
UNIVERSITÀ DEGLI STUDI DI PISA
SCUOLA NORMALE SUPERIORE DI PISA

UNIVERSITY OF CALIFORNIA AT SAN DIEGO, UCSD

Compiling Issues for the Simultaneous
Multithreading Processor

ADVISOR
prof. Dean M. Tullsen

UCSD

SECOND ADVISOR
prof. Marco Vanneschi

Univ. di Pisa

CANDIDATE
Diego Puppin

ACADEMIC YEAR

1999/2000

❧

Master’s Thesis:
Compiling Issues for the Simultaneous

Multithreading Processor

Advisor
prof. Dean M. Tullsen

Second advisor
prof. Marco Vanneschi

Candidate
Diego Puppin

���������
	��������������������	����

Academic Year 1999/2000

Pisa, July 21, 2000

❧

Compiling Issues for the
Simultaneous Multithreading
Processor

Abstract

In the run for performance, many new architectures have been pro-
posed as possible successors of present-day commodity processors.
In order to achieve higher performance, the idea behind the simul-
taneous multithreading (SMT) processor is to introduce few changes
into an advanced superscalar processor, yet enable it to execute
instructions from different threads on the different functional units
in the same cycle: thread-level parallelism becomes so a suitable
source of instruction-level parallelism.

This work presents experimental results on performance of Liver-
more loops on the SMT: advanced compiling techniques are dis-
cussed and evaluated, that could be implemented into an ad-
vanced compiler for the SMT. The general effectiveness of interleav-
ing, loop fusion and some other techniques poses encouraging re-
sults in the direction of an advanced multithreading compiler.

A performance model for SMT is also presented: the method-
ology described here uses compile-time information to determine
upper and lower bounds for the parallelized performance of sim-
ple loops. The model is flexible enough to manage many different
types of kernels, and is tested with the Livermore loops. Good results
have been achieved with short kernels compiled with the GNU C
compiler: with small loops (less than 40 instructions), the actual per-
formance (useful processor utilization) is not farther than 5% from the
maximum expected value.

Please report any comments and suggestions to the author.

iii

❧

Elwood: It’s a 106 miles to Chicago. We got a
full tank of gas, half a pack of cigarettes,
it’s dark and we’re wearing sunglasses.

Jake: Hit it!
The Blues Brothers (1980)

❧

Acknowledgements

At the end of an extraordinary time of my life, as the one I spent in
Pisa, I would like here to express my thanks to all the people that, in
different ways, were important in making it so.

First of all, I would like to thank my advisors: professor Marco Van-
neschi and professor Dean Tullsen. The former, for his valuable help
and trust, during my academic work; the latter, for all the time he
placed at my disposal to supervise my research in San Diego.

I owe sincere thanks to the people that shared with me some
amazing experiences throughout these years, whose friendship
made all this much easier. The Politburo, who made me grow up
a lot: our project will go on, even with an ocean in the middle. My
mates at Scuola Normale. My mates at the University — the Col-
lettivo Autonomo Informatici and the Amici Birilli (thank you, Mat-
teo) — with whom I will be forever linked by the memory of unique
moments. Particular thanks to Luciano, for his inexhaustible warmth
and cheer: we have been a wonderful team. Sincere thanks also
to Natalina the fairy, for her affection and kindness.

I owe a particular debt to my family, always close to me, who un-
ceasingly showed their great trust in me: I owe them the opportunity
I had to spend a peaceful time here in Pisa. I will soon be far from
you, but I know you will always be there for me: really thank you so
much, this is for you. Thank-you especially to my little brother, whose
esteem has always been important to me: I wish you all the best.

These last lines are to Francesca. I would like to thank you for
all that you gave me during the two wonderful years we spent to-
gether. You are the most beautiful thing that ever happened to me,
a continual spur to give the best and a peaceful spot in the difficult
moments. Without you, everything would have been different. I will
never forget you.

vii

❧

Ringraziamenti

Alla fine di un periodo straordinario della mia vita, come è stato
quello trascorso a Pisa, non posso fare a meno di esprimere un
dovuto ringraziamento alle persone che, in diversi modi, hanno
contribuito a renderlo tale.

Voglio per primi ringraziare i miei relatori: il professor Marco Van-
neschi ed il professor Dean Tullsen. Il primo per la preziosa collabora-
zione e fiducia durante tutto il mio percorso universitario; il secondo
per la grande disponibilità con cui ha seguito il mio lavoro a San
Diego.

Vorrei inoltre ringraziare le persone con cui ho condiviso bellissi-
me esperienze in questi anni, senza le quali tutto questo sarebbe
stato difficile. Il Politburo, la cui amicizia mi ha fatto molto cresce-
re: il nostro progetto andrà avanti, anche con un oceano di mezzo.
I miei compagni alla Scuola Normale. I miei compagni di Univer-
sità — il Collettivo Autonomo Informatici e gli Amici Birilli (un forte
abbraccio a Matteo) — a cui sarò sempre unito dal ricordo di mo-
menti irripetibili. Un particolare ringraziamento a Luciano, per il suo
inesaribile calore ed entusiasmo: siamo stati una squadra fantasti-
ca! Un sincero grazie poi alla fata Natalina, per il suo affetto e la sua
semplicità.

Devo poi moltissimo alla mia famiglia, che mi è sempre stata vi-
cina, e che ha sempre versato su di me una grande fiducia: a loro
devo la possibilità di aver passato in maniera serena questi anni. An-
che se presto sarò lontano, saprò di avervi sempre accanto: grazie
davvero, questo è per voi. Grazie in particolare al mio fratellino,
la cui stima mi è sempre stata molto importante: ti auguro tutto il
meglio.

Queste ultime righe sono per Francesca. Voglio ringraziarti per
tutto quello che mi hai dato nei due bellissimi anni passati insieme.
Sei la cosa più bella che mi sia mai successa, un continuo stimolo
a dare il meglio di me e un’oasi serena nei momenti di stanchezza.
Senza di te sarebbe stato tutto molto diverso. Non ti scorderò mai.

ix

❧

Contents

1 Introduction 1
1.1 The performance challenge 2
1.2 SMT: TLP as useful ILP . 5

1.2.1 SMT architecture 7
1.2.2 Fast fine-grained synchronization 10
1.2.3 The simulator . 11

1.3 Overview of the thesis . 11

2 Related work 13
2.1 Threaded Multiple Path Execution 13
2.2 ILP vs. TLP . 14
2.3 Explorations in symbiosis 17
2.4 Does SMT pull its weight? 17
2.5 Other works about SMT 23
2.6 Fine-grained multithreading: the example of MTA . . . 24

3 Tuning TLP on Livermore Loops 27
3.1 Introduction . 27
3.2 Methodology . 29
3.3 Independent iterations 32
3.4 Loop-carried-dependence loops 32
3.5 Accumulation loops . 33
3.6 Larger loops . 34
3.7 Further analyses . 34

3.7.1 Running with 16 threads 34
3.7.2 Rescheduling basic blocks 35
3.7.3 Register allocation with advanced processors . 39
3.7.4 Cray MTA compiler’s result 40

3.8 Overall speedup . 41

xi

4 Experimental results 43
4.1 Independent iterations 43
4.2 Loop-carried-dependence loops 51
4.3 Accumulation loops . 56
4.4 Larger loops . 60

5 Modeling SMT performance 67
5.1 Methodology . 67
5.2 Mathematical model of SMT performance 69

5.2.1 Role of loop-carried critical path 69
5.2.2 Role of loop-independent critical path 72
5.2.3 Experimental results with Atom 74

5.3 Modeling multithreading 77
5.3.1 Best number of threads 81

6 Conclusion 85
6.1 Parallelization of scientific kernels 85
6.2 Performance model . 86
6.3 Future works . 87

A Acronyms 89

Bibliography 91

xii CONTENTS

List of Figures

1.1 Dimension of cache in some recent processors 3
1.2 ILP and TLP in different architectures 6
1.3 Basic SMT architecture (from MIPS R10000) 8
1.4 Superscalar and SMT pipeline 9
1.5 Performance of SMT (basic and advanced version) . . 10

2.1 SMT architecture improved with TME capabilities 14
2.2 Comparison of FFT algorithms on SMT 15
2.3 Accuracy of modeling FFT 17
2.4 Area overhead of different SMT implementations 22
2.5 Performance of different architectures 23
2.6 Cray MTA machine at the San Diego Supercomputing

Center . 24

3.1 An interesting example of loop 28
3.2 Execution statistics for kernel 9 (16 threads) 35
3.3 Execution statistics for kernel 10 (16 threads) 36
3.4 Execution statistics for kernel 15 (16 threads) 36
3.5 Execution statistics for kernel 17 (16 threads) 37
3.6 Execution statistics for kernel 22 (16 threads) 37
3.7 Effect of increased number of threads on IPC 42
3.8 Effect of increased number of threads on completion

time . 42

4.1 Execution statistics for kernel 1 44
4.2 Execution statistics for kernel 7 44
4.3 Execution statistics for kernel 8 45
4.4 Execution statistics for kernel 9 46
4.5 Execution statistics for kernel 10 47
4.6 Execution statistics for kernel 12 48
4.7 Execution statistics for kernel 15 49
4.8 Execution statistics for kernel 17 50

xiii

4.9 Execution statistics for kernel 21 50
4.10 Execution statistics for kernel 22 51
4.11 Execution statistics for kernel 5 52
4.12 Execution statistics for kernel 11 54
4.13 Execution statistics for kernel 19 55
4.14 Execution statistics for kernel 20 55
4.15 Execution statistics for kernel 23 56
4.16 Execution statistics for kernel 3 58
4.17 Execution statistics for kernel 4 58
4.18 Execution statistics for kernel 6 59
4.19 Execution statistics for kernel 13 60
4.20 Execution statistics for kernel 2 61
4.21 Execution statistics for kernel 14 62
4.22 Execution statistics for kernel 16 63
4.23 Execution statistics for kernel 18 64
4.24 Execution statistics for kernel 24 65

5.1 Results of modeling performance with gcc code . . . 77
5.2 Results of modeling performance with cc code 79
5.3 Results of modeling multithreaded performance with

gcc code . 81

xiv LIST OF FIGURES

List of Tables

1.1 Evolution of issue bandwidth in some modern super-
scalar microprocessors . 3

2.1 Correlation of factors with performance 16
2.2 Simulation results . 19
2.3 Layout blocks with large SMT overhead 19
2.4 Layout blocks unaffected by SMT 20
2.5 Increased area of R10000-2x and SMT 21
2.6 Alternative micro-architecture with similar area 22

3.1 Details of memory hierarchy 29
3.2 Latency of instructions in the SMTSIM simulator and in

the Atom tools . 30
3.3 Parameters of the simulation 30
3.4 Experimental results for reschesuling 38

4.1 Average memory-access delay for kernel no. 9 46

5.1 Example of CPL’s processing, kernel no. 12 69
5.2 Experimental results, with gcc code 76
5.3 Experimental results, with cc code 78
5.4 Experimental results, with gcc MT code 82
5.5 Actual best number of threads compared with ex-

pected best number of copies 84

xv

❧

List of Program Fragments

3.1 Iteration interleaving . 33

4.1 Cyclic reduction algorithm for SMT 53
4.2 Which one is the fastest one? The second one! 57

xvii

❧

Chapter 1

Introduction

As processors are growing larger and larger (the one-hundred-
million-transistor chip is not so far), computer designers are planning
directions for next-generation processors. Just scaling present day
architecture to larger configurations seems not to guarantee the ex-
pected performance, so new ideas are proposed and explored, in
order to take full advantage of future engineering opportunities.

Processing-In-Memory (PIM) [BK97], Intelligent RAM (IRAM)
[PAC � 97], reconfigurable architectures [DeH96, DeH00b], asyn-
chronous VLSI [MLM � 97], Raw Architecture Workstation (RAW)
[WTS � 97] are just some of many proposals. Different problems are
faced by these architectures: better memory interface, advanced
usage of logic arrays, better usage of intra-chip connections. They
offer quite new and original architectural models, in the run for per-
formance.

The main idea behind simultaneous multithreading (SMT1) com-
puting, instead, is to create a more efficient and versatile processor,
able to exploit more parallelism, in all its available forms: such a pro-
cessor would be able to take advantage of both instruction-level
parallelism (ILP) and thread-level parallelism (TLP) with the same
ease. A SMT processor will be implemented as a superscalar multi-
processor (with multiple instruction issues) offering multithreaded ex-
ecution capabilities.

Simultaneous multithreading can be thought as a technique
whose main goal is to achieve higher utilization of the computa-
tional capabilities of wide superscalar processors. On a SMT pro-

1Throughout this thesis, SMT will mean, according to the context, the archi-
tectural model, a processor featuring the described capabilities, or the specific
processor simulated by means of SMTSIM.

1

cessor, TLP can come from multithreaded parallel programs or from
individual programs in a multiprogrammed work-load.

SMT will use the same instruction-set architecture (ISA) of super-
scalar processors, and most of their design. This can be a strong
point in determining a smooth introduction of SMT features in com-
modity processors. With the rapid growth of a multithreaded pro-
gramming style, that is gaining popularity among developers with
Java, SMT sets itself as a natural candidate to replace present-day
superscalar processor, strong of its advanced multithreading capa-
bilities. As a matter of fact, Compaq is planning to introduce SMT
features into its commodity processors: Alpha 21464, to appear in
2003, will be a SMT superscalar processor [Die99].

1.1 The performance challenge

In order to enhance present-day superscalar processors’ perfor-
mance, many solutions have been proposed.

One of these is to use the chip real estate to build larger and
larger on-chip memories, as featured by some recent processors
(see figure 1.1 [Ald00]). Even if very popular, many studies show that
this solution is not enough to gain proportional performance, and
beyond a certain point larger caches seem to be not so useful (see
for instance [PS96]). Some paradoxical choices further highlight this
solution’s limit: in order to have a low interprocessor communication
latency in Cray T3D/T3E, designers removed the second-level cache
from the featured Alpha processor.

Another one is to increase peak bandwidth, through increasing
clock-frequency (with deeper pipelines) and the number of func-
tional units of superscalar processors (see table 1.1) [SFK97, Tul96b].
Leaving all the engineering problems related to this design (huge
monolithic core) out of account for the moment, it should be re-
membered that compilers’ ability to extract ILP is still limited, as
well as the opportunities that run-time structures (reordering, renam-
ing...) have to remove dependencies. John Hennessy, in his speech
at Microprocessor Forum 1999, showed that 4-wide superscalar pro-
cessors rarely achieve a sustained a 2 instruction-per-cycle rate un-
der Spec95 benchmarks [Die99].

Even with advanced features as out-of-order execution and reg-
ister renaming, performance is affected by instruction dependen-

2 Introduction

Figure 1.1: Dimension of cache in some recent processors

Architecture(year) Issue bw.
Power1 (1990) 4
Power2 (1993) 6

PowerPC 601(1993) 3
PowerPC 603(1993) 3
PowerPC 604(1995) 4
PowerPC 620(1996) 4

� 21064 (1992) 2
� 21064A (1993) 2

� 21164 (1995) 4
HP PA7100 (1992) 2
HP PA7200 (1995) 2
HP PA8000 (1996) 4

Pentium Pro (1995) 3
MIPS R10000 (1994) 5

Table 1.1: Evolution of issue bandwidth in some modern superscalar
microprocessors

1.1 The performance challenge 3

cies, that limit instruction issuing. Processor can suffer from so-called
vertical wastes, when all the functional units are idle for one or more
cycles, due to data dependencies.

Fine-grain multithreaded processors, able to change context ev-
ery cicle without degradation, seem to be a good approach to this
problem, as they are able to interleave the execution of different
threads in order to hide dependencies and latencies. Some stud-
ies anyway hold that they are not able to utilize more than 40% of
a wide superscalar execution bandwidth [TEL95]. It should be clear,
however, that even if vertical wastes are avoided by multithreading,
a single thread may not be able to fill the whole execution band-
width, due to the limited ILP it can offer. This problem is known as
horizontal waste, and only a more efficient exploiting of ILP can face
this problem.

