
The Social Network of Java Classes

Diego Puppin, Fabrizio Silvestri
Institute for Information Science and Technologies, ISTI-CNR

Via Moruzzi 1
56100 Pisa, Italy

{diego.puppin, fabrizio.silvestri}@isti.cnr.it

ABSTRACT
Several works in literature have analyzed the link struc-
ture of programs in relation with software engineering: it
has been observed that the programming standards caused
small-world networks to emerge among classes in object-
oriented programming. The need for coherent design and
the coding conventions introduce regular patterns in the link
structure of code.

In this work, we study the social network naturally emerg-
ing from unrelated software projects. We studied the links
present among Java classes coming from different contexts.
In this case, any observable patterns come from social be-
haviors, rather than software engineering practices.

In our analysis, we could observe a regular social network,
organized according to a power-law distribution that is typ-
ical, for instance, of links among Web pages. We give a
positive value to class links, which we consider a sign of rel-
evance and acceptance. Out of this, we propose a way of
ranking classes, and we present our prototype search engine
for Java classes.

1. INTRODUCTION
Although first studies date back to late thirties [12], the

analysis of the social behavior of complex systems, i.e. aris-
ing in natural phenomena, received a lot of attention only
in these last years. Also known as link analysis, the study
of social networks has connected very distant fields, such as
biology and computer science, because networks emerging
in very different contexts share, many times, the same prop-
erties. One of the most important property is the one that
relates the number of individuals in a population and its
connectedness. For instance, Stanley Milgram in 1967 [11]
found that the number of intermediate acquaintances sepa-
rating any two people in the United States is about 6. Net-
works presenting this kind of strong locality characteristics
are called small worlds. For instance, it is well known that
Web pages are organized into a small-world network with
strong social properties [6]. Quite recently, Web search en-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

gines started to exploit this in order to offer relevant results
to their users. For instance, the PageRank [14] algorithm,
used by Google, gives higher rank to pages which are re-
ferred by other high-rank pages.

The interest of this work is to extend this analysis to the
code structure of object-oriented (OO) programs.

The popularity of OO languages has made available a
large number of independently developed objects and classes.
In a very natural way, developers make use of the available
software library to build on: they will use existing parsers
for new compilers, existing graphic routines for new human
interfaces. In other words, code gets re-used by developers.
Moreover, it is very likely to find that the same functionality
is offered by different software providers, e.g. Java graphic
interfaces can be developed either with Swing or AWT. To
this extent, developers have to choose one on the basis of
some kind of quality measure.

This way, an ecosystem of software entities emerges: sim-
ilar objects and classes are offered by different vendors or
publishers; they will compete for visibility and adoption, and
they will co-operate in larger applications.

Some interesting questions arise when we consider the en-
semble of components as an ecosystem:

• Can this ecosystem be considered a small-world?

• Is it possible to evaluate the quality of a software prod-
uct considering the strength of its relations with the
others?

Answering these questions is very challenging and has very
important applications. For instance, the measure of quality
can help users to find the best software tools for their needs.
Link analysis can help to provide an answer.

This paper uses Java as a test-case. Java classes are nat-
urally organized into a social network: classes make use of
each other (using objects of different classes as method argu-
ments or return values), they are organized into a hierarchy
of inheritance, they share interfaces. This social network has
a central core represented by the Java Library, surrounded
by all the classes making part of other Java projects. Some
of these latter classes are commonly used by developers to
complement the functionality offered by JDK. Some classes
of Apache Tomcat, as an example, are very popular among
programmers.

In order to perform link analysis over the Java class ecosys-
tem, the full source code is not needed: we just need to
analyze the interface of each class. Interfaces are always
available for each piece of software released for public use
(libraries, APIs...).

Also, the access to interfaces does not mean free access
to the algorithms. Consider this: any person can browse
the references to papers stored in an on-line digital library;
on the other side, only paying users can download the full
text of papers. This way, a reader can find if the paper is
of interest (on the basis of the references) before buying it.
Also, the list of references alone does not allow a generic user
to discover anything about the content of the paper itself.

Similarly, a vendor of software components will have an
interest in publishing the interface, in order to attract cus-
tomers, but s/he may be unwilling to release the source code.
Clearly, our analysis may be done on different frameworks,
with the only constraint of having the program interfaces
available.

This paper is structured as follows. In the next section,
we present the relevant related works. Then we describe
our analysis, followed by our initial experiments. Later, we
present an application of our results. Finally, we conclude.

2. RELATED WORK
Link analysis allowed us to compare the structure of net-

works coming from very different areas of study. The growth
of the Internet network, for instance, shows patterns simi-
lar to those observed in human biology [10] and automobile
networks [5]. The structure of the social network of code,
in particular Java classes, has also obtained attention in the
literature.

