
Component Metadata Management and Publication for the Grid

Diego Puppin, Fabrizio Silvestri, Domenico Laforenza
ISTI - CNR

via Moruzzi, 56100 Pisa, Italy
diego.puppin@isti.cnr.it
http://hpc.isti.cnr.it/

Abstract

There is growing attention to component-oriented soft-
ware design of Grid applications. Within this framework, ap-
plications are built by assembling together independently de-
veloped software components.

Two main approaches are commonly used to manage, de-
velop and publish software components: one is based on an
Interface Description Language (IDL); the other is typical,
for instance, of Java and is based on introspection and de-
sign conventions.

In this paper, we compare them and we propose a third ap-
proach that merges the flexibility and fast learning curve of
the latter, with the rigor of the former. Our proposal is meant
to help the transition towards more modern tools, which is re-
quired to develop versatile Grid applications.

1. Introduction

In an emerging Grid economy [6], where supply and de-
mand of computing resources are driven by a market econ-
omy, we envision an open marketplace of components, where
an application developer can find and pay for the needed ser-
vices. To create this market of software components, it is im-
portant to develop a way to automate the management, cre-
ation and publication of software components from existing
code, quickly and efficiently.

In this market, the way software components are managed,
defined and modeled has a strong impact on the speed of a
transition to a component-oriented application design. This
is why, in this paper, we analyze two different approaches
to component modeling, in terms of performance, ease-of-
use and possibility of automation, and we propose a new ap-
proach.

This modeling approach should lead to the definition of a
set of meta-information elements, i.e. meta-data, that will re-
sult useful in many application areas, such as component dis-
covery and linking.

The rest of this paper is structured as follows. In the next
section, we describe two existing component frameworks,
which we consider particularly representative in their ap-
proach to components. Then, we consider their pros and cons,

with some quantitative analysis. Next, we highlight our pro-
posal of a third approach to component modeling and link-
ing. We give our conclusion in the last section, after a brief
survey of some related works.

Preliminary results of this work were presented at the
poster session of CCGRID 2004 in Chicago [13].

2. Two Examples of Component-oriented
Frameworks

Here, we analyze in detail two existing frameworks, which
are representative, in our opinion, of two approaches to com-
ponent modeling. One is based on a rich Scientific Interface
Definition Language (SIDL), and its goal is to offer language
interoperability for building large component-based scientific
applications. The second is based on Java, and leverages its
modern features (introspection, object-oriented design...) to
provide a simple and portable programming environment.

2.1. The Common Component Architecture (CCA)

CCA [4] is a proposed standard aimed at promoting the in-
tegration of heterogenous software components. It defines a
set of minimal services to be offered by a component: Port,
getPort, setServices. CCA is implemented by a variety of
frameworks, offering different programming models.

In the CCA vision, a component is a software entity that
allows different languages, different hardware/software ar-
chitectures to co-operate. It supports a structured, modular
approach to software development, very useful in the case
of third-party libraries and external services. Every compo-
nent exports one or more input and output ports (uses and
provides ports), identified by their type. Inheritance and spe-
cialization allows the programmer to refine definition and se-
mantics of a component. Also, multiple ports can offer a dif-
ferent point of view of the same service.

The CCAffeine Framework. CCAffeine [5] is a CCA-
compliant framework oriented to SPMD (or SCMD —
Single Component Multiple Data) applications. It can as-
semble together heterogeneous, internally parallel compo-
nents. As an example, in Figure 1, three parallel components

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05) 
0-7695-2315-3/05 $ 20.00 IEEE



Figure 1. Communications among and within
components (from [5]).

(the first with vertical stripes, the second with horizon-
tal stripes, and the third has solid color) build up an applica-
tion. Intra-processor communication, among different com-
ponents (vertical arrows) is managed by the framework: it is
responsible of data conversion if the components are hetero-
geneous. On the other side, inter-processor communication,
within a parallel component (horizontal arrows), is responsi-
bility of the component developer, who can use the tool of
his/her choice.

