of processed jobs, where Twj and Tej are the waiting and the exe-

cution time of the job j, respectively. Closer the AverageSlowdown to 1, greater

the ability of the scheduler to avoid the job queues increasing is.

The evaluation was conducted by using four different streams of 5000 jobs generated

according to a negative exponential distribution with jobs inter-arrival time Ta equal to

0, 5, 10, and 15 simulator time unit. It permits us to evaluate the behavior of MS when

the job submission rate increases. We simulated a grid composed by 225 machines,

distributed on four clusters, called Cluster1, Cluster2, Cluster3 and Cluster4, each one

including 120, 60, 30, and 15 machines, respectively. To each license we associate the

parameter licenses ratio that specifies its maximum number of copies concurrently

usable, expressed as the percentage of the number of machines able to run it. For each

simulation, we randomly generated a list of jobs and machines whose parameters are

generated according to a uniform distribution in the ranges: estimated[8000− 10000],

benchmark[100− 500], margin[1500− 5500], CPU [4− 32], licenses ratio[50%− 70%].

The benchmark and CPU parameters are chosen for both jobs and machines. Moreover,

in each simulation, 30% was the probability that a job needs a license, and the 30% of

jobs were generated without deadline. The deadline of a job j is generated according

to the following expression: deadlinej = submissionj + estimatedj + marginj . The

job submission time is driven by the wall-clock. When the wall clock reaches the job

submission time, the job enters in the simulation. The simulation ends when all jobs are

elaborated. Each test was conducted by randomly generating a list of machines, and,

in order to obtain stable values, each simulation was repeated 20 times with different

job parameter values.

Figure 4 shows the average percentage of workload assigned to each cluster through

simulations. Such percentage is computed as the ratio between the workload due to

the jobs assigned to a cluster, and the workload due to all the jobs in a simulation.

It is the main metric we used to prove that MS is able to dispatch jobs among the

underlying clusters balancing the workload. The workload distributions carried out by

the proposed policy are functions of the job stream to be scheduled, the job inter-arrival

times, and the clusters computational power.

Since at LS level a Backfilling algorithm is used, the exploitation of cluster machines

is function of the number and the kind of jobs queued to a cluster. Greater the number

of jobs of different kind is, greater the capability of Backfilling to efficiently exploit the
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Fig. 3 Average clusters load.

underling computational resources is. A more efficient exploitation of the machines of

a cluster, leads to quickly “unload” its LS queue. This way improves the probability

that such cluster will receive more workload than the less efficiently used ones.

The optimal cluster workload distribution (Optimal in Figure 4) is computed as

the ratio between the number of machines belonging to a cluster and the number of

available machines. Ta = 0 simulates the case in which all jobs are submitted at the

same time, and are dispatched before their execution starts. Since MS dispatches jobs

according to the workload due to LS queued jobs, all clusters obtain the same amount

of workload. The percentage of workload elaborated by each cluster changes according

to Ta, and the clusters computational power. Increasing Ta, it could happen that some

clusters are enough powerful to maintain empty or “unloaded” their LS queue, with

respect to other cluster queues. Consequently, MS dispatches a larger number of jobs to

such clusters. This is shown moving from Ta = 5 to Ta = 15. Ta = 5 obtains a workload

distribution that better approximates the optimal one. It is because of the amount of

workload due to the LS queued jobs properly represents the clusters computational

power. It means that the proposed policy is able to dispatch jobs among underlying

clusters, distributing the workload proportionally to the actual cluster computational

power. To figure out the quality of the MS job classification, we show the results

obtained by using Ta = 5 concerning the other evaluation metrics used.

Figure 4 (left) shows the average slowdown evaluated for each cluster considering

jobs without deadline. It improves in inverse proportion to the cluster computational

power. Since MS dispatches jobs trying to have the same workload in each cluster

queue, the average slowdown of jobs submitted without deadline grows when the cluster

computational power decreases. Moreover, the average slowdown is higher than 1 in

each cluster through simulations. This means that LSs have sufficient jobs to process,

therefore the job inter-arrival time chosen is suitable for the purpose of our evaluation.

Figure 4 (right) shows the percentage of jobs executed do not respecting their

deadlines. MS Heuristics and LS Heuristics are able to improve the number of jobs

executed within their deadline comparing with No Heuristics, which exploits the FCFS

order. MS Heuristics carries out results comparable to those obtained by LS Heuristics,

but with a smaller computational cost. Furthermore, considering the job distribution

performed by MS, in the case of Cluster 1, hundreds of jobs are executed missing their

deadlines, while in the case of Cluster 4 they are only few.

Figure 5 shows the percentage of system (left) and license (right) usage (expressed

in percentage) , respectively. These values are computed according to the following

expression:



12

 0

 1

 2

 3

 4

 5

Cluster 1 Cluster 2 Cluster 3 Cluster 4

LS Heuristics

MS Heuristics

NO Heuristics

0%

10%

20%

30%

40%

50%

60%

Cluster 1 Cluster 2 Cluster 3 Cluster 4

LS Heuristics

MS Heuristics

NO Heuristics

Fig. 4 Average slowdown of jobs without deadline (left), percentage of jobs executed do not
respecting their deadline (right).

# of active res

min(# of available res,# of res requested by jobs)

where res means “processors” or “licenses” when system or license usage is com-

puted, respectively.
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Fig. 5 Average percentage of processor (left) and license (right) usage.

All solutions obtain similar results. Smaller the number of the machines within a

cluster is, greater the processor fragmentation and the contention on licenses is, and it

leads to a smaller system and license usage.

6 Conclusion and future work

This paper describes the study we conducted to develop a two-level scheduler to dy-

namically schedule a continuous stream of batch jobs on large-scale grids made up

of heterogeneous machines in interconnected clusters. The proposed solution aims to

schedule arriving jobs balancing the clusters workload, respecting the job running re-

quirements and deadlines, and optimizing the utilization of hardware and software

resources. The proposed solution exploits a set of heuristics, each one managing a spe-

cific problem constraint, that guide the Meta and Local schedulers in making scheduling

decisions. We investigated two solutions that use different heuristics to compute jobs
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priorities. One exploited at MS level, which computes the job priorities at job submis-

sion time, the other one, exploited at LS level, which re-computes the job priorities at

every scheduling event (submission/ending of a job). The conducted simulation tests

demonstrated that the investigated solution can be a viable one. In particular, we show

that using a lightweight component like MS joined with lightening LSs, carries out good

results as using more complex LSs. The proposed solution could be extended identi-

fying possible heuristics refinements and extensions to enhance the current scheduler

to support different local scheduler policy. Moreover, to completely understand the

potentiality of the proposed solution, it should be interesting to evaluate it by using

log file describing the execution of real jobs.
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