A very recent work [16] analyzed the dynamic references
to objects in Java applications. The authors examined the
heap of large Java programs in order to measure the number
of incoming and outgoing references to each object in the
program. They verified that the number of references is
distributed according to a power-law curve [1]. Their work
is based on the dynamic realization of a program. We will
show that this relationship exists also in the static links
among classes.

In other words, code can be examined at different levels
(see Table 1): the interface of objects, the full source code,
or the dynamic realization of executable code. [16] analyzes
the run-time behavior of code, while we are more interested
in interfaces.

The main goal of our technique is different from the ap-
proach described in [16]. While our analysis clearly does not
consider the references to objects and classes that do not ap-
pear in the interface (classes that are used within class code
but not in the class interface), we do not need to run any
code, and we can do data-mining over unrelated projects.

In [9], the authors cite an interesting technique for rank-
ing components within a set of given programs. Ranking a
collection of components simply consists of finding an abso-
lute ordering according to the relative importance of compo-
nents. The method followed by the authors is very similar
to the method used by the Google search engine to rank
Web pages: PageRank [3]. In ComponentRank, in fact,
the importance of a component is measured on the basis of
the number of references (imports, and method calls) other
classes make to it within the given source code.

[18] analyzes the structure of the Java Development Kit
(JDK) and of a computer game, and observes a scale-free
network structure. The authors relate this to the optimal
design, that is the software engineering practices about soft-
ware modularity. Similarly, [20] analyzes the class structure
of three big software projects (Ant, Tomcat and again JDK)

Level Used in
Program Interface this work
Full Source Code [9, 18, 20]
Dynamic Realization [16, 7, 19]

Table 1: Different level of analysis of code

and finds, for each project in isolation, interesting power-law
curves in several properties.

It is important to point out that the main difference with
our work resides in the fact that we analyze the network of
independently developed classes, rather than a single soft-
ware project. For this reason our work resembles more the
classic works analyzing social networks such as the Web or
the Internet. Later in this work we present a possible ap-
plication of this analysis: a ranking function for software
components.

There has been a number of interesting works also in the
field of workflow mining, i.e. the analysis of the implementa-
tion and the dynamic realization of an application, in order
to measure the number of objects, their usage and so on.

This is a very flexible approach, suitable for software com-
ponents in general. The approach we propose in this work
is complementary to that followed in [7, 19]. In these works,
the dynamic realization of an application is analyzed in or-
der to discover profiling properties, frequently used activities
and so on. Link analysis can be performed also by using pro-
filing data, but this would require running and measuring all
the objects in the repository. We believe that an approach
focused on the static structure of the code has a stronger po-
tential. The cited works [7, 19] are interested in the dynamic
realization, while our interest lies on the interfaces.

3. MOTIVATIONS
We started our research with the goal of developing a

ranking strategy for software components. We were inter-
ested in designing a search engine for components, so that
a developer could easily find the solutions that best fits the
problem at hand.

Today, with the emergence of the concepts of Grid [8]
and Software-Oriented Architecture [15], the interest toward
modular software solutions (known as software components
or services) is growing.

We believe a market of competing services will emerge.
Software components, packaged as services (Web or Grid
Services), will be offered to the public by a number of ven-
dors and developers, with different price, quality of service,
trust, performance and other features. An economy-based
competition [4] will drive the user into choosing one service
over another. This vision is emerging as a key point for
European and international projects [13].

This is why it is very important to study the dynamics
of code: how different components relate to each other, how
many references there are to a given component, what the
shape of the social network is. We launched our study by
using Java classes as our component model. This choice
is shared by other projects: Apache Hivemind uses POJOs
(Plain Old Java Objects) as building blocks for applications.
This gave us the opportunity to analyze a big repository of
code that is very well documented.

4. EXPERIMENTS
We performed our analysis on a large collection of Java

classes found on the Internet. We collected the documenta-
tion about projects we were aware of, and then we searched
(with a standard Web search engine) collections of Java doc-
umentation files across the Web. Within these files, we
looked for references to external classes.

This way, we collected an initial set of 7700 classes, then
grown to 49500. We were able to retrieve very high-quality
JavaDocs for the following projects, among others: Java
1.4.2 API; Java 1.5.0 API; HTML Parser 1.5; Apache Struts;
Globus 3.9.3 MDS; Globus 3.9.3 Core and Tools; Tomcat
Catalina; JavaDesktop 0.5, JXTA; Apache Lucene; Apache
Tomcat 4.0; Apache Jasper; Java2HTML; DBXML; ANT;
Nutch; Eclipse Open Source IDE; ObjectWeb ProActive.
The collection is large enough to show a big variety of pro-
gramming patterns and to include competing classes (offer-
ing similar functionality).

