
How to Run Scientific Applications over Web Services

Diego Puppin Nicola Tonellotto
Domenico Laforenza

Institute for Information Science and Technologies
ISTI - CNR, via Moruzzi, 56100 Pisa, Italy

email:
�
diego.puppin, nicola.tonellotto, domenico.laforenza � @isti.cnr.it

Abstract

Today, the task of running and coordinating a scien-
tific application across several administrative domains is
extremely complex. As an example, the most popular tool
for scientific applications, MPI, is not designed to address
firewall limitations or data heterogeneity, even if its exten-
sions deal with some of these problems.

In this paper, we design a new approach to run a sci-
entific application in a distributed environment, when data
and computing power are scattered across the Web: Web
Services can be used to tunnel computation and data mi-
gration.

We show that a very simple mapping exists between
MPI primitives and the Web Service infrastructure. We are
currently designing a framework, based on Web Services,
which will implement the main MPI primitives: this way an
MPI application could be run on any platform supporting
Web Services.

Keywords: Web Services, distributed computing, MPI.

1. Introduction

Computational Grids are re-shaping the way scientific
problems are faced. Scientists are not anymore bound to
a single machine (or a single cluster of machines) and a sin-
gle source of data: they use machines that are distributed
across several institutions in the world, and they need to ac-
cess data in remote repository.

When computational scientists are given the opportunity
to access the Grid and its abundance of resources, they will
be able to run faster code with more reliable data; they
will be able to exploit instruments that are not located in
their laboratory; they will be able to cross-verify different
sources of information.

Traditional programming tools, MPI among them, are
not designed to manage with these complex issue: their pro-

gramming model refers to a single set of machines and a
very coherent data structure.

A way to deal with this is to move toward a Service
Oriented Architecture (SOA) [1], a computing paradigm
that considers services as building blocks for applications.
Web Services (WSs) represent one of its implementations.
One of the most interesting features of WSs is that, when
wrapped as http data, requests to and responses from any
Web Service can cross, without problems, firewalls, differ-
ences in implementation languages or in operating systems.

This is why we discuss about the opportunity of using
Web Services to implement parallel applications, as an al-
ternative to MPI. Clearly, MPI will be hard to overcome
in term of performance on local machines and local data,
but we want to show that MPI applications can be easily
mapped, with good results, on a Web Service framework:
this will give the programmer the opportunity to access a
wide array of computing and data resources.

The rest of the paper is structured as follows. After a
review of related work, we discuss a new methodology to
map distributed application to a set of Web Services. Then,
we show the results of our first experiment. Finally, we
conclude and show directions of future work.

2. Related Work

As discussed in the introduction, MPI is a widely used
tools for scientific applications. There is a wide interest in
overcoming some of its limitations so to make it more suit-
able to run in distributed environments.

In order to connect distinct private machine clusters,
PACX-MPI [2] uses a two-level communication: MPI-
based within the cluster, and TCP/IP-based across clusters.
Two daemons, sitting on publicly visible nodes, mediate the
two types of communications. MPICH-G2 [3] uses Globus
services to cross firewall boundaries, so to connect clusters
within different, secure administrative domains. An exten-
sion to MPICH-G2, called MPICH-GP [4] and still under
development, uses the Linux NAT address translation, along



with a user-level proxy, to make two firewall-protected clus-
ters, with private IP address, to cooperate as a single MPI
machine, with limited overhead.

Issues of QoS and performance predictability raised at-
tention among MPI researchers. MPICH-GQ [5] set an in-
teresting research direction, and showed the potential of an
extension of MPI that addresses QoS. Data security is dealt
with by MPICH-GS [4]: in this project, data are encrypted
using a cluster-specific key.

The interest to SOA to run scientific applications is also
growing. Some recent works showed how to wrap whole
MPI applications as Web or Grid Services, so they could be
linked to other pieces of software through a standard frame-
work. An interesting approach is taken in [6], where authors
show an effective way to include a legacy MPI algorithm
into a larger application using the OGSA standard, by creat-
ing a surrounding Grid Service. Also, whole parallel appli-
cations are wrapped as Web Services in recent works [7, 8].