A strong debate is going on between ILP pessimists and optimists.
ILP advocates hold that ILP is abudant, and can be exploited with a
few more ten millions of transistors, and a little compiler magic (see
for instance Itanium [MPR99a] and Sparc 64 V [MPR99b] projects).
Yale Patt at University of Texas and John Shen at Carnegie-Mellon
University believe that advanced superscalar techniques, such as
static scheduling, prediction, trace-processing and superspecula-
tion, will allow to ILP to scale suitably: in their opinion a 16- or 32-wide
superscalar processor will sustain a ILP of more than 10 instructions
per cycle [Die99].

These processors will feature a very large monolithic core, along
with the related complexity of design and testing. Explicit thread-
level parallelism (TLP) can be seen as a way to keep processors sim-
pler. Chip multiprocessors (CMP), as IBM Power4 [MPR99c] and Sun
MAJC [MPR99d] trust in the parallelism that can be found between
different threads. These projects will implement, on a single chip,
a few replicated superscalar processors: there will be the opportu-
nity to run multiple threads, each one on an independent complete
advanced processor (with smaller execution bandwidth).

Nonetheless, both these kinds of architecture (ILP- or TLP-
oriented) suffer from poor utilization if the work-load does not match
the design parameters: they shows no flexibility when the parallelism
moves from ILP to TLP or vice versa.

4 Introduction

1.2 SMT: TLP as useful ILP

This distinction between instruction-level and thread-level paral-
lelism holds no more with SMT: in this new architectural model, they
both represent a way to find independent instructions, that can be
executed in parallel. On a SMT, instructions coming from different
threads compete for the shared processor resources every cycle.
SMT is able to transform the parallelism present among instruction
from different threads into instruction-level parallelism, and exploit
the whole execution bandwidth computing for different threads
in the same cycle. Simultaneous multithreading is a new way to
take full advantage of parallelism in all its form, being able to get
full utilization with both TLP and ILP, and to adapt to their dynamic
changes, without any degradation: when only one thread is avail-
able, it can exploit all the functional units, as in one traditional su-
perscalar processor, but when ILP is low, more threads can run and
fill the execution bandwidth with their instructions.

Figure 1.2 gives the reader more insight about the main differ-
ences between the discussed architectures. The reader is adived
to focus on what is referred to as horizontal and vertical waste, a
formal definition of which should be now clearer:

� vertical waste: with this term, I mean, following [Tul96b], a
clock-cycle in which all the functional units are unused; this
is due to instruction dependences, and can be observed in
superscalar processor and multiprocessors-on-chip (see figure
1.2.a and 1.2.d);

� horizontal waste: this term refers to unused functional units dur-
ing a clock-cycle; we have this type of degradation when the
available ILP is not enough to fill all the execution bandwidht;
this problem is common to all the discussed architectures, even
if SMT tries to reduce this effect, using TLP as ILP.

In [BG00] the related terms horizontal and vertical sharing are
introduced:

� vertical sharing: it is the capability of switching among different
threads in different clock cycle (fine-grain multithreading);

� horizontal sharing: the unique capability of SMT to share func-
tional units, allowing instructions from different threads to be

1.2 SMT: TLP as useful ILP 5

(a)

functional units

tim
e

(b)

functional units

tim
e

(c)

functional units

tim
e

(d)

functional units

tim
e

Figure 1.2: ILP and TLP in different architectures: superscalar (a), fine-
grained MT (b), dual on-chip processor (c), SMT (d). Different shades
correspond to instructions from different threads, unused slots are
shown in white.

6 Introduction

executed in the same cycle, exploiting the parallelism present
among different functional units.

The term slot will also be used, referring to execution bandwidth:
a superscalar processor, with 8 fully pipelined functional units, offers
8 slots each cycle. Instructions compete for free slots.

1.2.1 SMT architecture

SMT architecture, as presented in [LEE � 97], is based on MIPS R10000
[Yea96], an advanced out-of-order superscalar processor. As said,
SMT is able to execute, in a single cycle, instructions from differ-
ent threads. This unique capability is implemented with very lim-
ited changes to the pipeline (see figure 1.3), the most important of
which are replication of instruction counters (one per thread) and
introduction of a smart trick in the register renaming phase of the
pipeline, as described below.

Fetching mechanism is modified to make SMT able to fetch four
instructions from two threads every cycle, instead of eight instruc-
tions from a single thread as in the original architecture. The total
fetching bandwidth is not modified, and only two ports to the in-
struction cache are required. Fetched threads are chosen among
the ones not incurring in a cache miss, with a priority policy called
icount [TEE � 96]. This technique assigns highest priority to threads
having the least number of instructions in the decode, renaming,
and queue pipeline stages. This favours fast threads (the ones the
instructions of which stay shorter in the pipeline), avoids starvation,
and provides a good distribution of instructions from all threads.

Branch prediction mechanisms are not modified (branch target
buffer (BTB) and pattern history table [Hwa93]), even if program
counters and subroutine return stacks are replicated.

A larger register file is shared among all the hardware context. 32
registers per threads are available, plus 100 integer and 100 floating-
point renaming registers. The renaming mechanism is able to map
architectural registers of running threads to physical registers, avoid-
ing conflicts. Once suitably renamed, instructions can be stored
into the instruction queues, and then be reordered, scheduled and
executed without any further control.

In order to have a high clock frequency, two more stages are
added to the pipeline, as the larger register file needs more time

1.2 SMT: TLP as useful ILP 7

Figure 1.3: Basic SMT architecture (from MIPS R10000)

8 Introduction

Original MIPS R10000 pipeline

Basic SMT architecture pipeline

Figure 1.4: Superscalar and SMT pipeline

to be read and written (see figure 1.4). This longer pipeline intro-
duces, according to [LEE � 97], a degradation of only 2% when a
single thread is running.

Other changes are needed to implement SMT: per-thread in-
struction retirement and trap mechanisms, and an additional
thread-identifier field in each BTB entry.

As explained, in this architecture only few structures are repli-
cated, i.e. statically assigned to single threads, namely program
counters, subroutine return stacks, retirement and trap mechanisms.
All the other structures (functional units, caches, register file, transla-
tion look-aside buffer, branch prediction mechanisms) are dynami-
cally shared among threads, and all available even when sequen-
tial code (only one thread) is being executed. The advantage of
SMT can be so reached, keeping intact most of superscalar peak
performance with sequential code. In figure 1.5 [Tul96a], perfor-
mance comparison between a superscalar and the SMT processor
under Spec92 benchmarks work-load is shown. In the cited work,
two version of the SMT processor are discussed: one basic, which
features the most minimal structures to implement SMT (e.g. fetch-
ing from just one thread), and one advanced, which features all the
solutions previously discussed.

1.2 SMT: TLP as useful ILP 9

0 2 4 6 8
Number of threads

1

2

3

4

5

6

th
ro

ug
hp

ut
 (

in
st

ru
ct

io
ns

 p
er

 c
yc

le
)

SMT performance
SPEC 92 benchmarks workload

Unmodified superscalar
Baseline SMT
Improved SMT

Figure 1.5: Performance of SMT (basic and advanced version)

1.2.2 Fast fine-grained synchronization

The unique availability of shared caches and register file offers
the opportunity to implement very fast fine-grained synchronization
among threads, without accessing the main memory, locally inside
the chip. In [TLEL99], a hardware-based blocking-lock mechanism is
described, that can be implemented into the SMT processor, offer-
ing some important features:

� high performance, because synchronization stays in the lowest
levels of the memory hierarchy;

� resource-conservative, because passive waiting is imple-
mented: waiting threads are waken up by the hardware;

� deadlock-free, because suitable ordering is introduced
among threads,

� easy to build, as a very simple table can describe threads’
waiting status.

10 Introduction

The mechanism is implemented with a small structure associated
with some (two in our simulation) functional units, called lock box.
It stores one entry per hardware context describing the address of
the lock (with a tag describing its validity), and a pointer to the �������

instruction that blocked the thread.
Three new instructions (� �	�	
����� , ������ ��� � , � ���� � ���	
�����) are

needed to interface this mechanism. Their semantics is straightfor-
ward. More powerful functionalities, such as the barriers, are imple-
mented in software. The interested reader is invited to look for more
information (implementation, comparison with other mechanisms...)
in the work cited above.

1.2.3 The simulator

In my work, extensive usage of the SMTSIM simulator (see [Tul96a])
has been done. This program is able to simulate execution of multi-
threaded programs and of multiple sequential programs, reporting
detailed information as total completion time, average memory-
access delay, number of register and functional-unit conflicts, and
so on. It is also able to simulate the fast on-chip synchronization
mechanism described above.

❧

More considerations about SMT motivation, architecture, design-
space and performance can be found in [TEL95, Tul96b, LEE � 97].

1.3 Overview of the thesis

Main goal of this thesis is a deeper understanding of what an ad-
vanced compiler can do to enhance performance on a SMT pro-
cessor. In this direction, two main studies have been carried on.

The first one focused on the effectiveness of some advanced
compiling techniques for SMT. To improve performance, the ker-
nels from the Livermore loops benchmark have been rewritten with
some standard techniques: the effect of this work and the general-
ity of the proposed methodology are discussed with detailed exper-
imental data.

1.3 Overview of the thesis 11

The second one focused on modeling the performance of sim-
ple kernels running on SMT. The presented model is able to deter-
mine performance upper and lower bounds for a large class of short
kernels. Experimental results collected in the first part are here com-
pared against the expected figures. The model performs really well
with small loops (less than 40 instructions): in this case the perfor-
mance (useful processor utilization) is not farther than 5% from the
maximum expected value.

The thesis is organized as follows. Chapter 2 discusses shortly
some previous results about SMT, such as performance results and
threaded multiple-path execution. It also presents shortly the engi-
neering problems offered by SMT, and describes the Cray MTA ar-
chitecture, the compiler of which is used as a term of comparison
throughout the thesis.

Chapter 3 offers some considerations about some common par-
allel techniques, that are studied in the SMT context. Experimen-
tal results collected by MT versions of Livermore loops running on
the SMT, and the techniques used to improve their performance are
here discussed in their global aspects. Detailed results are instead
shown in chapter 4. Chapter 5 introduces and describes an original
performance model for the SMT processor. Chapter 6 concludes
and presents some open questions and future works.

An appendix reporting the most used acronyms closes this work.

12 Introduction

Chapter 2

Related work

In this chapter, a rapid overview of some interesting results about
SMT is given. Last section gives also a quick description of Cray MTA
architecture, that is used as a term of comparison throughout the
whole thesis.

2.1 Threaded Multiple Path Execution

In [WCT98] and [WTC99] an interesting usage of SMT capabilities is
discussed, called threaded multiple path execution (TME). This tech-
nique uses idle contexts on SMT to execute speculatively multiple
paths of execution.

This technique tries to face the problem posed by branch mispre-
diction, that is growing worse with the increasing execution band-
width and the lengthening of functional pipelines. TME consists in
using idle contexts on a SMT to aid branch prediction. This is a per-
fect match with the architecture, because unused resources are
offered to improve the overall performance: when TLP is low, the
idle contexts are used to try to increase ILP. When facing a branch,
execution continues on both paths, on different contexts. When
branch is resolved, the thread executing the wrong path is simply
discarded, and becomes free for a new computation.

Some peculiar features of SMT make this solution particularly effi-
cient. As register file is shared, there is no need to copy all the reg-
isters to start a new execution path: copying register map, much
smaller, is enough.

The TME implementation discussed in the cited work is able
to identify good candidates for spawning, to start alternate-path

13

Figure 2.1: SMT architecture improved with TME capabilities

thread in a separate hardware context, and to provide efficient in-
struction fetching for both paths.

A new structure, called mapping synchronization bus (MSB), is in-
troduced into the architecture (see figure 2.1), with the role of copy-
ing register mapping among different threads, and keeping their
maps updated when alternate-path threads are spawned onto the
idle harware-context.

The authors show that TME achieves an average 14% single-
program performance improvement, considering a branch mispre-
diction penalty of 7 cycles. TME seems so to be a good approach
to increase ILP for programs with high-misprediction rate on SMT.

2.2 ILP vs. TLP

Compiling issues are a very hot topic. Previous work on this includes
[CT99, TLEL99, RCT � 99, LEE � 97]. In the direction of my work, very
interesting is especially [MCFT99]. In this work, two main points are
discussed: differences in performance between ILP and TLP on a
SMT, and a way to model performance for MT code.

As said, SMT makes TLP operationally equivalent to ILP. The main

14 Related work

Figure 2.2: Comparison of FFT algorithms on SMT in [MCFT99]

question of the paper is if SMT performs equally well, when the in-
dependence comes from ILP or TLP. In the paper, three case studies
are analyzed: matrix multiply, fast Fourier transform (FFT) and integer
sort.

As an example, results on fast Fourier transform are here re-
ported. Some different algorithm, that compute eight one-dimen-
sional Fast Fourier Transform, with 220 points, were compared: a
naı̈ve (Numerical Recipes in C) implementation, parallelized1 dis-
tributing one-dimensional (1D) FFTs cyclically; FFTW, parallelized dis-
tributing 1D FFTs cyclically; NAS FT, parallelized interleaving outer
loop.

Very good (2.53x) speedup has been observed for the naı̈ve al-
gorithm, a little smaller speedup for the other two (1.3x for FFTW, 1.59x
for NAS FT). Nonetheless, the best performance is reached by NAS
FFT. It can be said, as a general principle, that a multithreaded poor
algorithm is not a substitute for a good algorithm, single- or multi-
threaded (see figure 2.2).

1The awful term to parallelize appears another 37 times throughout this work:
I apologize since now for that. Suggestion for a nicer periphrasis are more than
welcome.

2.2 ILP vs. TLP 15

nt f1 f2 f3
MM -0.16 0.60 -0.06 0.43
FFT -0.11 -0.08 0.48 0.89
IS -0.02 0.06 0.65 0.66

Table 2.1: Correlation of factors with performance

Probably the most interesting result in the paper is anyway the
performance model presented in the last part. The authors try to
predict performance of different implementation from few parame-
ters that are recorded from the SMT simulator.

These parameters are:

����� : number of threads,

����� : register locality (measured as communication to computa-
tion ratio),

���	� : cache and TLB locality (measured as average access
time),

����
 : demand of resources (measured as conflict rate),

���	� : number of instruction of the implementation.

Roughly, it can be said that ILP increases the figures for ��
 and �	� ,
and it is good if ��� and �	� are high. On the other hand, TLP affects
�	� , and it is good when ��� and ��� are low.

In the paper, Brewer’s technique [Bre95] is used to determine au-
tomatically a model for performance, as a weighted sum of the fac-
tors, for every problem. In table 2.1, coefficient for every problem,
as reported by the authors, can be found.

The very good quality of modeling (see figure 2.3), and the fact
that the role of coefficient is radically different for every problem,
should be observed. Even if the result is very good and encour-
aging, in my opinion a more general model, able to describe per-
formance of different problems, and not depending from profiling
information, is still needed. This is what my thesis tries to do.

16 Related work

Figure 2.3: Accuracy of modeling FFT in [MCFT99]

2.3 Explorations in symbiosis

In [SMC � 99], Snavely et al. compare Cray MTA and SMT in their sym-
biosis opportunities. With this term, the authors refer to the increase
in throughput that can occurr when two or more applications are
executed concurrently on a MT computer.

SMT and MTA share functional units among different threads: if
some resources are left idle by one thread, they can be used by
another, possibly without affecting the first one. Positive symbiosis
is actually observed under many conditions by the authors, that
suggest that a good co-scheduling (an accurate choice of which
programs are to be executed together) could greatly improve the
global throughput.

2.4 Does SMT pull its weight?

SMT is a smart technique able to exploit TLP in a modified super-
scalar processor. Even if this new feature can be added with a little
overhead, this additional chip area could be used to add different

2.3 Explorations in symbiosis 17

structures, as additional functional units, larger caches, or to imple-
ment a multiprocessor on a single chip.