We parsed the JavaDocs files, and we recorded a link be-
tween Class A and Class B every time a method in Class
A used as an argument or returned as a result an object of
type B. This way, we generated a directed graph describing
the social network of the Java libraries.

We then counted and plotted the number of inlinks and
outlinks from each class. The plot followed clearly a power-
law curve [1] with α ≈ 1 (see Figures 1 and 2): the number
of inlinks, i.e. the number of times each class is referred, is
distributed following a power-law pattern. In other words,
very few classes are linked by very many others, while several
classes are linked by only a few other classes. This is true
both for our initial sample of 7, 700, and for the bigger base.

In the Figures, the reader can see a plot representing the
number of incoming links to each class, in log-log scale.
Classes are sorted by the number of incoming links. The
distribution follows closely a power-law pattern, a small ex-
ception given by the first few classes (Object, Class etc.)
which are used by almost all other derived classes to pro-
vide basic services, including introspection and serialization.

This is a very interesting result: within Java, the pop-
ularity of a class among programmers seems to follow the
pattern of popularity shown by the Web, blogs and so on.

5. AN APPLICATION
An interesting application of this study is, as anticipated,

a theoretical support to a new ranking strategy for software
components. Our goal is to offer a tool to find existing
software components to developers.

We developed a very simple search engine, able to find
high-relevance classes out of our repository. Classes match-
ing the query can be ranked by TF × IDF [17] (a com-
mon information retrieval method, based on a metric that
keeps into account both the number of occurrences of a
term within each document and the number of documents in
which the term itself appears) or by ClassRank, our version
of PageRank for Java classes, based on the class usage links.

Usage links are sometimes considered negative features of
source code, because they can lead to chain of dependen-
cies in the process of developing code. In this work, on the
contrary, we give a positive value to links: we see them as
a sign of recognition and acceptance, as it happens among
Web pages.

We called this tool (GRIDLE /'gri-d e

l/: a

Figure 1: Distribution of inlinks, 7, 700 classes.

Rank Class Name
TOP String, Object, Class, Exception
7 Apache MessageResources
11 Tomcat CharChunk
14 DBXML Value
73 JXTA ID

Table 2: Some top ranking classes

GoogleTM-like Ranking, Indexing and Discovery service for
a Link-based Eco-system of software components) Figure 3
shows the first web interface of our tool.1

ClassRank is a very simple algorithm, that builds on the
popular PageRank algorithm used in Google [3]. To deter-
mine the rank of a class C, we iterate the following formula:

rankC = λ + (1− λ)
∑

i∈inlinksC

rank i

#outlinksi

where inlinksC is the set of classes that use C (with a link
into C), #outlinksi is the number of classes used by i (num-
ber of links out of i), and λ a small factor, usually around
0.15.

5.1 Interesting Observations
We could observe some very interesting results. The high-

est-ranking classes are clearly some basic Java API classes,
such as String, Object and Exception. Nonetheless, classes
from other projects are apparently very popular among de-
velopers: #7 is Apache MessageResources, #11 is Tomcat
CharChunk, #14 is DBXML Value and #73 is JXTA ID.
These classes are very general, and are used by developers
of unrelated applications (see Table 2).

We could verify that in most cases ClassRank is more rev-
elant than TD×IDF , especially when the class name is not

1It is available on-line at: http://gridle.isti.cnr.it/.

Figure 2: Distribution of inlinks, 49, 500 classes.

textually similar to the function we are looking for. For in-
stance, if the developer is trying to write data to a file, and
performs a query such as “file writer”, TF × IDF will re-
turn, in order: (1) javax.jnlp.JNLPRandomAccessFile, from
JNLP API Reference 1.5; (2) javax.swing.filechooser.File-
SystemView, from Java 2 Platform SE 5.0; (3) java.io.File-
OutputStream, from Java 2 Platform SE 5.0; (4) java.io.-
RandomAccessFile, from Java 2 Platform SE 5.0. The sec-
ond class is clearly unrelated with the problem under analy-
sis, and only the third is probably what the user was looking
for.

On the other hand, ClassRank will return four classes
from the Java API (Java 2 Platform SE 5.0): (1) java-
.io.PrintWriter; (2) java.io.PrintStream; (3) java.io.File; (4)
java.util.Formatter; which are all probably better matches.
To verify this claim on result quality, we will need to test
the search engine with Java developers.

An interesting side-effect of a search engine is that popu-
lar results could become more and more popular over time
(the well-known “rich get richer” effect [2]). We are inter-
ested in investigating the long term effects of this on software
development and organization.

6. CONCLUSION
We observed a growing trend in the use of software com-

ponents: more and more, modern programming platforms
are oriented to software components (Microsoft .NET, En-
terprise Java Beans, Apache HiveMind). This is the reason
why we envision a market where software components are
off-the-shelf commodities, which can be assembled to build
the needed software solutions.

