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Abstract

Keywords:

This paper proposes a novel schedule-based approach for scheduling
a continuous stream of batch jobs on the machines of a computational
Grid. Our new solutions represented by dispatching rule Earliest Gap—
Earliest Deadline First (EG-EDF) and Tabu search are based on the idea
of filling gaps in the existing schedule. EG-EDF rule is able to build
the schedule for all jobs incrementally by applying technique which fills
earliest existing gaps in the schedule with newly arriving jobs. If no
gap for a coming job is available EG-EDF rule uses Earliest Deadline
First (EDF) strategy for including new job into the existing schedule.
Such schedule is then optimized using the Tabu search algorithm mov-
ing jobs into earliest gaps again. Scheduling choices are taken to meet
the Quality of Service (QoS) requested by the submitted jobs, and to
optimize the usage of hardware resources. We compared the proposed
solution with some of the most common queue-based scheduling algo-
rithms like FCFS, EASY backfilling, and Flexible backfilling. Experi-
ments shows that EG-EDF rule is able to compute good assignments,
often with shorter algorithm runtime w.r.t. the other queue-based al-
gorithms. Further Tabu search optimization results in higher QoS and
machine usage while keeping the algorithm runtime reasonable.

Grid, Scheduling, Dispatching Rule, Local Search, Backfilling



1. Introduction

The building of a Grid infrastructure requires the development and
deployment of middleware, services, and tools. At middleware level the
scheduler is central to efficiently and effectively schedule jobs on avail-
able resources. It should both maximize the overall resource utilisation
and guarantee nontrivial QoS for the user’s applications. The schedul-
ing problem has shown to be NP-complete in its general as well as in
some restricted forms. Moreover, to meet the QoS requirements of ap-
plications flexible scheduling mechanisms are required. A typical QoS
requirement is the time at which user wants to receive results, i.e., the
job turnaround time.

In the past, a lot of research effort has been devoted to solve both
static and dynamic job scheduling problems. Many of the proposed al-
gorithms, such as backfilling, are queued-based techniques. Current pro-
duction systems like PBS [7], Condor [21], LSF [23] or meta-scheduling
systems such as Grid Service Broker [22], GridWay [11] and Moab [6]
are mostly queue-based solutions. On the other hand, solutions using
schedule-based [10, 19] approaches are poorly investigated, in particular
to solve dynamic job scheduling problems [4]. In dynamic environments,
such as Grids, resource may change, jobs are not known in advance and
they appear while others are running. Schedule-based approach allows
precise mapping of jobs onto machines in time. This allows us to use
advanced scheduling algorithms [16, 8] such as local search methods [8]
to optimize the schedule. Due to their computational cost, these ap-
proaches were mostly applied to static problems, assuming that all the
jobs and resources are known in advance which allows to create sched-
ule for all jobs at once [2-3]. CCS [10] as well as GORBA [19] are
both advanced resource management systems that use schedule instead
of a queue(s) to schedule workflows (GORBA), or sequential and parallel
jobs while supporting the advanced reservations (CCS). GORBA uses
simple policies for schedule creation and an evolutionary algorithm for
its optimisation while CCS uses FCFS, Shortest/Longest Job First when
assigning jobs into the schedule and a backfill-like policy that fills gaps
in the constructed schedule. Both CCS and GORBA re-compute the
schedule from scratch when a dynamic change such as job arrival or ma-
chine failure appears. It helps to keep the schedule up to date, however
for large number of jobs this approach may be quite time consuming as
was discussed in case of GORBA [17]. Works [1] and [18] propose local
search based methods to solve Grid scheduling problems. The schedule
is kept valid in time without total re-computation, however no experi-



mental evaluation was presented in [1], and [18] does include resource
changes but no dynamic job arrivals.