Many researchers, even if trusting the opportunities offered by
SMT, are still evaluating if this is actually the best architecture for next-
generation chips [DeH00a, Kub00, Ama00]. Nonetheless, a strong
commercial interest to SMT can be seen [Die99].

An interesting work by Burns and Gaudiot [BG00] analyzes the
area usage that SMT would introduce in a regular superscalar pro-
cessor. Their work studies how to transform a MIPS R10000 into a
R10000-2x (with twice as much functional units), and then into a SMT
processor.

In the paper, the original MIPS R10000, built with a 1996 0.35
� mtechnology, is extrapolated to a 2000 0.18 � mtechnology, that
allows to have a dispatch width (in the paper with the meaning of
maximum sustained processor throughput) twice as large. The entire
pipeline is consequently increased.

A redesigned memory hierarchy is used in the simulated R10000-
2x: a 256KB level-2 cache is added, the original 16MB level-2 cache
becomes a level-3 cache, a larger (4x) TLB is featured, an improved
branch prediction mechanism is added (Gshare unit).

SMT features are then added: replicated instruction counters,
status registers and return address stack, and a larger register file are
needed. A slightly modified icount policy is implemented [TEE � 96].

To keep the clock rate fast enough, processor’s pipeline needs to
be modified with respect to the original architecture, as explained
in section 1.2.1.

Detailed simulation of different architectures was done by the au-
thors. The design space included different fetch capabilities (fetch-
ing one or more cache lines, with merging capability), dispatch
width and number of threads. In the following paragraphs, this no-
tation will be used: fX is the number of different threads fetched
per cycle, tY is the maximum number of threads, dZ is the dispatch
width.

Their results (based on Spec95 benchmarks) shows that the in-
creased fetch capability affects the single thread performance
(longer pipeline), but is convenient if more than one thread is run-
ning, as it reduces the fetch bottleneck. In table 2.2, results for two
architecture with dispatch width equal to 8, and fetching from 1
and 2 different threads each cycle respectively, are shown.

In the second part of their paper, very detailed results about the
layout overhead of SMT are reported. Burns and Gaudiot give an

18 Related work

number of threads
chip. config 1 2 3 4 5 6 7 8
fetch 1 th. 2.19 3.20 3.83 4.18 4.43 4.59 4.69 4.75
fetch 2 th. 2.11 3.22 3.96 4.35 4.70 4.91 5.12 5.19

Table 2.2: Simulation results in [BG00]

functional block R10000-2x SMT
remapping tables (register renaming) ��������� ��� �
	����� � �

� ���
enlarged INT and FP register files ��������� ��� � �
fetch block, multiple PC
and icount fetch policy ������� ��� � �
branch predict block, return stack ������� ��� � �
instruction squash (O3) N/A ��� � �
instruction commit (O3) ��������� ��� � �
free list with wider tag storage (O3) ����� � � ��� ���� � �

� ���
instruction queue (O3) ��������� ��� ���� � �

� ���
recover icount (O3) N/A ��� ���� � �

� ���
dtag, itag ��� ���� � ������� ��� ���� � �

� ���
routing ������� ��� ���� � �

� ���

Table 2.3: Layout blocks with large SMT overhead

estimation of the overhead caused by every functional block, mea-
suring commercial transistors/interconnect level layouts and extrap-
olating results to larger structures. Their results are reported in table
2.4: the cost of building R10000-2x starting from R10000 is measured
in the second column as a function of the dispatch width � ; in the
third column, the overhead introduced by SMT features, as a func-
tion of the number of threads � , can be found (O3 standing for out-
of-order execution). In most cases, the former grows with the square
of the dispatch width (����� � �), the latter instead linearly with the num-
ber of threads (��� � �).

Other blocks are affected indirectly by SMT: the increased
throughput creates new bottlenecks, that require new original so-
lutions. Even if these added structures are not strictly required by
SMT, SMT takes great advantage by their introductions. An exam-
ple is given by the fetch unit, that becomes a critical point in SMT.
Fetching multiple cache lines solves this problem, and improves per-

2.4 Does SMT pull its weight? 19

functional block R10000-2x SMT
INT and FP arithmetic units ����� � � ��� � �
Dcache (additional ports and 2x cache) ������� ��� � �
Miscellaneous ��� � � ��� � �

Table 2.4: Layout blocks unaffected by SMT

formance [TEE � 96]. This solution requires improved Icache, TLB, and
branch prediction mechanisms, that need multiple read ports. New
structures are also required to merge the fetched lines into one.

Other structures instead are unaffected by SMT features, but
grows when moving to R10000-2x, as shown in table 2.4.

The authors consider these parameters to give an estimation of
the per cent area increase for the two new configurations discussed,
with respect to three metrics: processor core (that includes pipeline
stages and logic, and is critical to determine clock rate and overall
design cost), entire chip minus L2 cache (an important metric, as
caches can quickly be changed with improved technology), and
entire chip (that is a good metric of packaging cost and power
dissipation).

As the reader can see in table 2.5, fetching unit is considerably
larger in SMT with respect to R10000-2x, but the larger core-area in-
creases are given by O3 execution logic and register files. Nonethe-
less routing and L2 cache, that occupy alone 46.5% of chip area
do not grow with SMT. Icache is another source of area overhead,
due to multiple read ports. In figure 2.4, total chip area required by
different implementations can be found.

The two authors also perform a comparison with other opportu-
nities, that have similar chip area (table 2.6), trading high number of
hardware contexts with other functional blocks: a four times larger
branch unit (SMT.f2.t6.d8 BU4x), larger cache (SMT.f1.t4.d8 cache),
larger dispatch width with two threads (SMT.f2.t4.d10), larger super-
scalar (SMT.f1.t1.d11). Figure 2.5 suggest that the best throughput is
reached by the eight-thread versions.

The authors conclude confirmings their trust in SMT:

� SMT overhead is equal to 5.8% of the core and 3.7% of the en-
tire processor with 2 threads, 46.7% and 28.3% respectively with
8 threads;

20 Related work

MIPS R10000-
2x in 0.18 � m

Relative (%) area increase of
adding SMT

Function Chip
block

area
(mm �)

area
(mm �)
w/
SMT

to
R10000-
2x
block

vs.
core
area

vs.
chip
area
w/o L2
cache

vs.
chip
area
w/ L2
cache

Dcache Dcache 11.4 11.4 0 0 0
Dtag 1.6 1.6

Icache Icache 9.1 13.7 50 2.9 2.2
Itag 1.3 1.9

TLB TLB 4.4 5.7 30 0.7 0.6
Fetch Fetch 1.0 4.6 157 5.6 4.1 3.1

Bpred 3.6 7.2
Decode Decode 2.3 4.5 96 1.7 1.2 0.9
O3 execu-
tion

Remap-
logic

2.5 3.3 68 19.4 13.9 10.6

Remap-
tables

2.4 16.2

FreeList 2.3 16.2
IQ 7.0 8.8
LSQ 9.4 11.8
FPQ 6.3 8.0
Reorder 6.1 7.8
RAS 0.3 2.1

Register Files Int.RF 5.7 18.8 231 20 14.3 10.9
FP.RF 5.3 17.6

Arith. units Int FU 7.6 7.6 0 0 0 0
RPMUL 4 4
FPALU 8.3 8.3

Misc. ExtInt 5.2 5.2 0 0 0
JTAG 0.9 0.9
Misc. 2.4 2.4
I/O 13.7 13.7

Routing Routing 52.7 52.7 0 0 0 0
256K L2 cache 55 55 0 0
Total core 126.7 188.8 46.7

w/o L2
cache

176.7 242.7 37.1

w/ L2
cache

231.7 297.7 28.3

Table 2.5: Increased area of R10000-2x and SMT

2.4 Does SMT pull its weight? 21

Configuration Chip area (mm �)
SMT.f1.t8.d8 284.8
SMT.f2.t8.d8 297.7
SMT.f2.t6.d8 BU4x 304.4
SMT.f1.t4.d8 cache 338.5
SMT.f1.t2.d10 319.1
SMT.f1.t1.d11 316.1

Table 2.6: Alternative micro-architecture with similar area

Figure 2.4: Area overhead of different SMT implementations

22 Related work

Figure 2.5: Performance of different architectures

� SMT throughput increase is about 142%, really substantial when
compared with area requirements;

� SMT throughput increase is about 114% with respect to a super-
scalar processor, with larger execution bandwith, requiring the
same or larger area.

2.5 Other works about SMT

I would like also to cite some other interesting recent works on SMT.
Collins et al., in [CT99], describe a hardware support that clas-

sify different types of cache misses, simulated on top of SMT. This
knowledge is, in the paper, applied successfully to many problems,
among which cache prefetching.

Tullsen et al., in [TS99], present a low-overhead technique for reg-
ister value prediction, based on register-value reuse locality. Their
results show a 12% increase in performance.

Lo et al., in [LPE �], discusses a software-directed approach to
register deallocation. Their technique allows a more efficient register
file utilization in SMT: their results shows that a 264 register files, with

2.5 Other works about SMT 23

Figure 2.6: Cray MTA machine at the San Diego Supercomputing
Center

software deallocation, can perform as well as a 352 register files,
managed in the traditional way.

2.6 Fine-grained multithreading: the example
of MTA

As described in the introduction, SMT overcomes the concept of
fine-grained multithreading (FGMT), moving to the new described
solution. FGMT is nonetheless a still vital approach to advanced
microprocessor architecture, that is featured by the Cray MTA (for-
merly Tera), that represents the state of the art for von Neumann
FGMT architectures.

MTA is the result of a long-planned project, begun in 1990, in the
reach for performance, with three main goals [ACCK90]:

� very high speed implementation (fast processors [HK97] and
high scalability);

� general-purpose applicability;

� easy compiler implementation.

In order to reach them, many innovative solutions are proposed
by MTA:

24 Related work

� a custom GaAs integrated circuit (that will be soon replaced
by a more standard CMOS technology, that has reached the
needed performance);

� uniformly accessible memory (UMA);

� absence of caches;

and, as said, a highly efficient support to FGMT. Every processor
is able to execute up to 128 threads, interleaving them with FGMT:
it is able to fetch one VLIW instruction from a different thread, every
cycle, with a context-change cost equal to zero. This allows to hide
very long memory latencies (up to 1024 cycles) and any pipeline
delay (branch prediction, data dependences...): to programmer’s
point of view, results of any instruction are always available in the
next cycle.

Result of a careful hardware-software cooperation design
[ABC � 97], MTA is a highly programmable machine: multithreading
is very easy to achieve, and parallel programming comes out to
be quite easy. Full support to thread creation and removal, and to
lightweight synchronization, makes its programming straightforward:
programmer do not have to think about data allocation in memory,
cache management, structural hazards.

Present in just one copy in the world, at the San Diego Super-
computing Center, its performance is still being evaluated. Results
are quite encouraging, even if the actual configuration suffers often
from hardware problems. I was offered the opportunity to play a
bit with its compiler, that can extract automatically parallelism from
most programs. Implemented techniques include: loop unrolling,
loop interchanging, cyclic reduction, loop fusion. An advanced
tool, called canal, offers some feedback about the solutions utilized
in the parallelizing process, so that programmers can further help
the compiler in its task.

2.6 Fine-grained multithreading: the example of MTA 25

❧

Chapter 3

Tuning TLP on Livermore Loops

3.1 Introduction

The work here presented has the main goal of developing a better
and deeper understanding of the complex iterations that can be
found among threads running on the SMT processor. It also wants
to determine what an advanced compiler can do to improve MT
performance. In this direction, a thorough analysis of the behav-
ior of some standard kernels has been done. In this research, the
Livermore loops have been chosen as a representative case study.

The Livermore loops are a set of 24 heavy-computing short ker-
nels, that can be found as main core of many important scien-
tific programs. Main features are a very high demand for proces-
sor resources and very different behaviors: actually, they span from
indepent-iterations loops (highly parallel) to other ones with tight de-
pendences, and offer cache and functional units utilization patterns
broadly different [McM86].

They were developed to measure numerical computation rates
for a spectrum of cpu-limited computational structures or bench-
marks (F. H. McMahon, 1972). They are so particularly interesting to
evaluate different architectures’ performance with a typical scien-
tific work-load. Furthermore, peculiar characteristics of every single
kernel make them a real challenge to compilers, that implement
more and more complex techniques to improve compiled code’s
efficiency. Actually, in this research, I played the role of a compiler,
trying to understand what the limits to advanced compiling for SMT
can be.

Originally written in Fortran, a C version is also available. I used

27

Figure 3.1: An interesting example of loop (the first ever looping
roller-coaster, the Revolution at Six Flags, Los Angeles, CA)

the original C versions as closely as possible. In a rather unexpected
way, after some programs were slightly restructured to make them
easier to parallelize (some of them still featured explicit jumps with

� � � � !), they performed more efficiently. In these cases, I preferred to
use my new versions, as more respectful of what present program
should be.

I wrote and run many different multithreaded versions of every
loop. Main goal of this part of my study was to understand which
techniques can be used to improve performance of these kernels
on SMT, and to develop some SMT-specific techniques, that could
be used by an advanced compiler. More than smart tricks for ev-
ery single kernel, I tried to use what is considered to be standard

28 Tuning TLP on Livermore Loops

ICache DCache L2 Cache L3 Cache
Size 64KB 64KB 256KB 2MB

Associativity DMa DM 4-way DM
Line size 32 32 32 32

Banks 8 8 4 1
Transfer time/bank

(cycles) 1 1 2 2

Table 3.1: Details of memory hierarchy
aDirect mapping.

in modern compilers: common techniques as cyclic reduction and
loop fusion were exploited, while kernel-specific solutions, based on
a higher level of semantics, were carefully avoided. Again, the goal
was to test some general techniques that could be useful with SMT,
not to exploit the best performance for each kernel.

As a term of comparison, particularly interesting was the usage
of the Cray MTA compiler, kindly allowed by the San Diego Super-
computing Center, where the first running MTA machine can be
found. It is my opinion that an advanced compiler for the SMT pro-
cessor will be probably similar to it in many aspects, even if the pres-
ence of advanced superscalar features introduces lots of problems
in the compiling process (as discussed in section 3.7.2).

3.2 Methodology

Main features of the simulated SMT processor are reported in tables
3.1, 3.2 and 3.3. The Atom column describes the parameters used
by Atom to compute the critical path scheduling (see section 5.1).
As explained in the founding work by Tullsen et al. [TEL95], these
parameters describe what a SMT built in the next future will probably
be.

All the kernels were rewritten manually. I tried not to introduce
higher-level knowledge of program semantics, with the goal to be-
have as close as possible like a compiler. Actually, I try to con-
fine myself to observe dependences among iterations, using gen-
eral methods (GCD, diophantine equations...), and to introduce the
smallest number of synchronizations and barriers, needed to guar-
antee semantics: my rewriting work was led every time by general

3.2 Methodology 29

Latency
Instruction class SMTSIM Atom
integer multiply 8/16a 8/16

conditional move 2 2
compare 0 0

other integer 1 1
FP divide 17/30 17/30
other FP 4 4

load(L1 cache hit,
no bank conflicts) 2 2b

load (L2 cache hit) 8 -
load (L3 cache hit) 14 -

load (memory) 50 2
store 1 1

control hazard (predicted) 1 1
control hazard (mispredicted) 6 1

Table 3.2: Latency of instructions in the SMTSIM simulator and in the
Atom tools

aLatencies depend from instruction’s precision.
bThis value is usually set to the average memory-access delay, as measured by

the simulator.

L1-L2 bus latency 2 cycles
Instruction TLB 48 entries

Data TLB 128 entries
Integer renaming registers 100

FP renaming registers 100
Fetch bandwidth 8 inst. per cycle
Functional units 6 integer, 3 FP

Integer units 4 load/store, 2 synch. out of 6
Maximum number of threads 8

Fetch policy Icount, 1:8 a

Integer instruction queue 32 entries
FP instruction queue 32 entries

Table 3.3: Parameters of the simulation
aFor more details on fetch policy see [Tul96b].