The framework is responsible for instantiating a copy of
the application graph on every machine in the computing en-
vironment. CCAffeine internally uses MPI and creates the re-
quested components on all machine in the MPI world. The
run command will start, in parallel, execution on each ma-
chine. Over all, CCAffeine offers a language-independent
wrapping to parallel components (mostly, MPI-based). Thus,
it gives support to the usage of heterogenous development en-
vironments.

Babel. Babel [1] is a SIDL language oriented to high-
performance scientific programming. It is aimed at support-
ing the co-operation of software written with different lan-
guages. It offers a set of features similar to CORBA [2], but
enriched by scientific-oriented structures, among which sup-
port for dynamic multi-dimensional arrays, and complex
numbers.

As other IDLs, Babel works as an interface compiler.
Given the interface description, Babel creates server- and
client-side support: it exports a set of stubs to be used to
call the implemented object from a program written in any
other supported language. The process of creating a compo-
nent from the Babel interface requires a complex series of
steps: (1) definition of the component interface using Babel;
(2) implementation of the component in the Babel-generated
Impl file (in any supported language); (3) definition of the
CCA ports in the Impl file; (4) creation of a wrapper and a
CCA definition file; (5) creation of a suitable makefile.

In our experience, this process caused problems of soft-

Figure 2. Comparison of CCAffeine and na-
tive code. The first column is CCAffeine imple-
mentation; the second is C++/MPI; the third is
CCAffeine with inlined function; the fourth is
C++/MPI with inlined function.

ware engineering and was error-prone. In particular, there
are some naming conventions that needs to be respected in
the development of the wrapper and CCA files (fourth step),
which can be broken and are not recognized properly by the
development tools.

Performance. In our tests, we registered huge performance
overhead, even when homogeneous components were com-
municating. In Figure 2, we show a comparison of a C++
implementation vs. a component implementation of a sim-
ple integration program. A parallel MPI integrator distributes
function evaluations among a set of workers. Partial results
are then reduced to compute the final sum. The data flow
for the CCAffeine implementation is: a driver component in-
vokes the services of a generic parallel integrator, which in-
vokes the method evaluate() of a function component.
The parallel integrator is responsible for orchestrating the fi-
nal reduction. In the C++ version, components are replaced
by functions, and service invocations are replaced by func-
tion calls.

A second version was tested, where the function was in-
lined in the integrator body. When the function to be inte-
grated is an autonomous component, a big overhead for the
function call can be observed. When the function is inlined,
the framework start-up time dominates. Tests were performed
on a cluster of eight dual-Pentium machines, running Linux
RedHat, Babel 0.8.4, and CCAffeine 0.4.1.

In Section 3.2, we show more comparison between this
framework and native code. Nonetheless, we want to high-
light here an important feature of Babel arrays. As well
known, an important factor affecting performance when ma-
nipulating matrices is the ordering of column and rows. If the
order is correct, elements can be accessed sequentially, other-

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05) 
0-7695-2315-3/05 $ 20.00 IEEE



Matrix size RCR CRR CRC Transp.
16 0.06 0.02 0.02 0.00
32 0.08 0.03 0.03 0.00
64 0.12 0.1 0.09 0.10

128 0.37 0.31 0.29 0.31
256 1.62 2.99 2.65 2.30
512 12.11 54.95 54.13 62.32

Table 1. Matrix multiply, with different order-
ings. Time in seconds.

wise a more complex access is needed. Babel allows the pro-
grammer to define the order to be used by the data passed to
a component: a component can choose to access row-major
or column-major matrices. In row-major mode, rows can be
scanned sequentially, increasing the column number. If the
data is ordered differently from what is expected, the sys-
tem is responsible for transposing it, a costly operation for
large matrices. In Table 1, one can compare the cost of a ma-
trix multiply for some choices of orders for the matrices A,
B and C (with � � � � �). R stands for row-major, and C
for column-major. The last column indicates what the cost is
when a matrix is transposed because it does not match the pa-
rameter definition.