This paper suggests a different approach: we want to use
WSs as a way to connect computation kernels, so to imple-
ment a distributed applications, able to communicate across
firewalls and differences in hardware and operating system.
Instead of wrapping a whole application as a service, we
build it out of services.

Our approach moves in the direction of using services,
available around the Internet, as building units for an appli-
cation.

3. Mapping MPI to Web Services

Web Services (WS) are a way to make data and com-
putational services available on the Internet: using the WS
standard, machines connected across the Internet can inter-
act with each other to perform complex activities. A simple
http connection is usually enough to connect to a server
and to use the services it offers. One of the goals of this
architecture is to give a standard interface to new or exist-
ing applications, i.e. to offer a standard description to any
computational service, which can be stored in public repos-
itories.

The main messages in the WS standard are the request to
and the replies from the services. They are carried around
using the Simple Object Access Protocol (SOAP) [9], used
in the communication and data exchange between a WS and
a client. WS-oriented frameworks (see Figure 1) support
this kind of communications, by implementing the infras-
tructure to communicate over the Internet with SOAP mes-
sages, and by offering a procedure-call abstraction to ser-
vice invocation: a programmer can perform a request to a
WS as simply as calling a procedure.

The WS standard defines a variety of communication
patterns, including rendezvous and one-way communica-
tions. We are designing a mapping from the main MPI

primitives to the WS framework (see Table1): MPI init
will be mapped to a set of coordination messages to the
WSs, MPI send to a one-way communication, MPI recv
to a rendezvous message, that forces a WS to send the
needed message back.

More complex primitives will also be supported, even if
they will be initially implemented using the basic ones: e.g.
MPI scatter will be replaced by a set of MPI send.

MPI init. MPI init is responsible for verifying the sta-
tus of the workers in the MPI pool, and to give a unique ID
to each of them. This task can be easily performed by a set
of synchronization messages, one to each WS used in the
application, carrying the unique ID.

MPI send. Using one-way communications, we can im-
plement non-blocking messages. The sender can transfer
data to every other WS, in a very simple way. The WS will
receive the message as soon as it is available for listening.
Blocking communications can be implemented with RPC
abstraction.

MPI recv. MPI recv is performed simply by accepting
requests from other entities. Also, one service can force
another WS to send messages, by using a locking commu-
nication that asks for data.

The new process we envision is as follows:

� A legacy MPI application is linked to a supporting li-
brary, so that MPI communications are mediated by
WS communications.

� The resulting code, is wrapped into a Java class.

� Its interface is extracted (with Java introspection) and
converted to a suitable XML representation for deploy-
ment.

� The class is deployed within a WS container as an in-
dependent service.

� MPI init will connect all running WSs and will give
them a unique ID.

� The coordinated WSs will run the application.

As will be said below, probably the biggest performance
overhead is given by the switch from MPI to SOAP mes-
sages. SOAP messages have to pay a high cost in order to
be inter-operable: the payload is not sent in a binary form,
but in a more portable, verbose way. For instance, doubles
are converted to ASCII, and they take one byte (character)
per figure, rather than (roughly) one byte every three fig-
ures in the binary form. They are then converted back by

2



Figure 1. Web Service architecture

MPI init initiation messages to WSs (synchronization needed)
MPI send one-way or rendezvous communication from the master to the WS
MPI recv rendezvous communication, to force the WS to send the message back

Table 1. Simple mapping of basic MPI primitives to WSs

the receiver. This enlarges greatly the message size, and
also is cause of a big slowdown in the parameter passing
(discussed in detail in [10]).

Many researchers are exploring ways to reduce the over-
head introduced by SOAP. The most interesting effort in this
direction is being performed by W3C, which is investigat-
ing the XML-binary Optimized Packaging protocol (XOP),
which allows binary transmission of data between services
when possible [11].

We are planning to use several strategies to limit this
problem. One can be to use XOP or to compress messages
(using zlib) to reduce this effect. Another could be to post
the data in some Web accessible URL, and then let the WS
retrieve them from there.