30 Tuning TLP on Livermore Loops

principles, though, and sometimes I had to be very conservative.
Parallelization techniques used includes: interleaving, loop fu-

sion, cyclic reduction, loop peeling, invariant motion, local accu-
mulation (described in section 3.5). All of these seem to be very
general and useful in most cases. This work offered a good insight
of which information can be collected by the compiler in order to
perform good parallelization.

In order to simplify the discussion, the kernels will be classified into
four groups:

� independent-iteration loops,

� loop-carried-dependence loops,

� accumulation loops,

� larger loops.

Some common features can be found among the loops belong-
ing to the same group, even if unexpected behaviors have been
observed. In the following sections, two main figures will be dis-
cussed: processor utilization and completion time. Even if com-
pletion time is the most important value when discussing the effect
of multithreading, processor utilization is a useful description of how
well processor resources are exploited: we can not expect very high
improving in terms of completion time, if processor utilization is high
for the sequential version.

In this chapter, only general considerations for every group will
be made. The interested reader can find more details in the next
chapter, such as all the experimental data, and a short discussion
describing every kernel and its parallelization.

In the following plots, these two figures — processor utilization
and completion time — are described by two curves: the former is
drawn with circles, the second with squares. Both of them are shown
as per cent values: completion time is normalized with respect to
the sequential completion time (let equal to 100), and processor
utilization as average percentage of used slots. X axis represents
the number of threads (with 0 standing for the sequential version),
Y axis represents the values per cent of utilization and completion
time. Differences between the sequential and the one-thread ver-
sions describe the cost of restructuring the loops.

3.2 Methodology 31

Compilation flags and completion time (cycles) of the sequential
code, are reported for every loop. All the kernels were compiled
with the GNU C compiler (gcc).

3.3 Independent iterations

This group collects all the loops that feature independent iterations
(kernels no. 1, 7, 8, 9, 10, 12, 15, 17, 21, 22). They express vector com-
putations, that can be carried on independently for every element.
The only actual dependence is given by induction variables, which
are local to every thread in the MT versions. As shown in [LEL � 97],
in these cases iterations interleaving among threads (see program
fragment 3.1) is the most efficient way to express parallelism: it has
been shown that a better cache utilization is reached with this solu-
tion. This kind of loops is easily run on the SMT processor, with good
speedup: these loops generally present an asymptotic increasing
of performance (both shown metrics), and reach a good processor
utilization (i.e. further improving is limited), about 65% on average.
See for instance figure 4.2.

Some general principles can be learnt from the collected data:
when iterations are independent, they easily become TLP on SMT; if
sequential code has low processor utilization, this TLP can contribute
to a major improving, while kernels with high initial processor utiliza-
tion show small or no improvement.

3.4 Loop-carried-dependence loops

In this group, loops featuring loop-carried data dependences are
collected (kernels no. 5, 11, 19, 20, 23). Interleaving is not useful
here, as iterations need to be executed strictly in order: limited op-
portunity for increasing ILP is offered.

Nonetheless, one of them (kernel no. 11) was successfully par-
allelized, introducing the so-called cyclic reduction (see section 4.2
on page 52), a powerful algorithm for the running sum problem. This
technique can be applied even to kernel no. 5, that present some
common points, but this was not tried due to time limits.

A very important fact is that this type of reductions can be rec-
ognized automatically by the compiler, that can apply techniques

32 Tuning TLP on Livermore Loops

(a)
� ���� ������� �	��
�� �����
�

��� ��������������

(b)
� ���� ��� ��� �� ��� � � � ����
�� ����! #"�$�%�&�'�(�)�*	+,�
�

��� ������������

Program fragment 3.1: Original code (a) and MT version with inter-
leaved iterations (b)

as the one just cited. Actually, the Cray MTA compiler already does
this kind of optimization, and it is my opinion that a suitable set of
implementation templates needs to be developed and introduced
into a smart compiler for the SMT.

Another aggressive technique (loop skewing) has been used for
kernel no. 23, that updates a matrix in a simple row-column order,
but the overhead of this solution prevented any performance im-
provement. I do not exclude that a better tuning could improve
performance, as processor utilization is really low in the sequential
version.

Kernel no. 5 and 19 have been parallelized introducing some
lock primitives around the critical variable updates, hoping that the
loop overhead (test, increment...) could be partially hidden. This is
not the case, as synchronizations introduce a very high overhead,
that is not followed by any increasing in TLP.

3.5 Accumulation loops

The following loops (kernels no. 3, 4, 6, 13) are particularly interest-
ing, as they feature some independent computation, followed by
accumulation of all the values. So, one part of the body could be
easily parallelized among threads (interleaving), while accumula-
tion was protected by suitable (ordering) locking to prevent critical

3.5 Accumulation loops 33

races.
In many cases (kernel no. 3, 4 and 6), a general technique that I

will call local accumulation was useful. It implements a simple con-
sideration: if the accumulation is carried on by an associative and
commutative function, the order is not important. In this case, every
thread can compute a local summation, that at the end takes part
in the global sum, performed by one specific thread1.

This kind of loops generally has good improvement with few
threads. After this, the sequential ordering introduced by locking
makes added threads useless (see for instance figure 4.16).

3.6 Larger loops

Under this denomination, all the other loops, featuring a larger loop-
body and a more complex behavior, are collected (kernels no. 2,
14, 16, 18, 24). They represented a great challenge for the opti-
mizing compiler (myself!) as their semantics was difficult to deter-
mine, due to complex branching and data-dependent memory-
accesses. The common technique was to interleave iterations, intro-
ducing ordering locking (one thread wakes up the following one in
the correct order) to protect possible dependences. In some cases,
this is actually all that could be done for these very complex loops,
where all the common techniques failed. In this case, it must be
said that the compiler can not improve performance, due to lim-
ited knowledge of the code: the programmer should introduce e.g.
some directives to help compiler in its task.

3.7 Further analyses

3.7.1 Running with 16 threads

Some tests have been run, with some representative loops, to see
if much more (twice as much) hardware threads could be useful
to improve performance. The simulator was modified by increasing
the number of context, but not enlarging the caches, the number
of renaming registers, the execution bandwidth and so on.

1I observed that a tree reduction for the second part of the algorithm had a
too high overhead to be useful with SMT.

34 Tuning TLP on Livermore Loops

0 2 4 6 8 10 12 14 16
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 9
Running with up to 16 threads

normalized completion time (16)
useful instructions fetched (%) (16)

Figure 3.2: Execution statistics for kernel 9 (16 threads)

As the reader can easily see (figures 3.2, 3.3, 3.4, 3.5 and 3.6), the
trends highlighted with up to 8 threads continue smoothly up to 16
threads (the first part of each curve is identical to the one shown
in figures 4.4, 4.5, 4.7, 4.8 and 4.10). One strong point is that SMT
shows no effects of thrashing or conflicts for resources: the increased
memory latencies, due to a higher number of memory accesses,
are perfectly hidden by the increased opportunities of TLP.

Another important point is that, even if some kernels (9 and 22)
improve with a high number of threads, it seems that generally few
(about 4) threads are needed to gain a good speedup. This kind
of consideration is really important to trade the possible advantage
with the cost of adding more hardware contexts.

3.7.2 Rescheduling basic blocks

In order to collect some information about SMT ISA, to be used in the
modeling work, I spent some time hacking the assembler code pro-
duced by gcc, trying to determine bottlenecks and inefficiencies.
My goal was to reschedule the most stressed basic blocks, in order

3.7 Further analyses 35

0 2 4 6 8 10 12 14 16
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 10
Running with up to 16 threads

normalized completion time (16)
useful instructions fetched (%) (16)

Figure 3.3: Execution statistics for kernel 10 (16 threads)

0 2 4 6 8 10 12 14 16
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 15
Running with up to 16 threads

normalized completion time (16)
useful instructions fetched (%) (16)

Figure 3.4: Execution statistics for kernel 15 (16 threads)

36 Tuning TLP on Livermore Loops

0 2 4 6 8 10 12 14 16
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 17
Running with up to 16 threads

normalized completion time (16)
useful instructions fetched (%) (16)

Figure 3.5: Execution statistics for kernel 17 (16 threads)

0 2 4 6 8 10 12 14 16
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 22
Running with up to 16 threads

normalized completion time (16)
useful instructions fetched (%) (16)

Figure 3.6: Execution statistics for kernel 22 (16 threads)

3.7 Further analyses 37

Kernel no. 9
gcc opt opt 2

1 thread 4584619 4574635 4574635
8 threads 1715602 1825738 1684350

Kernel no. 10
gcc opt opt 2

1 thread 177607 177255 178166
8 threads 155724 153422 N/A

Table 3.4: Experimental results for reschesuling

to improve performance figures. Particular attention to the most im-
portant architectural characteristics of the SMT processor has been
paid:

� number and types of functional units,
� latency of instructions.

Some simple heuristics have been used: I tried to keep depen-
dent instructions as far as needed (at least, as far as their latency),
and to avoid code subsequences that would not fit the number and
type of functional units. To do that, I reallocated data in registers
(gcc is very cheap in using them), using more of them in order to be
able to move instructions more freely.

Results are not encouraging: after a thorough scheduling, differ-
ences in performance are really small, and not always for the best.
As a case study, the results of rescheduling for kernel no. 9 and 10
are described in table 3.4. They were chosen as they feature one
single basic block that is executed more than 99.5% of the time (so
to have larger changes with small code changes), and they have
a radically different behavior when parallelized. opt1 and opt2 la-
bel two different versions, in which the number of used register was
increased, and execution order was carefully considered.

The scheduling task is particularly difficult and can be useless
or even pernicious. As a matter of fact, some advanced features
of the simulated processor affects the actual behavior of the exe-
cuted source code. In particular, some considerations should be
done about register renaming and instruction reordering. Increas-
ing the number of used architectural registers, trying to remove false

38 Tuning TLP on Livermore Loops

(storage-related) dependences, is not very important, as this task is
well performed by hardware: it can be useful to have more room for
code-motion during the compiling process, but it’s not so important
for performance. Furthermore, far more registers (renaming regis-
ters) are available during execution, that can be used to hide this
kind of dependences, better than every possible static data alloca-
tion.

Similarly, instruction scheduling in the source code is not impor-
tant with a processor featuring advanced out-of-order execution:
differences between scheduled and non-scheduled versions are
smoothed by SMT run-time reordering capabilities.

3.7.3 Register allocation with advanced processors

These considerations can be extended in a general way to most
of the present-day advanced processors. Nowadays, registers are
nothing but another level of the memory hierarchy, as they are used
to cache the most used and stressed variables (memory locations).
Registers are loaded and spilled back; data are allocated onto
them using complex algorithms that consider number of references
and the similar; they store different data throughout program ex-
ecution. At the hardware level, data cache is usually part of the
pipeline, and becomes faster and faster (few cycles are needed to
access cached data). On the other hand, register files are growing
larger and slower, and in some recent processors they are moved
out of the pipeline, and further cached: registers and data caches
are getting closer and closer in term of performance and function-
alities.

In most of modern commodity processors, registers are the only
memory hierarchy level that is managed explicitly by software, with
all the problems that this can raise: imprecise knowledge of pro-
gram’s run-time behavior, and thus inefficient data allocation in
some situation, complex compile-time algorithm to extract informa-
tion... It is my opinion that the difference between registers and
memory locations should be removed from the ISA, and that the
hardware should be responsible for the best register allocation.

For sure, the information collected by compilers should be
passed in some form to the hardware, the same way that prefetch-
ing instructions can be used to enhance cache performance.

We must also remember that many hardware structures con-

3.7 Further analyses 39

trol the data cache, that makes it somewhat a larger register file:
advanced processors features logic that controls memory aliasing,
memory-carried data dependences and so on. This mechanism
may be limited (limited number of entries), but it plays the same role
that reference counters and the similar play for the register file.

A new instruction set architecture should be developed, that re-
moves the concept of registers, and leaves the task of data alloca-
tion into register to the run-time structures: SSA and dataflow seem
good candidates, along with the good ol’ memory-memory ISA. To
be less radical, off-line optimization (data-reallocation into registers
after collecting run-time behavior information) also can be an inter-
esting direction [Smi00].

3.7.4 Cray MTA compiler’s result

All the kernels have been run on the Cray MTA too. The sequen-
tial versions were submitted to the compiler, in order to determine
which kind of information could be extracted by its algorithm, and
have a term of comparison for my compiling work. Here most inter-
esting results are shortly reported.

Cyclic reduction is used by MTA compiler to parallelize kernels no.
5 and 19, in addition to kernel no. 11, previously discussed. Unrolling
was used to parallelize partially kernel no. 14 and 18, instead of loop
fusion. On the contrary, there are no optimization for kernel no. 2,
that I could parallelize with interleaving and loop peeling, kernel no.
17, that features independent iterations, and kernels no. 16, 20 and
24.

Loop interchanging is an opportunity that was not explored, and
it is used for kernel no. 1, 7, 8, 9, 10 and 12. It must be said that Cray
MTA compiler interchanging involved the outmost iteration, that is
introduced only to lengthen the execution time, so to have more
consistent results, and that was not considered in my rewriting work.

MTA compiler rewrites the accumulation loops, introducing some
synchronizations to protect the accumulation variables, and then
parallelizing the iterations. The local accumulation in my code can
go beyond that, and exploit much more parallelism.

40 Tuning TLP on Livermore Loops

3.8 Overall speedup

As said, good speedup can be reached using different techniques
for every single kernel. A description of the global results here ob-
tained is given by figures 3.7 and 3.8, that show two closely related
figures: the first plots the average useful IPC, the second the effect
of increased number of threads on completion time. The former
value is measured as the number of useful instructions that are per-
formed in one cycle, considering synchronization and everything
else added to the code as overhead. This is computed by the fol-
lowing:

���������	��
������� �������������������� "!$#�%�&'�	���(�)& 	�*,+
��#-!�.,���/�10-��23%#-.� "�4�����5#-�6���(.7�98:�(�(;<�=�(;>!$����2-� (3.1)

where *?+ is the maximum sustained IPC, equal to 8.
These two metrics heavily penalize MT versions, as everything

added to introduce the MT behavior is seen as an overhead.
Nonetheless, this kind of data is the only needed to determine if
parallelization is useful. As a matter of fact, for some kernels such as
no. 16 and 23, a very high processor utilization does not correspond
to any improvement in completion time.

With the techniques here discussed, more than one more instruc-
tion per cycle is executed on average (from 2.72 to 3.93), and com-
pletion time is reduced of about one fourth (73.91% of sequential
version).

As the reader can observe, the best performance is not always
reached with eight threads. For accumulation loops, for instance,
few threads are usually enough. This raises the question: how the
best number of threads can be determined by the compiler? This
is still an open problem, and a first approach is discussed in section
5.3.1.

3.8 Overall speedup 41

0 2 4 6 8
Number of threads

1

2

3

4

5

Performance gain
Average useful IPC

useful IPC

Figure 3.7: Effect of increased number of threads on IPC

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Overall speedup

average normalized completion time

choosing the best number

of threads for every problem

sequential code

1 thread

8 threads

Figure 3.8: Effect of increased number of threads on completion
time

42 Tuning TLP on Livermore Loops

Chapter 4

Experimental results

4.1 Independent iterations

Kernel 1 — hydro fragment

This short kernel updates, with a linear scanning, a vector with a very
simple function, that depends from values stored in other two vec-
tors. This kernel has a very good processor utilization (66%, that is
about 5.2 IPC) with the sequential version, that the MT version can
not improve. This is a rather general principle: high processor utiliza-
tion limits the opportunity for improvement on SMT. In this case, the
main bottlenek is given, in the MT version, by a small FP instruction
queue, that causes a high number of FP queue conflicts (see figure
4.1).

Kernel 7 — equation of state fragment

Similar to kernel no. 1, it features a more complex update func-
tion, using three different vectors, and reading 9 elements. A high
number of threads here is important to reduce the effects on per-
formance of this keavy group of memory accesses. Performance
reached by the eight-thread version is really impressive, more than
94% processor utilization (see figure 4.2).