In this paper we propose novel schedule-based solutions to schedule
dynamically arriving batch jobs on the machines of a computational
Grid. In comparison with other approaches [10, 19|, we are using dis-
patching rule and local search in an incremental fashion [13]. It means
that current computed schedule can be used as the starting point for
building a new schedule after each job arrival. This leads to a reason-
able computational cost since the schedule is not rebuilt from scratch.
We propose a multi-criteria approach which is based on providing non-
trivial QoS to the end users, while satisfying the system administrators
requirements as well. User requirements are expressed by the objective
function focusing on maximising the number of jobs that meet their
deadline, while system administrators needs are expressed by a machine
usage criterion [5]. Moreover we developed an efficient method which de-
tects and fills existing gaps in the schedule with suitable jobs. It allows
us to increase both the QoS and machine usage by limiting fragmentation
of the processor time.

The feasibility of the solutions we propose has been evaluated by
comparing with a FCFS, an EASY backfilling, and a Flexible backfilling
algorithms. The evaluation was conducted by simulations with the Alea
simulator [12] using different streams of synthetically generated jobs.

2. Problem Description

In our study we consider a continuous stream of sequential or parallel
batch jobs, which arrive to the system and are placed into a single job
queue (FCFS, Easy and Flexible backfilling) or into the schedule (EG-
EDF, Tabu search). Each job J is characterized by a submission time
Submit;, which represents the time when the job arrives, a deadline
Deadliney, the number Reqy of CPUs requested for its execution, an
estimation of its duration Estimatedy, and a benchmark score BM,,,
which represents the CPU speed of a machine m used for the time es-
timation. Precise J execution time for a specific machine m is calcu-
lated as (Estimatedy - BM,,)/BMy. All the jobs are considered non-
preemptible.

The target architecture is a computational Grid made up of multi-
processor machines. Each machine m is characterized by a number R,,
of CPUs, and all CPUs within one machine have the same speed BM,,.
Different machines may have different speeds and number of CPUs. Ma-
chines use the Space Sharing processor allocation policy which allows
parallel execution of k jobs on machine m if R,, > Z§:1 Reqj.



Various objective functions can be considered such as makespan or av-
erage flow time. Our scheduler aims to maximize both the resource utili-
sation and the number of jobs with the respected deadlines [5]. A higher
resource utilisation fulfills resource owner expectations, while a higher
number of non delayed jobs guarantees a higher QoS provided to the
users.

3. Applied Approaches

In this section we describe two different approaches we propose to
solve the considered job scheduling problem. First principles of queue-
based Flexible backfilling are explained. Next we focus on the schedule-
based solutions. They are represented by a dispatching rule, which is
used to create an initial schedule and Tabu search algorithm, which
optimizes the initial solution according to the objective function.

3.1 Flexible Backfilling

Flexible backfilling [20] is a variant of the EASY backfilling algorithm
which is an extension of the original backfilling algorithm [14]. In the
Flexible backfilling, a priority value P(J) is computed for each job J by
exploiting a set of heuristics. Each heuristics follows a different strategy
to satisfy both users and system administrator requirements.

After selection of the set of machines suitable to perform a job, the
priority value assigned to such job is the sum of the values computed by
each heuristics. In our study, to select the set of machines we considered
only the number of available processors on a machine. Priority values
are re-computed at scheduling events, which are job submission and
completion. We defined the following heuristics: Aging, Deadline, and
Wait Minimization.

Aging aims to avoid job starvation. For this reason higher scores
are assigned to those jobs which have been present in the queue for
a longer time. The value of the priority assigned to the job J is in-
creased as follows: P(J)+ = agefactor - age(J), where age(J) equals
to wallclock — Submit; and agefactor is a multiplicative factor set by
the administrator according to the adopted system management policies.
The value of the system wall-clock is represented by wallclock parameter
equal to the time when the heuristic is computed.

Deadline aims to maximize the number of jobs that terminate their
execution within their deadline. It requires an estimation of the job ex-
ecution time in order to evaluate its completion time with respect to the
current wall-clock time. The heuristic assigns a minimal value (Min)
to any job whose deadline is far from its estimated termination time.