4. Initial Experimentation

In this paper, we upgrade the results of our initial exper-
iments, which we presented in [12]. While we work at our
MPI mapping to WS, we manually ported a simple MPI ap-
plication (a farm-like computation) to a WS-based solution.
We rewrote part of the code to connect to the WSs, which
were running the heavy computational part of the problem,
and to coordinate communications from and to them.

A simple Java class of 20 lines, implementing the nu-
merical kernel, was simply transformed into a WS, and then
used by our client to perform a distributed computation. We
could run our application on our private cluster, and then

across the Internet with no modification.
In the WS version, the master, running on the cluster

front-end, invoked the services of the farm workers: each
worker appears as a WS running on a different machine.
The master, with the roles of dispatcher and collector, is
implemented as a client application. The master spawns a
thread for each worker, with the responsibility of waiting
for the responses and submitting new values to it. This is
needed in order to have asynchronous message.

In [12], we showed that creating a WS is relatively sim-
ple: a Java class has to be developed, with the code imple-
menting the numerical kernel. Then, it has to be deployed
into Tomcat. With our new framework, we plan to make the
porting process even simpler. A MPI-WS library will need
to be linked to the MPI code. At that point, MPI messages
will be mapped to WS communications. All MPI process,
including the master, will be running as WSs, and the mes-
sage patterns will be more symmetrical (with no preference
for Process 0).

In this paper, we present upgraded results. We were able
to add a large number of machines to our pool of Grid re-
sources, so to scale the application to 65 workers. Using the
abundance of resources we had, our application was able
to run very close to MPI, with only 50% overhead: while
MPI took about 6 seconds, the WS-based application, using
resources across the world, took less than 9 seconds (see
Figure 2 and 3). In this version, the application run on 25
machines located in San Diego (UCSD), 33 machines lo-
cated in Cambridge, MA (MIT) and 7 machines located in

3



Completion Time with MPI

Number of machines
0 5 10

S
ec

on
ds

0

5

10

15

20

25

30

35

40
1

10

100

1000

10000

Figure 2. Performance of the MPI benchmark
(adapted from [12])

our laboratory in Pisa. Remote machines are not accessible
from within MPI, because they are behind a firewall that
filters out MPI messages.

We are working at limiting the effect on performance of
a number of factors: difference in performance from Java
to C; overhead in message marshalling and unmarshalling
(heavier for SOAP than MPI); overhead of the Web Service
container (communication is not mediated in MPI); the use
of the procedure-call paradigm, which can slow down the
control flow, because there is the need for multiple threads,
waiting for replies from the services.

Several strategies must be exploited:

� To improve numerical performance, heavy kernels
should be implemented in C and connected to the WS
framework (usually, running in Java), via the Java Na-
tive Interface.

� Simpler WS frameworks than Apache are available.
By working with a stripped container, we will be able
to reduce the framework overhead.

� To limit the overhead introduced by RPC, and its ac-
tive waiting, we are planning to use framework such
as Homa [13] or ProActive [14], which implement the
concept of future: outstanding results from procedure
calls that are automatically managed by the frame-
work.

Completion Time with Web Services

Number of machines
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

S
ec

on
ds

0

5

10

15

20

25

30

35

40
100

200

500

1000

2000

Figure 3. Performance of the Ws-based appli-
cation, varying granularity

4.1. Moving to WS from Other Frameworks

Transition to WS-based programming is much easier
with modern development environments such as Java 2 En-
terprise Edition (J2EE) and Microsoft .NET. With them, it
is very easy to wrap an existing application into a WS: a
programmer can run a prototype of his/her application by
bridging the communication to remote machines with Web
Services.

5. Conclusions and Future Work

Modern scientific applications are complex programs:
they often exploit heterogeneous tools, compare data from
different sources, run on machines spread across the world.
To tackle this complexity, the Service Oriented Architec-
ture, with its implementation in the Web Services, seems a
viable approach.

MPI, a very accepted standard for parallel applications,
is trying to adapt to Grid-oriented solutions with a variety
of extensions, none of which has yet the flexibility and gen-
erality needed by Grid programmers.