Kernel 8 — ADI integration

This kernel updates a tree-dimensional vector, reading data from
one plan, and writing to the other (with a two-dimensional iteration

43

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 1
Comp.flags: −O2, Seq.time: 1786093

normalized completion time
useful instructions fetched (%)

Figure 4.1: Execution statistics for kernel 1

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 7
Comp.flags: −O2, Seq.time: 8883392

normalized completion time
useful instructions fetched (%)

Figure 4.2: Execution statistics for kernel 7

44 Experimental results

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 8
Comp.flags: −O2, Seq.time: 1444081

normalized completion time
useful instructions fetched (%)

Figure 4.3: Execution statistics for kernel 8

space). To make things even more complex, without any appar-
ent reason, temporary values are stored tidily in one vector, the val-
ues of which are not alive outside the specific iteration that creates
them. Compiler can surely determine this fact using some simple
techniques (comparing indices...): I suppose that it is able to intro-
duce a temporary vector (local to each iteration) to store all the
temporary values, and then that it is able to transform access to a
three-element vector (as it happens in this case) to access to three
distinct variables. This transformation makes iterations independent,
as it removes the fake storage-related dependence carried by the
temporary vector.

After this change (introduced successfully even in the sequential
code), a very good improving could be measured: MT code is more
than twice faster (see figure 4.3).

Kernel 9 — integrate predictors

This kernel uses a very large bidimensional vector. For each row,
values from all the columns are used to update the element in the

4.1 Independent iterations 45

num.th. seq. 1 2 3 4 5 6 7 8
mem.delay 116.5 116.5 112.8 73.5 59.4 74.0 60.3 51.9 46.2

Table 4.1: Average memory-access delay for kernel no. 9

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 9
Comp.flags: −O2, Seq.time: 4584340

normalized completion time
useful instructions fetched (%)

Figure 4.4: Execution statistics for kernel 9

first one, with a linear, loop-independent function. This complex ac-
cess pattern causes a very bad Dcache utilization (only 70% to 80%
Dcache hit ratio), and a very high memory delay (average access
time is equal to 116.5 cycles for the sequential version). Due to these
problems, processor utilization is really low.

Nonetheless, this makes room for SMT’s high latency-hiding ca-
pabilities. As it can be seen from table 4.1, memory latency is well
hidden by multithreading, and both completion time and processor
utilization improve a lot: the eight-thread version is 2.5 times faster
than the sequential code. This code shows one of the best improve-
ments recorded in this work (see figure 4.4).

46 Experimental results

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 10
Comp.flags: −O2, Seq.time: 1327981

normalized completion time
useful instructions fetched (%)

Figure 4.5: Execution statistics for kernel 10

Kernel 10 — difference predictors

This loop features a very heavy loop-independent computation,
with a complex and long chain of dependent floating-point op-
erations and memory accesses. Limited improvement is observed
(see figure 4.5), due mostly to this complex execution pattern, that
features low IPC rate, and to the fact that instruction queues (IQ)
and the reordering buffer (ROB) are not large enough to store more
copies of the loop-body (see chapter 5).

Kernel 12 — first difference

This loop executes a very simple vector computation (� � ����� � � ���� �� � � ���), that improves a lot with the number of threads. Nonethe-
less, results are really unexpected, as they present a consistent bad-
performance spot when three threads are running. Many complex
reasons, related to the actual size of some hardware structures, de-
termine this problem, that disappear when other TLB, cache, and
IQ sizes are used in the simulator (see figure 4.6).

4.1 Independent iterations 47

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 12
Comp.flags: −O2, Seq.time: 2032973

normalized completion time
useful instructions fetched (%)

Figure 4.6: Execution statistics for kernel 12

Kernel 15 — casual Fortran

This loop is more complex and long than the previous ones. It fea-
tures a set of highly irregular nested branches, that depends heavily
from data stored in three large bidimensional matrices. Nonethe-
less, it shows a very good improvement, with simple interleaving (see
figure 4.7).

Kernel 17 — implicit, conditional computation

The available implementation of this loop was written à la Fortran,
with explicit branching (� � � �). As said in the introduction, I have
chosen to rewrite this kind of kernels in a more modern, structured
way, that allows a better understanding of dependences among
instructions and so on. Actually, I am not sure that a compiler can
restructure automatically a loop like that, but I suppose that mod-
ern programs will be more structured, and the compiler can use this
type of information to manage the parallelizing task. Once rewrit-
ten in modern C, this code gets really strong improvement (see fig-

48 Experimental results

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 15
Comp.flags: −O2−lm, Seq.time: 4372842

normalized completion time
useful instructions fetched (%)

Figure 4.7: Execution statistics for kernel 15

ure 4.8), due to independent iterations, fact that could not be easily
recognized in the original version: Cray MTA compiler, as a matter of
fact, can not introduce any parallelization to this code in its original
version.

Kernel 21 — matrix*matrix product

This loop features a very short vector computation, with indepen-
dent iterations. Simple interleaving offers a small improvement to a
really high initial processor utilization (about 80%). The best perfor-
mance is reached with only three threads, due to increasing con-
flicts for resources when more threads are used (see figure 4.9).

Kernel 22 — Planckian distribution

This loop computes a very simple update of two vectors, scanning
them linearly. Nonetheless, the usage of the �

��� function introduces
very high latencies, due to a high number of dependent floating-

4.1 Independent iterations 49

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 17
Comp.flags: −O2, Seq.time: 2021975

normalized completion time
useful instructions fetched (%)

Figure 4.8: Execution statistics for kernel 17

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 21
Comp.flags: −O2, Seq.time: 1342392

normalized completion time
useful instructions fetched (%)

Figure 4.9: Execution statistics for kernel 21

50 Experimental results

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 22
Comp.flags: −lm−O2, Seq.time: 1931250

normalized completion time
useful instructions fetched (%)

Figure 4.10: Execution statistics for kernel 22

point operations in its computation. In this case, SMT finds a fertile
ground, and iteration-interlaving causes really good improvement
(see figure 4.10).

4.2 Loop-carried-dependence loops

Kernel 5 — tri-diagonal elimination, below diagonal

This loop computes a very tight recursion (� � � ��� � � � � � �
� � �	� � � ���

� � � �), that could not be parallelized. The plot shown in figure 4.11
refers to a version in which the update was surrounded by a suitable
locking able to keep the right order. This only contributes to a very
high overhead, that corresponds to a higher completion time (see
figure 4.11).

4.2 Loop-carried-dependence loops 51

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 5
Comp.flags: −O2, Seq.time: 4260037

normalized completion time
useful instructions fetched (%)

Figure 4.11: Execution statistics for kernel 5

Kernel 11 — first sum

This kernel had a very good improving when parallelized with the
cyclic reduction technique. The initial low processor utilization offers
large opportunity to introduce advanced techniques. Even if more
instructions are executed (about 1.7 times as much), the increase
in available TLP allows a much better processor utilization, that can
overcome the large overhead. The MT version is almost twice as fast
(see figure 4.12).

A full cyclic reduction (recursive binary algorithm) suffered from
really high overhead and load unbalance. A simplified version (see
program fragment 4.1) was implemented for the SMT.

This algorithm will be rewritten in order to be more general, and
will be introduced into a broader rewriting tool for the SMT, that will
integrate also the modeling algorithms discussed in chapter 5.

52 Experimental results

�����������
	��������� ���������������������������� �!�"#����$�%
��!�"'&(��)+*-,.��/�)���!�!�01,.��2�243�5

687:9�;)
< 7=9�; ,
��!�"'&?>�)+*-,?>�/��@,A>�2�243�5

687 > ;) 687 >�B�* ; 2C< 7 > ; ,
D

D
��������� ����E�F
G���"+����!��
�H��"������C)I&J	���K��L3M�I&N��O�E�F�P�Q���R�S�	�3T,
���'&U���"#�����WV���O�E�F�P�Q���R�S�	'XY)Z	���K��L3[5

�H��"#�����\2�2], ��"���^��H��"#������)-*_,
D

�H����"��W)`���"#�����ZV���$�"����������], ���
	�a�E�SbX�Xc����������"������\G����������
�����
)4���"#�����ZV[��$�"����������C2`�H��"#�����d, ���\��!�"Z��G���"�<C��$�"������

��!�"'&e��)+*-,f��/�)���!�!�0@,f��2�243g5
6h7 �����"�� ;)
< 7 �����"�� ; ,

��!�"'&N>Z)`�H����"���2+*i,j>�/C�����],k>�2�2+3�5 ������!�^����["������L�l�� m�U��%
6h7 > ;) 6h7 >�B#* ; 2C< 7 > ; ,

D
���I&n��O�E�F�P�Q���R�S�	�)�)o*�3\^�!����#�l�����p, ������!����Z���W!��#��<q*r��$�"������

�s%���tu#��"�"#����"d&l3T,
���I&#XY��$�"����������#3M5 ����"������L�l�� Z�l��%4!��Z����������"+�

��!�"'&N>�)�vd,w>�/���O�E�F�P�Q���R�S�	d,x>�2�2+3�5
687 &U���"#�����WVM>L3�B�* ;) 687 &U�H��"#������Vr>_3�B�* ; 2

687 &y���"#�����WV[>_3�B�*[B��H��"#����� ; ,
D

���I&�X:��"���^����"#�����#3r5 ������� 6 ������Z�����%#�����
687 	���K��ZB`* ;) 6h7 	���K���B#* ; 2 687 	���K���B�*MBm���"#����� ; ,

D
D

�s%���tu#��"�"#����"d&l3T,
���I&n��$�"����������+3z5 ����0�"�!�0��� ����#�l�� m�U��%

��!�"'&N>Z)`�H����"��{,j>�/|&J������B�*�3T,c>�2�2+3�5
687 > ;) 6h7 > ; 2 6h7 �H����"���B�* ; ,

D
D

D
�����������

Program fragment 4.1: Cyclic reduction algorithm for SMT

4.2 Loop-carried-dependence loops 53

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 11
Comp.flags: −O2−DALG2B, Seq.time: 722554

normalized completion time
useful instructions fetched (%)

Figure 4.12: Execution statistics for kernel 11

Kernel 19 — general linear recurrence equations

This loop computes two complex recurrences in a row. The same
technique of kernel no. 5 (locking around the update) was used.
This loop came out not to be parallelizable with straightforward so-
lutions (see figure 4.13).

Kernel 20 — Discrete ordinates transport

This loop features a recurrence carried on by the � � vector. Every
iteration uses � � � ��� to evaluate the test guard and � � � ���� � . This
code results not be parallelizable with standard techniques (see fig-
ure 4.14), due to this dependence.

Kernel 23 — 2-D implicit hydrodynamics fragment

As said, an aggressive loop-skewing has been tried for this kernel.
It updates a large bidimensional matrix in a simple row-column or-
der, with a function depending from the four neighbors, and from

54 Experimental results

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 19
Comp.flags: −O2, Seq.time: 319934

normalized completion time
useful instructions fetched (%)

Figure 4.13: Execution statistics for kernel 19

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 20
Comp.flags: −O2, Seq.time: 194559

normalized completion time
useful instructions fetched (%)

Figure 4.14: Execution statistics for kernel 20

4.2 Loop-carried-dependence loops 55

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 23
Comp.flags: −O2, Seq.time: 1313329

normalized completion time
useful instructions fetched (%)

Figure 4.15: Execution statistics for kernel 23

the values of another two matrices, that are only read. Skewing
was tried to exploit the so-called tidal-wave parallelism, but the im-
plemented algorithm had a too high overhead to be useful (see
figure 4.15): the very high processor utilization is not followed by any
speedup. Nonetheless, I expect that a careful tuning can improve
performance. Tiling also could be used to exploit parallelism.

4.3 Accumulation loops

Kernel 3 — inner product

This loops accumulate the values of � � ��� � � � ��� in a global floating-
point variable. It was parallelized, introducing, in every thread, a
local variable that sums all the values computed by it, and then ac-
cumulating local sums (local accumulation)1. Good improvement
in performance (see figure 4.16), increasing till the 4-thread version.

1 I did not consider any problem of numerical stability: the MT version does not
guarantee the order of the summation.

56 Experimental results

(a) Original code
� ���� �#� � � � ������� �

�
� �#� � �

� ����� � �
� ���� ������� �	��
�� ��� � �

� �� � � ��� � � � ������
�

(b) Modified code
����� � � �
� ���� �#� � � � ������� �

�
� �#� � �

� ��� � ��� � � �� ���� ������� �	��
�� ���� �!� �
� ��� � �� � � ��� � � � ������

� �� � ��� � ��

Program fragment 4.2: Which one is the fastest one? The second
one!

An interesting note: the introduction of the local variable had
a very good effect even for the 1-thread version. This change was
applied so to sequential code, that reported a good improvement
(completion time was 40% better!). It is an open problem whether a
smart compiler (smarter than gcc) can introduce automatically this
kind of optimization (see program fragment 4.2). This phenomenon
was recorder also for kernel no. 6 (below).

Kernel 4 — banded linear equations

This loop computes three accumulations, that are stored into three
distinct element of a large vector, that are the only global variables
updated. Local sums could be carried on independently (see any-
way note 1 on the preceding page). Good improvements with the
second thread. As explained in section 3.5, the ordering introduced
by locking makes further threads useless (see figure 4.17).

4.3 Accumulation loops 57

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 3
Comp.flags: −O2−DVER2, Seq.time: 414332

normalized completion time
useful instructions fetched (%)

Figure 4.16: Execution statistics for kernel 3

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 4
Comp.flags: −O2, Seq.time: 2201971

normalized completion time
useful instructions fetched (%)

Figure 4.17: Execution statistics for kernel 4

58 Experimental results

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 6
Comp.flags: −O2, Seq.time: 1941047

normalized completion time
useful instructions fetched (%)

Figure 4.18: Execution statistics for kernel 6

Kernel 6 — general linear recurrence equations

This kernel perform a particular triangular recurrence (� � � ����
� � ��� � � � � � � � ���	� �	� � �), led by a double nested loop. It could be
parallelized as the updated vector element stores a long accumu-
lation, that is used only by the next outer iteration. The accumulation
variable was made local to each thread, and local results were ac-
cumulated in the right order, through ordering locking (this solution
for kernel 6 is discussed in [TLEL99], where some consideration about
the best parallelization can be found). Few threads are enough to
reach the best performance (see figure 4.18).

As said for kernel no. 3, optimization introduced to have a better
parallelization are useful to the sequential version, too.

Kernel 13 — 2-D PIC (Particle In Cell)

This kernel executes a complex set of data-dependent memory-
accesses, and features an accumulation that causes a possible
loop-carried data dependence: an element of the large bidimen-

4.3 Accumulation loops 59

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 13
Comp.flags: −O2−DVER3, Seq.time: 1129741

normalized completion time
useful instructions fetched (%)

Figure 4.19: Execution statistics for kernel 13

sional � matrix, determined in a complex data-dependent way, is
used to accumulate. Three versions of this loop have been tested:
the first one used one single lock to control access to the whole �
vector, the second one used one lock per column, the third one
used a bidimensional lock matrix, with one lock for each element of
� . Even if this last solution has a large overhead due to lock initializa-
tion, speedup is the best of all, and comes out to be very good: 2.5
times faster than sequential code (see figure 4.19). As said, a high
number of threads can be useful to overcome a large overhead.

4.4 Larger loops

Kernel 2 – ICCG excerpt (Incomplete Cholesky Conju-
gate Gradient)

This loop computes a complex recurrence, in which last iteration de-
pends from values computed in the first one, while the other ones
are independent one from another, and their results are used only in

60 Experimental results

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 2
Iter: 400, Data: 1000, Comp: −O2, Seq: 1250724

original version
last iteration stripped out
first and last iterations stripped out

Figure 4.20: Execution statistics for kernel 2

the next outer iteration. The basic approach (interleaving + locking)
improved when the first and the last iteration were peeled out of the
loop-body: this type of optimization can be successfully completed
by a smart compiler. Nonetheless, overhead for this solution (some
barriers and locks are needed to guarantee the correct order) was
too high to allow any performance improvement with respect to
sequential code, even if parallelization overhead was almost com-
pletely absorbed in the two-thread version, that proved to be the
best. This is another interesting case in which the determination of
the best number of threads is particularly critical and difficult.