When the distance between the completion time and the deadline is
smaller than a threshold value (Maz), the score assigned to the job
is increased in inverse proportion with respect to such distance. The
threshold value may be tuned according to the importance assigned to
this heuristics. Without loss of generality, in our work, when a job goes
over its deadline before it is scheduled, its updating priority value is
set to Min. Each job is scheduled on the first most powerful available
machine. Since jobs with a closer deadline receive higher priority, this
strategy should improve the number of jobs executed within their dead-
line. Let Estimated; to be the estimated execution time of job J, we
define:

BM,
Natimey = FEstimatedy - B,
FExtimey = Now + Nxtimey
t; = Deadline;y — k- Nxtimey

where BM,, is the most powerful cluster machine m (optimistic predic-
tion), and BM is the power of the machine m utilised to estimate the
execution time of J. Naxtime; denotes the job’s estimated execution
time and Extime; denotes the estimated termination time of the job
with respect to the current wall-clock (Now). t; is the time from which
the job must be evaluated to meet its deadline (i.e., the job priority is
updated to consider its deadline too). k is a constant value fixed by the
installation, which permits us to overestimate Naxtime.

The value P(J) is increased by the Deadline heuristics according to
the following formula:

Min if Extimey <ty
P(J)+ = a(Extimey —ty) + Min if t; < Extimey < Deadlines
Min if Extimey > Deadliney

where a is the angular coefficient of the straight line passing through the
points (ts, Min) and (Deadliney, Max).

Finally, Wait Minimization favors jobs with the shortest estimated
execution time. The rationale is that shorter jobs are executed as soon
as possible in order to release the resources they have reserved and to
improve the average waiting time of the jobs in the scheduling queue.
Let boostvalue be the factor set by administrator according to system
management policies and minexrt = min(Estimatedy). The value of
P(J) is increased by the heuristics as follows:

__ boostvalue - minext s
N FEstimated s

P(J)+



In this paper the parameters used in Flexible backfilling were hand tuned
to following values: agefactor = 0.01, k = 2.0, max = 20.0, min = 0.1
and boostvalue = 2.0. At each scheduling event the value of P(.J) for all
queued jobs is reset to zero and then these heuristics are applied for each
job to compute new P(J) values so that P(J) = Aging + Deadline +
Wait Minimization. Then the queue is sorted according to new P(J)
values and the backfilling procedure starts.

3.2 Earliest Gap—Earliest Deadline First Rule

In this section the proposed schedule-based approach Farliest Gap—
Earliest Deadline First (EG-EDF) dispatching rule is described. It
places a new submitted job into the existing schedule to built the sched-
ule incrementally. It permits us to compute a new job scheduling plan
saving running time for scheduling since the new plan is not re-computed
from scratch. To do this, it is necessary to choose a good place in the
schedule for the job being scheduled, otherwise resource utilisation may
drop quickly due to the gaps appearing in the schedule. A gap is con-
sidered to be a period of idle CPU time. A new gap appears in the
schedule every time the number of currently available CPUs by the ma-
chine is lower than the number of CPUs requested by a job. In such
situation job has to be placed in the schedule to a time when a suffi-
cient number of CPUs is available. Gaps can also appear when there are
more CPUs than required by the jobs. They generally lead to processor
fragmentation which results in a bad system utilisation.

In order to reduce the processor fragmentation, we developed a method
that is able to optimize the schedule by placing the jobs into existing
gaps. It is a key part of EG-EDF rule which works in the following way:.
Suppose a new job J arrives to the system. Using the existing schedule
the Earliest Gap (EG) suitable for J is identified for each machine. Let
S denotes the number of found EGs (S < # of Machines). We con-
sider three different cases: S > 2, 5 =1, and S =0. S > 2 means there
is more than one EG for the job assignment. A weight is computed for
each assignment of J to EG according to Equation 1, and the EG with
the highest weight is chosen. The weight function is defined as:

weight = weightmakespan + Weightdcadiine (1)
makespanig — makespanyew

weightmakespan =
makespanoid

nondelayedye., — nondelayedoiq
nondelayedoiq

weightdeadline =



Here the makespan,q is the expected makespan' of the current schedule,
makespanye, is the makespan of the new schedule. nondelayed,;; and
nondelayed e, are the number of jobs executed within their deadline
before and after the job assignment, respectively.