On the other side, WSs are emerging as a standard for
distributed, Internet-oriented applications. As we showed
in our previous work, legacy applications can be easily
wrapped into a WS interface, and made available to any
client on the Internet. Here, we presented a methodology

4



which simplifies the task of porting an MPI application to
a WS-based solution. We are designing a mapping from
MPI primitives to WS-based communication. In our plans,
porting should become as easy as linking a library that im-
plements MPI communications over WSs.

Clearly, we do not want to say that MPI can be substi-
tuted by WSs, but that the SOA can be a way to develop
complex distributed applications running across the Inter-
net. Using the abundance of resources available on the Grid,
we could run an intensive numerical application, originally
running with MPI on a local cluster, on remote machines,
with a limited overhead (50%). If a cluster is not available
or data are stored on remote machines, this is a very small
price to pay to be able to run the application.

6. Acknowledgments

We want to thank the group led by Dean Tullsen at
UCSD, and the COMMIT group led by Saman Amaras-
inghe at MIT, for letting us run our tests on their ma-
chines. This work has been partially supported by the
MIUR GRID.it project (RBNE01KNFP) and the MIUR
CNR Strategic Project L 499/97-2000.

References

[1] Papazoglou, M.P., Georgakopoulos, D., eds.: Service-
Oriented Computing. Volume 46 (10) of Communica-
tions of ACM. (2003)

[2] Beisel, T., Gabriel, E., Resch, M.: An extension to
mpi for distributed computing on mpps. In: Recent
Advances in PVM and MPI, LNCS (1997) 75–83

[3] Karonis, N., Toonen, B., Foster, I.: MPICH-G2: A
Grid-Enabled Implementation of the Message Passing
Interface. JPDC 63 (2003) 551–563

[4] Kwon, O.Y.: Mpi functionality extension for
grid. Technical report, Sogang University (2003)
Available at: http://gridcenter.or.kr/ComputingGrid/
file/gfk/Oh-YoungKwon.pdf.

[5] Roy, A.J., Foster, I., Gropp, W., Toonen, B., Karo-
nis, N., Sander, V.: Mpich-gq: Quality-of-service for
message passing programs. In: Proceedings of Super-
computing 2000, Dallas, Texas, United States (2000)

[6] Floros, E., Cotronis, Y.: Exposing mpi applications as
grid services. In: Proceedings of EuroPar 2004, Pisa,
Italy (2004)

[7] Gannon, D.: Software component architecture for the
grid: Workflow and cca. In: Proceedings of the Work-
shop on Component Models and Systems for Grid Ap-
plications, Saint Malo, France (2004)

[8] Balis, B., Bubak, M., Wegiel, M.: A solution for
adapting legacy code as web services. In: Proceedings
of the Workshop on Component Models and Systems
for Grid Applications, Saint Malo, France (2004)

[9] Box, D., Ehnebuske, D., Kakivaya, G., Layman,
A., Mendelsohn, N., Nielsen, H.F., Thatte, S.,
Winer, D.: Simple object access protocol (soap)
1.1. Technical report, W3C (2003) Available at:
http://www.w3.org/TR/SOAP/.

[10] Chiu, K., Govindaraju, M., Bramley, R.: Investigating
the limits of soap performance for scientific comput-
ing. In: Proceedings of HPDC 11, IEEE (2002) 246

[11] Web Consortium (W3C): The xml-binary
optimized protocol (2004) Available at:
http://www.w3.org/TR/xop10/.

[12] Puppin, D., Tonellotto, N., Laforenza, D.: Using web
services to run distributed numerical applications. In:
Proceedings of EuroPVM-MPI 2004, Budapest, Hun-
gary (2004)

[13] Gautier, T., Hamidi, H.R.: Automatic re-scheduling of
dependencies in a rpc-based grid. In: Proceedings of
the 2004 International Conference on Supercomputing
(ICS), Saint Malo, France (2004)

[14] ProActive: The proactive environment (2005) Avail-
able at: http://www-sop.inria.fr/oasis/ProActive/.

5