This code comes out not to be successfully parallelizable with
standard techniques. In figure 4.20, a comparison for different im-
plementations can be found.

Kernel 14 — 1-D PIC (Particle In Cell)

This kernel describes a very complex computation, carried on by
three small loops, the iterations of which are independent. As dis-
cussed in [TLEL99], where this kernel is also studied, the three loops

4.4 Larger loops 61

0 2 4 6 8
Number of threads

0

100

200

300

Kernel loop no. 14
Comp.flags: −O2, Seq.time: 2654122

norm. compl. time (no fusion)
useful instr. (no fusion)
norm. compl. time (fusion)
useful instr. (fusion)

Figure 4.21: Execution statistics for kernel 14

are just a smart splitting of a larger loop, to increase ILP. When loop
are fused, higher opportunity for parallelism emerges, that is ex-
ploited when more threads are used. This solution is not good with
few threads, as loop distribution offers a really high ILP, that is well
exploited by large SMT’s superscalar bandwidth.

In figure 4.21, a comparison between the two versions (loop fu-
sion and loop distribution) is given. From the point of view of the
compiler, it means that more versions of the same program have
to be available at run-time, that can be chosen accordingly to the
number of threads available to the program (in a multiprogrammed
environment). This idea is gaining importance even for traditional
processors, under the broader denomination of feedback-directed
optimization [Smi00].

Kernel 16 — Monte Carlo search loop

The semantics of this piece of code is not clear: loop-body is com-
posed by a complex chain of nested branches. A dataflow analysis
of it shows that only the integer variable ��� , that is incremented only

62 Experimental results

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 16
Comp.flags: −O2, Seq.time: 30904

normalized completion time
useful instructions fetched (%)

Figure 4.22: Execution statistics for kernel 16

in one of the branches, can be the cause of a loop-carried de-
pendence. It was surrounded by a simple lock, as it is an integer
variable, incremented by a constant value, so the order of update
is not important. For the rest, iterations are independent, and were
interleaved. This technique is not successful with this kernel (see fig-
ure 4.22): good parallelization needs probably to be guided by the
programmer, but, as explained in the introduction, main goal of this
work was to determine what a compiler can do in an automatic
way, with general techniques.

Kernel 18 — 2-D explicit hydrodynamics fragment

This kernel is somewhat similar to kernel no. 14: the loop-body
is split into three shorter loops, that could be successfully fused.
Loop fusion shows good performance improvement, even if with few
threads loop distribution proves to be better (see figure 4.23). This is
another interesting case in which the determination of the best im-
plementation is particularly critical, and dependent from the num-
ber of available contexts.

4.4 Larger loops 63

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 18
Comp.flags: −O2, Seq.time: 745093

norm. compl. time (fusion)
useful instr. (fusion)
norm. compl. time (no fusion)
useful instr. (no fusion)

Figure 4.23: Execution statistics for kernel 18

Kernel 24 — find location of first minimum in array

This loops scans a vector looking for the first minimum. It was paral-
lelized successfully (see figure 4.24) considering the minimum as an
accumulation, using local variables to store the local minimum for
each thread. This type of restructuring can be debatable, as this
requires the compiler to recognize that the test � � ��� � � � ��� is a way
to compute an accumulation function, but I believe that the usage
of a library function ���
 could make this transformation automatic
(some libraries as MPI features specific parallel implementation for
the minimum). These changes proved to be successful.

64 Experimental results

0 2 4 6 8
Number of threads

0

20

40

60

80

100

120

Kernel loop no. 24
Comp.flags: −O2, Seq.time: 225033

normalized completion time
useful instructions fetched (%)

Figure 4.24: Execution statistics for kernel 24

4.4 Larger loops 65

❧

Chapter 5

Modeling SMT performance

In this section, a model of performance for programs running on the
SMT processor is presented. It can predict performance for sequen-
tial and multithreaded code using static information as size of basic
blocks and critical path length. The idea here discussed can be
extended and adapted to other superscalar processors.

5.1 Methodology

Extensive use of the Atom tool [Com], offered as a part of the Alpha
C compiler libraries, has been done. Atom offers the user the op-
portunity to augment the assembler code with detailed (instruction-
level) routines for instrumentation and analysis. I developed two
simple tools, with which I collected the experimental data here dis-
cussed.

The first, basicblox, is a very detailed profiler, that is able to deter-
mine which basic blocks are most used during actual execution. It
was vary useful to limit further analysis to smaller parts of the code.
Actually, the information gathered showed that the most stressed
basic blocks, in many Livermore loops (14 out of 24), are executed
for more than 98% of the time: limiting analysis to those blocks does
not have a great impact on accuracy.

Atom is able to instrument the code at the entrance of each
basic block. A simple counter of the number of times each block is
executed, and of the total number of instructions it executes, could
be simply implemented. With this information, it is straightforward to
determine which the most stressed blocks are.

67

The second, CPL, tries to extract, for the most loaded blocks (as
suggested by basicblox), the length of the critical path (� ���). The
critical path is defined as the longest (in term of latencies) subset of
instructions from the block, linked by data dependencies. The algo-
rithm is very simple, but results are really accurate. As a matter of
fact, code compiled from gcc, the GNU version of C compiler (the
compiler used throughout all the simulation, as explained in section
3.2), is very simple and predictable. (The model was tested also with
code produced by cc, the Digital version of the C compiler, but re-
sults are actually worse, as described in section 5.2.3.)

I observed that most of load operations (that set registers’ value)
are in the beginning of blocks, so we can consider them as indepen-
dent, and with no precedence to wait for. The algorithm computes,
for every instruction, the number of cycles, from the beginning of
the block, it has to wait before all the values needed are ready.
Let’s call this value 2>�) ����"2>����%�92>���1��� . It is computed as:

2>�) &�2>���1����� � ���
	
all � : � depends from �

� 2>�) & 2>���1��� �� �1��� ����%�� ��� (5.1)

The algorithm has a very simple model of the memory hierarchy,
in which load instructions have latency equal to the average mem-
ory access time1. In the present implementation, this value is col-
lected by a short profiling of the code (SMTSIM reports the average
memory-access delay at the end of the simulation).

The maximum of the 2>�) ����"2>����%� 2>���1��� over all the instructions in
the block represents the minimum number of cycles that a single
copy of the block can take. Let’s call it %�!��(���5%���� '����;<�4�������(; or � ��� .

Furthermore, the implemented algorithm heuristically recognizes
instructions as loop-counter increments or base-address updating,
that appear in the code as independent from every other instruc-
tion in the block, but dependent from itself. For an instruction � rec-
ognized as loop-critical, i.e. that depends from values computed
in the previous iteration, let’s call �4#�# 2>�) ����"2>����%�92>���1��� the time that is
needed to perform it. A value coming from the previous iteration will
not be available before this time. If another instruction � depends
from � , � ’s �4#�# 2>�) ����"2>����%�92>���1��� is equal to � ’s �4#�# 2>�) ����"2>����%� 2>���1��� ,
plus � ’s �1���)����%�� .

1More exactly, the latency is equal to the maximum of 2, i.e. the pipeline la-
tency of a load instruction, and the average memory access time.

68 Modeling SMT performance

Assembler code depends
from

dep.
delay

loop
dep.
delay

0 (0x20005960) : ldt $f1, 0(t1) - 0 0
1 (0x20005964) : ldt $f10, 0(t2) - 0 0
2 (0x20005968) : subt $f1,$f10,$f1 0,1 2 0
3 (0x2000596c) : addq t2, 0x8, t2 3 0 1
4 (0x20005970) : addq t4, 0x1, t4 4 0 1
5 (0x20005974) : addq t1, 0x8, t1 5 0 1
6 (0x20005978) : cmplt t4, a1, t0 4 1 1
7 (0x2000597c) : stt $f1, 0(t3) 2 6 0
8 (0x20005980) : addq t3, 0x8, t3 8 0 1
9 (0x20005984) : bne t0, 0x20005960 6 1 2

CPL: 6
loopCPL: 2

Table 5.1: Example of CPL’s processing, kernel no. 12

�4#�# 2>�) &�2>���1��� � � ���
	
all � : � depends from � � �4#�# 2>�) & 2>���1��� � �1��� ����%�� � � (5.2)

For independent-iteration loops, the �4#�# � ��� is the maximum of
loop dependence delays, over all instructions of the block. In the
other cases, this parameter was set manually to the correct value,
as it could be measured in the disassembled code, compared with
the source code: the implemented algorithm is not able to recog-
nize dependences that are carried by memory.

In table 5.1, an example of CPL’s processing can be found. The
latency values described in table 3.2 can be used for comparison.

5.2 Mathematical model of SMT performance

5.2.1 Role of loop-carried critical path

The number of integer, load/store and floating-point instructions for
every block is counted at compile-time by basicblox. These data
are compared against the number of functional units available to
determine an upper limit for performance. Another key factor in

5.2 Mathematical model of SMT performance 69

determining this figure is the size of reordering buffer (ROB) and in-
struction queues: a larger ROB and longer instruction queues allow
the processor to manage instructions from more iterations, and use
them to hide latencies of one iteration with instructions from the
other ones. I would like to recall the fact that processors with ad-
vanced out-of-order execution capabilities (as SMT) can behave
somewhat as a dataflow architectures, allowing the execution of in-
structions as soon as data are available, even forcing the sequential
order: if loop-counter updating is fast, more copies of the loop-body
can be present at the same time in the processor.

Suppose that enough copies of the loop-body (in case of inde-
pendent iterations) are together active (queued) in the processor,
so all the latencies that participate in the critical path can be com-
pletely hidden. In this case, a single iteration will take no less than
�4#�# � ��� cycles (CPI: cycles per iteration), that determines an upper
bound on performance.

��2>������������ � �
 � �4#�# � ��� (5.3)

��2>������������ "!$#�% & �>���(�)&	� ���10-�
�4#�# � ��� 	�*?+ (5.4)

Here ���10-� is the size (number of instructions) of the basic block,
and *?+ the maximum sustained execution bandwidth, that in this
simulation is limited by the fetch bandwidth to 8 instructions per cy-
cle. Note that ��2>������������ "!$#�% & �>���(�)& can be greater than 100%, if the
loop-carried critical path is short.

Now, let’s consider, for every instruction type, how many func-
tional units are availble and for how many cycles. Recalling data
presented in table 3.3, the simulated SMT can execute, in one cy-
cle, up to 6 integer operations, of which up to 4 memory operations
and 2 synchronization operations, and up to 3 floating-point opera-
tions. To get full performance, loop instructions have to fit the avail-
able number of slots. We have a degradation if one of the following
holds:

70 Modeling SMT performance

� �(���)� �>��! �(�'����!���%����5#-�'��� �4#�# � ��� 	�� (5.5)� .7��.7#-! �?�(�'����!���%����5#-�'��� �4#�# � ��� 	�� (5.6)� ���-��%;>!$#-���10������5#-�3�(�'����!���%����5#-�'��� �4#�# � ��� 	 � (5.7)��� #������(��� �#-�(���=�(�'����!���%����5#-�'��� �4#�# � ��� 	
 (5.8)
���10-��� � ���(� �(�'����!���%����5#-�'��� �4#�# � ��� 	�	 (5.9)

In these cases, more cycles are needed to execute all the oper-
ations. The last condition is determined by the limited fetch band-
width (there are 9 functional units, but only 8 instructions can be
fetched per cycle).

Let’s consider the minimum number of cycles that is needed to
complete a loop iteration, if one of the previous conditions holds.
Let ���>. ����! � be the number of instructions of every type (integer,
memory, synchronization, floating-point, and all of them together)
and ����"2�8:��2��(;�
 the maximum number of them that can be executed
per cycle (respectively, 6, 4, 2, 3, 8). Let the �������	! �����5#-� � �>%�� #-! be a de-
scription of how much functional units are stressed, as follows:

�������>! �����5#-� � �>%��)#-!9� ���
	� ��� ���
	����� � � ���>. ����! �������������� 	 ����"2�8:��2���; �! " (5.10)

�������	! �����5#-� � �>%�� #-! 	7�4#�# � ��� is the minimum number of cycles per
iteration, as limited by execution bandwidth (�������>! �����5#-� � �>%��)#-!$# �). A
new (more precise) upper limit on performance is so:

������ � �:
&% '('*) � �4#�# � ����	 �������	! �����5#-� � �>%�� #-! (5.11)

������ "!$#�% & �>���(�)& % '('*) � ���10-�
�4#�# � ��� 	��������	! �����5#-� � �>%�� #-! 	�*?+ (5.12)

In case of loop-carried dependences, of the type
� � � ��� � � � � ��� � � � , this is the best result we can expect, as it-
erations can not overlap. I want to recall that in this case, anyway,
the actual value of �4#�# � ��� has to be computed by hand, as
the implemented heuristics expects iterations to be independent,
and can not track memory-carried dependences. Again, in case
of loop-carried dependence, the value reported as � ��� in not
significant, and the main bound to performance is given by �4#�# � ��� .

5.2 Mathematical model of SMT performance 71

5.2.2 Role of loop-independent critical path

For loops featuring independent iterations, there are other limit-
ing factors. As said, these performance figures can be reached
if enough copies of the loop can interleave in the pipeline. Main
limit is given by ROB’s size: ROB stores instructions in-order, i.e. it
keeps a consecutive subset of computation. Instructions can be
chosen and moved to instruction queues out of order, and so in-
struction queues are less a limiting factor. An estimation of reorder-
ing structures’ latencies-hiding capabilities, comes counting how
many copies can be stored in the same time in the reorder buffer.
Nonetheless, the simulator I could use had only a basic model de-
scribing the reorder buffer. Thus, its size will be approximate by inte-
ger and floating-point instruction queues’ size that, in the simulated
model, are 32-instruction long each. The number of fully stored
copies will be:

%# "�5���� ����� � � �(��� � �>��! �(�'����!�� %����5#-�'�

 �

� ��� #������(����� �#-�(��� �(�'����!���%����5#-�'�

 �

(5.13)

(Here, memory and synchronization instructions are counted with
integer instructions, as they share the same queue.) Consider the
following performance estimation:

������ � �:
 � � ��� (5.14)

������ "!$#�% & �>���(�)&	� ���10-�
� ��� 	�*,+ (5.15)

We can expect a performance improvement, with respect to
these values, of about %# "�5�� times, as the execution of %# "�5�� copies
is interleaved in the processor: among different threads there are
no dependences, and if the execution bandwidth is large enough,
more copies will be executed in the time initially took by only
one. Obviously, superscalar bandwidth will be a limiting factor, as
the replicated copies will be competing for functional units. The
�������>! �����5#-� � �>%��)#-! needs to be recomputed as:

�������>!������5#-� � �>%��)#-!9� ���
	 � ��� ���
	����� � � ���>. ����! � 	9%# "�5��
� ����	 ����"2�8:��2���; �! " (5.16)

72 Modeling SMT performance

So we expect that performance will be no better than:

������ � �
 � � ����	 �������>! �����5#-� � �>%��)#-!
%# "�5�� (5.17)

������ "!#�% & �>���(�)&>� ���10-��	 %# "�5��
� ����	 �������>! �����5#-� � �>%��)#-! 	 *?+ (5.18)

But this is not the case. As a matter of fact, in many loops, � ��� is
determined mostly by floating point operations, even if the number
of copies is limited by a high number of integer operations (mem-
ory operations, loop-counter increments...). It can be said that, as
integer operations are faster, integer instruction queue is not the
problem, and actually the maximum should be used in equation
5.13. Both minimum and maximum number of copies are important
to determine the performance: they give a lower and an upper
bound on processor utilization. The fact that actual performance
will be closer to one of these two values rather than to the other de-
pends from the degree of interdependence between integer and
floating-point operations.