S = 1 simply means there is just one EG for the job J and this is
used for the job assignment. S = 0 means there are no suitable gaps.
In such case the job is placed into each machine’s schedule according to
the Earliest Deadline First (EDF) strategy. Each of these assignments
is evaluated separately and the one with the highest weight is accepted.

3.3 Tabu Search

Although EG-EDF rule is trying to increase the machine usage and
also to meet the job deadlines by finding suitable gaps, it only manip-
ulate with the newly arrived job. The previously scheduled jobs are
not considered by EG-EDF rule when building a new schedule. In such
case many gaps in the schedule may remain. To reduce their effect, we
propose a Tabu search [9] optimization algorithm which increases both
machine usage and the number of jobs executed respecting their dead-
line. It only works with jobs prepared for running—jobs already running
are not affected since the job preemption is not supported.

Tabu search selects the last job from the schedule of a certain machine,
which has the highest number of delayed jobs. Such job must not be in
the tabu list to prevent cycling. The tabu list contains jobs that were
selected in previous iterations. It has limited size and the oldest item
is always removed when the list becomes full. Selected job is put into
the tabu list and then the method for finding the Earliest Gap (EG) for
this job in a specific machine’s schedule is executed. If suitable EG is
found the job is moved to it and the weight value is computed according
the Equation 1. If weight > 0 the move is accepted since it improves
the quality of current schedule, makespan,g and nondelayedyq values
are updated, and a new iteration is started. Otherwise, the move is not
accepted, the job is not moved, and next machine’s schedule is used to
find an EG for this job. If none of the remaining machines has a suitable
gap in its schedule, a new iteration is started by selecting a different job,
since the previous choice is now banned by the tabu list. It can happen
that the machine with the highest number of delayed jobs contains only
jobs present in the tabu list. Then the machine with the second highest
number of delayed jobs is selected. The process continues until there are
no delayed non-tabu jobs or the upper bound of iterations is reached.

Makespan is the completion time of the last job in the schedule.



4. Experimental Evaluation

In order to verify the feasibility of the EG-EDF and Tabu search
solutions, some experiments have been conducted. The evaluation was
performed by comparing our solutions with FCFS, EASY backfilling
(Easy BF), and Flexible backfilling (Flex. BF). Concerning the Flex. BF,
job priorities are updated at each job submission or ending event and
the reservation for the first queued job is maintained through events.
We used our Alea Simulator [12], which is an extended version of the
GridSim toolkit. The evaluation was conducted by simulations using five
different streams of jobs synthetically generated according to a negative
exponential distribution with different inter-arrival times between jobs
[5, 20]. According to the job inter-arrival times a different workload is
generated through a simulation. Smaller this time is, greater the system
workload is. Inter-arrival times were chosen in a way that the available
computational power is able to avoid the job queue increasing when it
is fixed equal to 5. Moreover, each job and machine parameter was
randomly generated according to a uniform distribution?.

The experimental tests were conducted by using a Grid made up of
150 machines with different CPU number and speed, and 3000 jobs.
Job scheduling plans were carried out by exploiting the Space Sharing
processor allocation policy, and both parallel and sequential jobs were
simulated—up to now parallel jobs are always executed on only one ma-
chine with a sufficient number of CPUs. In order to obtain stable values,
each simulation was repeated 20 times with different job attributes val-
ues. The experiments were conducted on an Intel Pentium4 2.6 GHz
machine with 512 MB RAM.

To evaluate the quality of schedules computed by EG-EDF rule and
Tabu search, we exploited different criteria: the percentage of jobs exe-
cuted do not respecting their deadline, the percentage of system usage,
the average job slowdown, and the average algorithm runtime.

The system usage was computed at each simulation time by using the
following expression:

# of active CPUs
min(# of available CPUs,# of CPUs requested by jobs)

System usage =

It permits us to not consider situations when there are not enough
jobs in the system to use all the available machines. It happens at the
beginning and at the end of the simulation.