One of the open problems is to offer a way to search for
components, out of this emerging service market. European
projects such as NextGrid and SFIDA-PMI list this issue
among the key research topics.

Power-law patterns have been found in the number of links

Figure 3: Web-interface of .

between pages, in the number of contact to blogs, in many
other social networks. In this work, we verified the existence
of a social network among Java classes: the links among
classes create a graph of social relations among them. In
our experiments, we considered only classes with a social
desire, i.e. classes documented according to the JavaDoc
standard.

We observed that a very little number of classes are ex-
tremely popular and are used (i.e. used as an argument or
returned as a result) by methods of several other classes,
while many other classes are obscure and rarely used: a
power-law appeared, in a majestic epiphany, out of our col-
lection of almost 50, 000 classes. These results thus allow us
to draw the conclusion that the space of Java classes form a
small-world network.

We exploited this finding to rank our base with Class-
Rank, an algorithm that builds on the PageRank algorithm
used in Google [3]. In our initial tests, ClassRank empiri-
cally proved to be more effective than TF × IDF .

What if one day a programmer could find a class s/he
needs as easily as s/he now can find the name of the great-
est movie with Bela Lugosi? Surely, graduate students will
be better off, and could spend more time with Ed Wood’s
masterpieces.

7. ACKNOWLEDGMENTS
We would like to thanks our colleagues at ISTI-CNR,

in particular Domenico Laforenza and Salvatore Orlando,

for the fruitful discussions about and software

search.

8. REFERENCES
[1] L. A. Adamic. Zipf, power-laws, and pareto - a ranking

tutorial. Available at http://www.hpl.hp.com/-
research/idl/papers/ranking/ranking.html.

[2] A.-L. Barabasi. Linked: How Everything Is Connected
to Everything Else and What It Means.

[3] S. Brin and L. Page. The Anatomy of a Large–Scale
Hypertextual Web Search Engine. In Proceedings of

the WWW7 conference / Computer Networks, volume
1–7, pages 107–117, April 1998.

[4] R. Buyya. Economic-based Distributed Resource
Management and Scheduling for Grid Computing.
PhD thesis, Monash University, Melbourne, Australia,
April 2002.

[5] C. Faloutsos and I. Kamel. Beyond uniformity and
independence: Analysis of r-trees using the concept of
fractal dimension. In Proc. ACM
SIGACT-SIGMOD-SIGART PODS, pages 4–13,
Minneapolis, MN, May 1994.

[6] G. Flake, S. Lawrence, and C. L. Giles. Efficient
identification of web communities. In Sixth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 150–160, Boston,
MA, August 20–23 2000.

[7] G. Greco, A. Guzzo, G. Manco, and D. Saccà. Mining
frequent instances on workflows. In Proceedings of
PAKDD 03, 2003.

[8] S. T. I. Foster, C. Kesselman. The Anatomy of the
Grid: Enabling Scalable Virtual Organization.
Interational Journal Supercomputer Application,
3(15), 2001.

[9] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto,
M. Matsushita, and S. Kusumoto. Component rank:
relative significance rank for software component
search. In Proceedings of the 25th international
conference on Software engineering, pages 14–24,
Portland, Oregon, May 2003. IEEE, IEEE Computer
Society.

[10] B. Mandelbrot. Fractal Geometry of Nature. W.H.
Freeman, New York, 1977.

[11] S. Milgram. The small world problem. Psychology
Today, 2:60–70, 1967.

[12] J. Moreno. Sociometry in relation to other social
sciences. Sociometry, 1, 1937.

[13] F. Nachira. Technologies for digital ecosystems -
supporting growth and smes, December 2004. Opening
for the workshop on Sector Digital Ecosystem.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[15] M. P. Papazoglou and D. Georgakopoulos, editors.
Service-Oriented Computing, volume 46 (10) of
Communications of ACM. October 2003.

[16] A. Potanin, J. Noble, M. Frean, and R. Biddle.
Scale-free geometry in oo programs. Communications
of the ACM, 48:99–103, May 2005.

[17] G. Salton. The SMART Retrieval System –
Experiments in Automatic Document Processing.
Prentice Hall Inc., Englewood Cliffs, NJ, 1971.

[18] S. Valverde, R. F. i Cancho, and R. Solé. Scale free
networks from optimal design. Europhysics Letters,
60:512–517, 2002.

[19] W. van der Aalst and B.F. van Dongen and J. Herbst
and L. Maruster and G. Schimm and A.J.M.M.
Weijters. Workflow mining: A survey of issues and
approaches. Data & Knowledge Engineering,
47:237–267, 2003.

[20] R. Wheeldon and S. Counsell. Power law distributions

in class relationships. In Proceedings of 3rd
International Workshop on Source Code Analysis and
Manipulation (SCAM), Amsterdam, September 2003.