So, we have:

. �(� &�%# "�5���� ����� � � �(����&1�(�'����!	&

 �

� ��� � �(�'����!>&

 � (5.19)

.,��� & %# "�5���� ���
	 � � �(����& �(�'����!	&

 �

� ��� � �(�'����!	&

 � (5.20)

8=#-!$��� � �
&
����	�)
�����	���� � � ��� 	��������	! �����5#-� � �>%�� #-!��
��
. �(� &�%# "�5�� (5.21)

8=#-!$��� "!$#�% & �>���(�)&
����	�)
�����	���� � ���10-��	�. �(� &(%# "�5��
� ��� 	��������	! �����5#-� � �>%�� #-!��
�� 	�*?+ (5.22)

������ � �
&
����	�)
�����	���� � � ��� 	��������	! �����5#-� � �>%�� #-! �����
.,��� &(%# "�5�� (5.23)

������ "!$#�% & �>���(�)&
����	�)
�����	���� � ���10-��	 .,��� &(%# "�5��
� ��� 	��������	! �����5#-� � �>%�� #-! ����� 	�*?+ (5.24)

where �������>! �����5#-� � �>%��)#-!��
�� and �������	! �����5#-� � �>%�� #-!������ are computed us-
ing the value of . �(� &�%# "�5�� and .,��� & %# "�5�� in (5.16).

For independent-iteration loops, the limits described by 5.11 and
5.12 also holds, so we have:

������ � �:
 � � � � � ������ � �
�% ' '*) � ������ � �
&
����	�)
�����	���� � (5.25)
������ "!$#�% & �>���(�)&	� � � � � ������ "!$#�%�&'�	���(�)& % ' '*) � ������ "!$#�% & �>���(�)&
����	�)
�����	���� � (5.26)

5.2 Mathematical model of SMT performance 73

It can be the case where:

8=#-!$��� "!$#�%�&'�	���(�)&
����	�)
�����	���� � ������ "!$#�% & �	���(�)& % ' '*) (5.27)

In this situation, ������ "!$#�% & �>���(�)& % '('*) will be used also as the lower per-
formance limit (along with ������ � �:
�% '('�)).

For loops with loop-carried dependences, instead:

������ � �
 � ������ � �
�% ' '*) (5.28)
������ "!$#�%�&'�	���(�)&	� ������ "!$#�% & �>���(�)& % '('�) (5.29)

as we expect no improvements from interleaving.

5.2.3 Experimental results with Atom

The model described above can estimate maximum and minimum
performance for loops consisting of one block. It will be tested with
the kernels in which just one basic block is executed most (more
than 98%) of the time. This allows to compare the estimation with
the overall performance of the programs, without great loss of ac-
curacy.

There are many examples of these simple loops in the studied
benchmark:

� independent iterations:

– kernel 1 — hydro fragment,

– kernel 7 — equation of state fragment,

– kernel 8 — ADI integration,

– kernel 9 — integrate predictors,

– kernel 10 — difference predictors,

– kernel 12 — first difference,

– kernel 21 — matrix*matrix product,

� loop-carried-dependence loops,

– kernel 5 — tri-diagonal elimination, below diagonal,

– kernel 11 — first sum,

74 Modeling SMT performance

– kernel 23 — 2-D implicit hydrodynamics fragment,
� accumulation loops,

– kernel 3 — inner product,

– kernel 4 — banded linear equations,

– kernel 6 — general linear recurrence equations.

– kernel 13 — 2-D PIC (Particle In Cell),

In table 5.2 and figure 5.1, experimental data and results of mod-
eling are shown2. Please, note that accumulation loops are here
described as independent-iteration loops: as a matter of fact, just
few instructions (the actual accumulation) contribute to �4#�# � ��� ,
while the main computation can be considered part of � ��� . Once
computed these two figures by hand (the implemented heuristics
cannot manage well this type of loops), the model fits easily.

As it can be seen, most of the studied kernels perform closely to
the expected maximum. This correspond to the maximum number
of copies as in equation 5.20. Kernel no. 13 is closer to the minimum
as most of array indices are data-dependent (critical path is com-
posed by a chain of mixed integer and floating-point instructions),
so the two instruction queues move with the same speed. A more
important problem is presented by kernel no. 7, and in smaller terms
by kernel no. 8: they perform quite better than what the model
can predict. They feature basic blocks larger than the average:
the expected number of %# "�5�� is smaller than 1, and the expected
performance is consequently reduced, even if there is no real slow-
down (number of copies is important when computing speedup). I
think that another problem offered by their size is that smaller parts
of the loop-body (not whole copies) can overlap to hide latencies,
and the model here presented cannot determine the measure of
this effect.

The described model reaches very good results with short ker-
nels. With loops shorter than 40 instructions, predicted values are not
farther than 5% from the maximum (average distance being 6.4%).
It is also really good with loop-carried-dependence loops: on av-
erage, expected performance is not farther than 1% from actual
value (3% in the worst case).

2In the figure, the shaded area correspond to the interval between the mini-
mum and the maximum expected performance; the solid line describes actual
performance

5.2 Mathematical model of SMT performance 75

ke
rn

e
ln

o
.

ty
p

e

siz
e

C
PL

lo
o

p
C

PL

a
c

tu
a

lp
e

rfo
rm

a
nc

e

b
e

st
p

ro
c

.u
til

.
lo

o
p

w
o

rs
tp

ro
c

.
ut

il.
in

d
.

b
e

st
p

ro
c

.u
til

.
in

d
.

e
xp

e
c

te
d

M
IN

e
xp

e
c

te
d

M
A

X

1 IND 19 21 2 66.52 100.00 25.85 72.38 25.85 72.38
3 IND 9 6 4 27.06 28.12 85.71 96.43 28.12 28.12
4 IND 9 6 4 29.81 28.12 85.71 96.43 28.12 28.12
5 LOOP 13 10 15.20 16.25 16.25 16.25
6 IND 13 32 8 16.82 20.31 14.77 81.25 14.77 20.31
7 IND 41 34 2 57.75 96.09 19.29 30.15 19.29 30.15
8 IND 122 84 2 21.09 100.00 7.00 14.90 7.00 14.90
9 IND 32 200 2 4.33 70.59 3.76 4.27 3.76 4.27
10 IND 34 46 2 32.69 85.00 11.83 32.85 11.83 32.85
11 LOOP 10 7 17.41 17.86 17.86 17.86
12 IND 10 6 2 61.52 62.50 74.07 83.33 62.50 62.50
13 IND 86 38 6 19.48 93.48 13.12 53.25 13.12 53.25
21 IND 13 11 2 76.68 81.25 42.98 88.64 42.98 81.25
23 LOOP 33 34 15.71 12.13 12.13 12.13

Table 5.2: Experimental results, with gcc code

76 Modeling SMT performance

0 5 10 15 20
kernel number

0

20

40

60

80

100

pr
oc

es
so

r
ut

ili
za

tio
n

0 5 10 15 20

Model of performance
Analysis of "gcc" code

max
min
sequential performance

Figure 5.1: Results of modeling performance with gcc code

In table 5.3 and figure 5.2, the reader can find how the modeling
methodology works with cc code. cc compiler is much smarter than
gcc, and its code is less straightforward to understand and model.
The simple algorithm of CPL does not offer good results with it, that
affects dramatically the accuracy of modeling.

5.3 Modeling multithreading

The results shown in table 5.4 and in figure 5.3, describe the first ap-
proach to understanding multithreading in SMT. In this section, I will
not discuss the results obtained by particularly smart tricks as the
cyclic reduction for kernel no. 11. As a matter of fact, this discussion
is valid only for the loops of independent-iterations and accumula-
tion groups: the model cannot predict any performance improve-
ment to loop-carried-dependence loops.

Two main effects contribute to improve overall performance of
multithreaded version of these kernels:

� SMT virtually allows processor’s reording capabilities to man-
age up to 8 copies of the loop-body;

5.3 Modeling multithreading 77

ke
rn

e
ln

o
.

ty
p

e

siz
e

C
PL

lo
o

p
C

PL

a
c

tu
a

lp
e

rfo
rm

a
nc

e

b
e

st
p

ro
c

.
ut

il.
lo

o
p

w
o

rs
tp

ro
c

.
ut

il.
in

d
.

b
e

st
p

ro
c

.u
til

.
in

d
.

e
xp

e
c

te
d

M
IN

e
xp

e
c

te
d

M
A

X

1 IND 42 18 12 65.23 43.75 42.42 46.67 42.42 43.75
3 IND 24 18 15 16.78 20.00 33.33 66.67 20.00 20.00
4 IND 50 24 24 33.70 26.04 24.51 52.08 24.51 26.04
5 LOOP 31 34 10.40 11.40 11.40 11.40
6 IND 28 50 20 11.20 17.50 11.20 28.00 11.20 17.50
7 IND 93 50 32 50.00 36.33 12.40 22.55 12.40 22.55
8 IND 107 53 48 24.70 27.86 11.88 20.71 11.88 20.71
9 IND 117 190 2 5.00 64.52 3.62 5.03 3.62 5.03
10 IND 130 87 88 31.05 18.47 6.36 16.60 6.36 16.60
11 LOOP 21 18 12.15 14.58 14.58 14.58
12 IND 20 6 2 76.10 93.75 83.33 93.75 83.33 93.75
13 IND 89 38 39 21.76 28.53 13.01 55.11 13.01 28.53
21 IND 34 11 12 59.95 35.42 47.55 85.00 35.42 35.42
23 LOOP 98 111 12.15 11.04 11.04 11.04

Table 5.3: Experimental results, with cc code

78 Modeling SMT performance

0 5 10 15 20
kernel number

0

20

40

60

80

100

pr
oc

es
so

r
ut

ili
za

tio
n

0 5 10 15 20

Model of performance
Analysis of "cc" code

max
min
sequential performance

Figure 5.2: Results of modeling performance with cc code

� the need to wait for loop-carried dependences (loop-
counters...) is less important as their latency can be hidden
too (see increment of � in program fragment 3.1).

These two points are important in the following ways: if a kernel
is limited by instruction-queue size, with SMT it can count on up to 8
threads from which it can fetch independent instructions. All the val-
ues discussed in section 5.2 needs to be recomputed with a number
of copies equal to 8 for every kernel.

Please note that, with this model, increasing the number of
copies is useful as long as the �������>! �����5#-� � �>%��)#-! is smaller than 1. Con-
sider how it is computed in (5.16): if �������	! �����5#-� � �>%�� #-! � � , we have:

�������>! �����5#-� � �>%��)#-! � ��� � ���
	����� � � ���>. ����! � 	�.,��� &(%# "�5��
� ��� 	 ����"2�8:��2��(; � (5.30)

� ���
	����� � � ���>. ����! �
����"2�8:��2��(; � 	 .,��� &�%# "�5��

� ��� (5.31)

5.3 Modeling multithreading 79

Substituting in (5.24), we have:

������ "!$#�% & �>���(�)&
���� � � ���10-� 	 .,��� &�%# "�5��

� ����	 � ���
	����� � � ���>. ����! �
����"2�8:��2���; � 	 .,��� &�%# "�5��

� ��� 	�*,+

(5.32)

� ���10-�� ���
	����� � � ���>. ����! �
����"2�8:��2��(; � 	�*,+

(5.33)

that results independent from %# "�5�� .
If a kernel is instead limited by a high value of �4#�# � ��� , MT ver-

sion will not be affected in the same way, because the loop critical
path can be interleaved with other instructions, as more copies are
running in the same time.

Let’s try to be clearer: a particulary complex loop-carried de-
pendence, as it can be found in accumulation loops (few floating-
point operations, and some integer increments), can be interleaved
with instructions from other threads, because they are not waiting for
it, as it is the case, instead, with sequential code: its value is required
only for the progress of just one thread.

To keep this phenomenon in account, the effect of copies is con-
sidered for the loop-carried critical path too. This has a very strong
effect for kernel no. 3, 4 and 6.

In figure 5.3, the lower shaded area corresponds to the previous
results on sequential performance, while the higher area to the ex-
pected MT performance. As before, larger loops are more difficult
to model, as it can be seen by the really high performance that the
model expects for kernel no. 8 and 13. As said above, large loops’
behavior is difficult to understand, and a more accurate model for
them is needed.

The proposed model offers good results with small kernels, giving
a suggestion of what the speedup of MT code could be. The reader
must consider, as a matter of fact, that low performance of specific
kernels are due to limited capabilities of the compiler (in this case,
myself) to extract all the available parallelism (see for instance the
discussion about kernel no. 2 in section 4.4): the model describes an
upper bound, that can be reached with good code parallelization
(and it is reached — within 4% — by seven kernels in this work: kernel
no. 5, 7, 9, 11, 12, 21, 23).

The limiting effects due to resource conflicts and limited mem-
ory bandwidth are also grasped: let’s consider for instance kernel

80 Modeling SMT performance

0 5 10 15 20
kernel number

0

20

40

60

80

100

pr
oc

es
so

r
ut

ili
za

tio
n

0 5 10 15 20

Model of performance
Analysis of multithreaded code

sequential performance
MT performance

Figure 5.3: Results of modeling multithreaded performance with gcc
code

no. 9, sequential performance of which is limited by a very high
average memory-access delay. MT versions of it features a better
memory utilization and the model can predict this, as it expects a
better performance. This is partly explained by the choice of inter-
leaving instead of blocking when rewriting the code, that improves
SMT memory utilization in most studied problems (see also [LEL � 97]).

5.3.1 Best number of threads

As shown in the previous section, there is a minimum number
of copies that allows to reach maximum processor utilization
(�������	! �����5#-� � �>%�� #-!$# �). This can be a way to determine the best num-
ber of threads for a specific program, as it is usually useful to keep
the number of threads as small as possible in order to have a better
utilization of shared resources. With the model, the best number of
copies is computed as:

5.3 Modeling multithreading 81

ke
rn

e
ln

o
.

se
q

.p
e

rfo
rm

a
nc

e

b
e

st
M

T
p

e
rfo

rm
a

nc
e

b
e

st
p

ro
c

.u
til

.l
o

o
p

b
e

st
p

ro
c

.
ut

il.
in

d
.

e
xp

e
c

te
d

M
IN

e
xp

e
c

te
d

M
A

X

1 66.50 66.50 100.00 90.48 25.85 90.48
3 27.00 50.00 56.25 96.43 28.12 96.43
4 30.00 52.00 56.25 96.43 28.12 96.43
5 15.20 15.20 16.25 16.25 16.25 16.25
6 16.80 27.00 40.63 40.63 14.77 40.63
7 57.70 94.00 96.09 96.09 19.29 96.09
8 21.00 54.00 100.00 100.00 7.00 100.00
9 4.30 12.00 70.59 16.00 3.76 16.00
10 32.00 37.00 85.00 73.91 11.83 73.91
11 17.40 17.40 17.86 17.86 17.86 17.86
12 61.50 81.00 83.33 83.33 62.50 83.33
13 19.00 55.00 93.48 93.48 13.12 93.48
21 76.00 84.70 88.64 88.64 42.98 88.64
23 15.70 15.70 12.13 12.13 12.13 12.13

Table 5.4: Experimental results, with gcc MT code

82 Modeling SMT performance

�������%# "�5����
���� ���������� � � ����"2�8:��2���; ����>. ����! � if indep. iterations
� if dep. iterations

(5.34)

This approach has been tried, with the encouraging results
shown in table 5.5. Refinement of this model to have a more pre-
cise approximation of the best number of threads is surely part of
the future work. Anyway, the presented model offers already an es-
timation of the trend that can be observed when more threads are
used:

� with kernels featuring loop-carried dependences, adding
more threads is not useful when naı̈ve parallelization is used;

� very high expected values describe a situation in which in-
creasing in number of threads is useful; particularly interesting
is kernel no. 9, that scales up to 16 threads (see figure 3.2):
the model says that it would scale well even to a really higher
number of threads.

� low expected values can be observed when the processor-
utilization curve features a minimum; these situations require
careful tuning of the number of threads.

The most unexpected result is given by kernel no. 6, that seems
not to scale very well beyond 4 threads. Its low performance is
mostly determined by a very high memory latency, the effects
of which lose importance more fast than what described by the
model.