2Following ranges were used: Job execution time [500-3000], jobs with deadlines 70%, number
of CPUs required by job [1-8], number of CPU per machine [1-16], machine speed [200-600]



4.1 Discussion

In Figure 1 (left) the percentage of jobs executed not respecting their
deadline is shown. As expected, when the job inter-arrival time in-
creases, the number of late jobs decreases. Moreover, it can be seen
that both EG-EDF rule and Tabu search produced much better solu-
tions than Flexible backfilling, Easy backfilling, and FCFS. Tabu search
outperforms all the other algorithms. In particular, it obtains nearly
the same results of EG-EDF rule when the system contention is low
(job inter-arrival time equal to 5). In Figure 1 (right), the percentage of
system usage is shown. Schedule-based algorithms are, in general, able
to better exploit the system computational resources. However, when
there is not contention in the system the solutions we propose obtained
worse results than the other ones. When the available computational
power is able to avoid the job queue increasing, the Tabu search and
EG-EDF solutions do not improve, or improve very little, the previous
schedule. In this situation, the schedule-based approach is less effective
concerning the resource utilisation. In such situation the schedule is al-
most empty so a newly arrived job is often immediately executed on an
available machine, therefore the Tabu search has a very limited space
for optimization moves.
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Figure 1. Average percentage of delayed jobs (left) and system usage (right).

Figure 2 (left) shows the average scheduling times spent by the sched-
uler for conducting the tests on the simulated computational environ-
ment. It is computed by measuring the scheduling time at each schedul-
ing event. The runtime of FCFS is very low w.r.t. to Easy and Flexi-
ble backfilling for which it grows quickly as a function of the job queue
length. Although the Flexible backfilling has to re-compute job priorities
at each scheduling event, and then has to sort the queue accordingly, it
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Figure 2. Average algorithm runtime (left) and the average job slowdown (right).

causes minimal growth of its run time compared to the Easy backfilling.
This is due to the application of an efficient sort algorithm.

Local search based algorithms are often considered to be very time
consuming. Our implementation, which exploits an incremental ap-
proach based on the previously computed schedule, is able to guarantee
a shorter and stable execution time w.r.t. the other algorithms. In par-
ticular, EG-EDF rule is fast and it always generates acceptable schedule,
so we can stop Tabu search optimization at any time if prompt decisions
are required.

Figure 2 (right) shows the average job slowdown. It is computed as
(Tw + Te)/Te, with Tw the time that a job spends waiting to start its
execution, and Te the job execution time [15]. This shows us how the
system load delays the job execution. As expected, greater the system
contention is, greater the job slowdown is. In this case the better results
are obtained by Tabu search, which are enough close to those obtained
by the Flexible backfilling algorithm.

5. Conclusion and Future Work

Both Flexible backfilling and schedule-based algorithms demonstrated
significant improvement when decreasing the number of late jobs while
keeping the machine usage high. This would not be possible without
the application of effective gap-filling method in case of the schedule-
based algorithms. Tabu search algorithm proved to be more successful
in decreasing the number of delayed jobs over Flexible backfilling—on
the other hand precise job execution time was known in this case so
the advantage of schedule-based solution took effect. The incremental
approach used in the schedule-based solutions allowed to keep the al-



gorithm runtime stable and low. From this point of view both Easy
and Flexible backfilling are more time consuming since their runtime is
growing with the size of the queue more quickly.

In the future we would like to include job execution time estimations
to study their effect on the performance of schedule-based methods. Usu-
ally this is not a crucial issue for the queue-based algorithms because
they are designed to deal with dynamic changes. However, the schedule-
based approach relies on the precision of execution time prediction much
more. We expect that some changes will have to be done when the es-
timates will not meet the real job execution time. It is probable that
in such situation local change or limited rescheduling will be necessary.
Also, we would like to introduce failure tolerance and investigate job
preemption and job migration effects. Next we plan to compare these
solutions with other scheduling techniques such as Convergent Schedul-
ing [5].
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