5.3 Modeling multithreading 83

Kernel no. 1 3 4 5 6 7 8
Actual 8 2 2 1 4 7 8

Expected 8.8 5.1 5.1 1 17.4 6.3 5.5

Kernel no. 9 10 11 12 13 21 23
Actual 8(16) 7 1 2 5 3 1

Expected 35.3 9.2 1 4 3.3 6.0 1

Table 5.5: Actual best number of threads compared with expected
best number of copies

84 Modeling SMT performance

Chapter 6

Conclusion

SMT is a new architecture able to exploit, with the same ease,
two different forms of parallelism: instruction-level parallelism, that
can be found inside a single thread, and thread-level parallelism,
present among different programs running at the same time. This
capability is offered by unique SMT’s functional-unit sharing among
different contexts: SMT can execute instructions from different
threads, at the same time, on different functional units.

This thesis has discussed in detail SMT’s opportunities for improv-
ing performance of MT programs. Two main issues have been ad-
dressed:

� the development of some general SMT-specific techniques to
parallelize scientific kernels;

� the study of a performance model, able to predict per-
formance for three groups of loops: independent-iteration
loops, accumulation loops and loops with loop-carried depen-
dences.

6.1 Parallelization of scientific kernels

Chapter 3 has discussed some techniques to improve MT perfor-
mance of an interesting scientific benchmark, the Livermore loops.
The point of view of an advanced compiler was used, in order to
study what the compiling opportunities on SMT are. Main results are:

� iteration-interleaving proved to be very good with loop with
independent iterations; high average processor utilization

85

(about 65%) is reached; good speedup with up to 8 threads
(the maximum in my simulations) was recorded;

� some advanced techniques as cyclic reduction and loop-
fusion proved to be effective, notwithstanding the high over-
head that can limit performance when few threads are used;
the interesting problem of how to determine the best imple-
mentation and the best number of threads have been high-
lighted;

� accumulation loops resulted particularly interesting as they
feature an independent computation, followed by a sequen-
tial part; the first part could be easily parallelized, while the
second part needed to be protected by some ordering lock-
ing; this made versions with few threads more efficient; again, a
careful choice of the best number of threads is important; local
accumulation was also introduced to improve performance in
some cases (distributive and associative accumulation);

� larger loops came out not to be parallelizable in many cases,
due to the limited knowledge that compilers can extract;
naı̈ve techniques (interleaving + locking) are not always ef-
fective; in these cases, programmer’s help is needed to guide
compiling process;

� overall speedup is encouraging: the IPC rate increased by
more than 1, just using general techniques; in some cases, up
to 3x speedup was observed.

6.2 Performance model

In chapter 5, a performance model for SMT is presented. Using
some compile-time parameters, it is able to predict sequential per-
formance, MT speedup and the best number of threads for three
groups of loops: independent-iteration loops, accumulation loops
and loops with loop-carried dependences.

Main results are:
� the model can predict sequential performance for simple

loops (one main basic block): prediction is quite precise (the
maximum expected values is no farther than 5% from actual
performance) for small loops (less than 40 instructions);

86 Conclusion

� performance prediction is really good with simple (one main
basic block) loop-carried-dependence loops: on average, ex-
pected performance is not farther than 1% from actual value
(3% in the worst case);

� upper and lower bounds for MT performance is computed by
the model; actual performance is always bound by them, and
the upper bound is reached — within 4% — by seven kernels in
this work;

� a first attempt to estimate the best number of threads is de-
scribed in section 5.3.1; results offered by the described model
are not very precise, but offer already an estimation of the
trend that can be observed when more threads are used.

6.3 Future works

The parallelizing techniques here discussed need an algorithmical
implementation, in order to be introduced into an advanced com-
piler. First step in this direction will be the development of a set of
scripts able to rewrite high-level code.

Also, the presented model, very good with short simple loops,
need to be extended to more general cases. A phased-behavior
model [Smi00] seems to be an interesting opportunity in this direc-
tion. Determination of the best number of threads, developed in
its first form in section 5.3.1, is a very promising idea that will be dis-
cussed more in detail in my future work.

The algorithm used to extract the critical-path length, CPL, is at
the moment very simple and limited. The introduction of data-flow
analysis capabilities will surely improve dramatically its performance.
The usage of MURZ (an extensible tool for data-flow analysis devel-
oped by Amici Birilli [Bir99]) to perform this computation is part of the
future work.

Furthermore, the present knowledge of engineering trade-offs
that SMT introduces is not yet satisfying, in my opinion. As shown in
section 2.4, a stronger understanding of chip area usage and print-
ing cost is needed to make SMT a good candidate to be the next
processor architecture.

At last, I introduced a broader and more general problem in sec-
tion 3.7.3: my opinion is that present day ISAs do not exploit some

6.3 Future works 87

of the hardware characteristics as it could be done. In particularly,
I believe that the concept of registers should be dropped, because
of the decreasing differences in term of performance and function-
alities that can be found between architectural registers and data
caches. I hope to have the opportunity to spend some time investi-
gating this problem in the near future.

88 Conclusion

Appendix A

Frequently used acronyms

Here you can find a list of the most frequently used acronyms in
this work. Even if any linguist could deplore such a heavy use of
acronyms, many of them are very common in Computer Science
works, so, here we go.

BTB Branch Target Buffer.

CMP Multiprocessor on a Chip.

CPI Cycles Per Iteration.

CPL Critical Path Length.

CPS Critical Path Schedule.

Dcache Data Cache.

FGMT Fine-grained Multithreading.

FP Floating-Point.

Flop Floating-Point Operation.

Flops Floating-Point Operations Per Second.

Icache Instruction Cache.

IPC Instructions per Cycle.

ILP Instruction-Level Parallelism.

IQ Instruction Queue.

89

IRAM Intelligent RAM.

ISA Instruction Set Architecture.

MFlops Mega Flops, million of Flops.

MT Multithreaded, Multithreading.

MTA Multithreaded Architecture (c
�

Cray Inc.).

MURZ MURZ (c
�

Amici Birilli 1999).

O3, OOO Out of order.

PIM Processing In Memory.

PE Processing Element.

RAW Raw Architecture Workstation.

ROB Reorder(ing) Buffer.

SMT Simultaneous Multithreading.

SS Superscalar.

TLB Translation Lookaside Buffer.

TLP Thread-Level Parallelism.

90 Acronyms

Bibliography

[ABC � 97] Gail Alverson, Preston Briggs, Susan Coatney, Simon Ka-
han, and Richard Korry. “Tera Hardware-Software Coop-
eration”. Supercomputing 1997, page 16, San Jose, CA,
November 1997.

[ACCK90] Robert Alverson, David Callahan, Daniel Cummings, and
Brian Koblenz. “The Tera Computer System”. 1990 Interna-
tional Conference on Supercomputing, September 1990.

[Ald00] Marco Aldinucci. Smart Memory Parallel Architectures.
PhD thesis, Department of Computer Science, Università
degli Studi di Pisa (Italy), 2000.

[Ama00] Saman Amarasinghe. Personal communication, Mas-
sachussets Institute of Technology — MIT (Cambridge,
MA), March 2000.

[BG00] James Burns and Jean-Luc Gaudiot. “Quantifying the
SMT Layout Overhead — Does SMT Pull Its Weight?”.
6th International Symposium on High-Performance Com-
puter Architecture, pages 109–20, Toulose, France, Jan-
uary 2000.

[Bir99] Amici Birilli. “MURZ: tutorial and overview”. Technical re-
port, Department of Computer Science, Università degli
Studi di Pisa (Italy), 1999. Available care of this thesis’s
author or at: � � � ��� ��� � ��� � � � � � ��� ��� � � � � � � � $�"�'�� .

[BK97] Jay B. Brockman and Peter M. Kogge. “The Case for
Processing-In-Memory”. Technical Report 10, HTMT, 1997.

[Bre95] Eric Brewer. “High-level optimization via automated sta-
tistical modeling”. Principles and Practice of Parallel Pro-
gramming, 1995.

91

[Com] Compaq. “Alpha C compiler libraries: Atom”. On-line
documentation.

[CRT99] Brad Calder, Glenn Reinman, and Dean M. Tullsen. “Se-
lective Value Prediction”. 26th International Symposium
on Computer Architecture, May 1999.

[CT99] Jamison D. Collins and Dean M. Tullsen. “Hardware Iden-
tification of Cache Conflict Misses”. 32nd Annual Interna-
tional Symposium on Microarchitecture, November 1999.

[DeH96] André DeHon. “Role of Reconfigurable Computing”.
Panel presentation for reconfig.com RC roundtable, Oc-
tober 1996. Available at: � � � ��� ��� � � �

� � � � �������������� � � �
 �
� � � � � ���� �
 � � � ��� � ���
�
 ����� � ��� � � � ��� � .

[DeH00a] André DeHon. Personal communication, California Insti-
tute of Technology (Pasadena, CA), March 2000.

[DeH00b] André DeHon. “The Density Advantage of Configurable
Computing”. IEEE Computer, 33(4):41–49, April 2000. Spe-
cial issue on Configurable Computing: Technology and
Applications edited by Ranga R. Vemuri and Randoplh
E. Harr.

[Die99] Keith Diefendorff. “Compaq Chooses SMT for Alpha”. Mi-
croprocessor Report, 13(16):1, 6–11, December 1999.

[HK97] Mark Howard and Andrew Kopser. “Design of the Tera
MTA Integrated Circuits”. IEEE Gallium Arsenide Inte-
grated Circuit Symposium, pages 14–17, Anaheim, CA,
October 1997.

[Hwa93] Kai Hwang. Advanced Computer Architecture: Paral-
lelism, Scalability, Programmability. McGraw-Hill, New
York, NY, 1993.

[Kub00] John Kubiatowicz. Personal communication, University of
California (Berkeley, CA), March 2000.

[LEE � 97] Jack L. Lo, Susan J. Eggers, Joel S. Emer, Henry M. Levy,
Rebecca L. Stamm, and Dean M. Tullsen. “Converting
Thread-Level Parallelism Into Instruction-Level Parallelism
via Simultaneous Multithreading”. ACM Transactions on
Computer Systems, pages 322–354, August 1997.

92 BIBLIOGRAPHY

[LEL � 97] Jack L. Lo, Susan J. Eggers, Henry M. Levy, Sujay S. Parekh,
and Dean M. Tullsen. “Tuning Compiler Optimizations for
Simultaneous Multithreading”. 30th Annual International
Symposium on Microarchitecture (Micro-30), December
1997.

[LPE �] Jack L. Lo, Sujay S. Parekh, Susan J. Eggers, Henry M. Levy,
and Dean M. Tullsen. “Software-Directed Register Deal-
location for Simultaneous Multithreaded Processors”. IEEE
Transactions on Parallel and Distributed Systems, to ap-
pear.

[MCFT99] Nick Mitchell, Larry Carter, Jeanne Ferrante, and Dean
Tullsen. “ILP versus TLP on SMT”. Supercomputing ’99,
November 1999.

[McM86] F. H. McMahon. “The Livermore Fortran Kernels: A Com-
puter Test Of The Numerical Performance Range”. Tech-
nical Report UCRL-53745, Lawrence Livermore National
Laboratory, Livermore, CA, December 1986. Available
at: National Technical Information Service, U.S. Depart-
ment of Commerce, 5285 Port Royal Road, Springfield,
VA, 22161.

[MLM � 97] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes,
R. Southworth, U. Cummings, and Tak Kwan Lee. “The
Design of an Asynchronous MIPS R3000 Microprocessor”.
17th Conference on Advanced Research in VLSI, Ann Ar-
bor, MI, September 1997.

[MPR99a] Microprocessor Report, page 1, October 1999.

[MPR99b] Microprocessor Report, page 1, November 1999.

[MPR99c] Microprocessor Report, page 11, October 1999.

[MPR99d] Microprocessor Report, page 18, October 1999.

[PAC � 97] David Patterson, Thomas Anderson, Neal Cardwell,
Richard Fromm, Kimberly Keeton, Christoforos Kozyrakis,
Randi Thomas, and Katherine Yelick. “A Case for Intelli-
gent RAM”. IEEE Micro, 17(2):34–44, March–April 1997.

BIBLIOGRAPHY 93

[PS96] S. E. Perl and R. L. Sites. “Studies of Windows NT Perfor-
mance Using Dynamic Execution Traces”. Proceedings
2nd Symposium on Operating Design and Implementa-
tion, pages 169–183, USENIX Association, Berkeley, CA,
1996.

[RCT � 99] Glenn Reinman, Brad Calder, Dean Tullsen, Gary Tyson,
and Todd Austin. “Classifying Load and Store Instructions
for Memory Renaming”. ACM International Conference
on Supercomputing, June 1999.

[SFK97] Desző Sima, Terence Fountain, and Péter Kacsuk. Ad-
vanced Computer Architectures — A Design Space Ap-
proach. Addison-Wesley, Harlow, England, 1997.

[SMC � 99] Allan Snavely, Nick Mitchell, Larry Carter, Jeanne Fer-
rante, and Dean Tullsen. “Explorations in Symbiosis on
Two Multithreaded Architectures”. Workshop on Multi-
threaded Execution, Architecture, and Compilation, Jan-
uary 1999.

[Smi00] Micheal D. Smith. “Overcoming the Challenges to
Feedback-Directed Optimization”. ACM SIGPLAN Work-
shop on Dynamic and Adaptive Compilation and Opti-
mization (Dynamo 00), Boston, MA, January 2000.

[TEE � 96] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M.
Levy, Jack L. Lo, and Rebecca L. Stamm. “Exploit-
ing Choice: Instruction Fetch and Issue on an Imple-
mentable Simultaneous Multithreading Processor”. 23rd
Annual International Symposium on Computer Architec-
ture, Philadelphia, PA, May 1996. Reprinted in Readings
in Computer Architecture.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. “Si-
multaneous Multithreading: Maximizing On-Chip Paral-
lelism”. 22nd Annual International Symposium on Com-
puter Architecture, Santa Margherita Ligure, Italy, June
1995. Reprinted in 25 Years of the International Symposia
on Computer Architecture: Selected Papers, 1998.

[TLEL99] Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry M.
Levy. “Supporting Fine-Grained Synchronization on a Si-
multaneous Multithreading Processor”. 5th International

94 BIBLIOGRAPHY

Symposium on High Performance Computer Architec-
ture, January 1999.

[TS99] Dean M. Tullsen and John S. Seng. “Storageless Value
Prediction Using Prior Register Values”. 26th International
Symposium on Computer Architecture, May 1999.

[Tul96a] Dean M. Tullsen. “Simulation and Modeling of a Simulta-
neous Multithreading Processor”. 22nd Annual Computer
Measurement Group Conference, December 1996.

[Tul96b] Dean M. Tullsen. Simultaneous Multithreading. PhD thesis,
University of Washington, August 1996.

[WCT98] Steven Wallace, Brad Calder, and Dean M. Tullsen.
“Threaded Multiple Path Execution”. 25th Annual Interna-
tional Symposium on Computer Architecture, June 1998.

[WTC99] Steven Wallace, Dean M. Tullsen, and Brad Calder. “In-
struction Recycling on a Multiple-Path Processor”. 5th In-
ternational Symposium on High Performance Computer
Architecture, January 1999.

[WTS � 97] Elliot Waingold, Micheal Taylor, Devabhaktuni Srikrishna,
Vivek Sarkar, Walter Lee, Victor Lee, Jang Kim, Matthew
Frank, Peter Finch, Rajeev Barua, Jonathan Babb, Saman
Amarasinghe, and Anant Agarwal. “Baring It All to Soft-
ware: Raw Machines”. Computer, pages 86–93, Septem-
ber 1997.

[Yea96] K. C. Yeager. “The MIPS R10000 superscalar microproces-
sor”. IEEE Micro, pages 28–40, April 1996.

BIBLIOGRAPHY 95

❧

...ho sentito che ti stai per laureare in
Informatica... ascolta, posso chiederti una

cosa? Quando navigo in Internet, ed apro un
sito, mi dice che c’è un problema con i

cookies... cosa devo fare?
Anonymous

Pisa, June 30, 2000