According to the developers, component overhead is “neg-
ligible [...] for component implementation and abstract inter-
faces when using appropriate levels of abstraction.” Nonethe-
less, they also measure that parameter passing that can be
three times slower than native code [8].

2.2. Java Beans

Java Beans API [7] is a mature software standard de-
veloped with the goals of offering a portable, simple, high-
quality API for component software development. Each Java
Bean is a reusable software component that can be manip-
ulated visually in a builder tool. While visual manipulation
is an important part of software development, beans can be
more complex and can be used to model larger software enti-
ties: data-bases, observational instrumentations etc.

The most advanced and useful features of beans are intro-
spection and the event-driven programming model.

Introspection is a very powerful tool for component pub-
lication and connection. Java classes are able to analyze their
own structure, and publish their interface. Java Beans’ imple-
mentation of introspection offers a more advanced set of in-
formation methods that are able to retrieve the name of the
relevant methods, the set of fired events, the interesting prop-
erties.

If desided, an explicit BeanInfo service can be provided
by the Bean, e.g. if the internal properties of the Bean are to
be hidden or abstracted (overriding introspection).

Java Beans are mostly event-driven. This means that they
can react asynchronously to particular circumstances that
happen during application execution, for example, clock ticks

or user input. Moreover, Beans can be multi-threaded, and
can operate on multiple requests at a time.

Design Time and Run Time. Java Beans recognize two im-
portant moments in the application development. Design time
is the moment when the bean is manipulated, customized
and composed into an application. Customization tools of-
fered by the bean (called Customizer) are invoked at de-
sign time by the design framework. When the application is
completed, and it is packaged to run, the design-time code is
stripped out, and only the run-time code is kept in the appli-
cation code. Customizers are available for complex beans
that require long, detailed customization, or when the inter-
nal implementation needs to be abstracted or hidden.

This strategy can be very good in general for complex
component: versatile configuration tools can be packaged
along with the main code, and then stripped out to reach per-
formance at run-time.

Design Conventions. The Java standard is highly based on
naming and coding conventions, usually called design pat-
terns [7], which simplify and coordinate the interaction of
software components: these standards are highly suggested
(but not mandatory) and are exploited at the moment of inter-
action.

One common design pattern is used to determine prop-
erty names and types: when two methods, PropertyType
getSomeProperty() and void setSome-
Property(PropertyType s) are found, a prop-
erty SomeProperty of type PropertyType is defined,
and presented to the user at design time.

This set of design pattern standards allow automatic tools
to present suitable customizing tools for the object’s prop-
erties. For instance, BeanBox and BeanBuilder will
present a palette for a color attribute, a list of choice for an
enumeration type and so on.

2.3. Other Component-based Environments

The CORBA Component Model [2] is an extension of
CORBA with the goal of defining component interfaces, and
objects with persistent state. CORBA is a powerful tool to
perform method invocation on objects running on remote
servers, based on an IDL.

Web Services are another standard to define and represent
software components. The OGSI (Open Grid Service Infras-
tructure) forum has enriched the standard to include some
more Grid-oriented services [3]. The design of a Web ser-
vice is quite straightforward, and highly automated starting
from Java classes. Tools are also available for other languages
(mostly, C++).

3. Experimental Comparison

3.1. Qualitative Comparison

We want to highlight the main differences of the presented
environments, in term of some key features.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05) 
0-7695-2315-3/05 $ 20.00 IEEE



Component publication. With Java Beans, there is no need
to define interfaces and to pass them around. The JAR file
storing the code for the component can be queried: the ob-
ject is able to introspect and to publish its own methods and
data. This is not true for CCA, where interfaces must be ex-
plicitly dealt with.

Architecture and language portability. Java byte code is de-
signed to run on any platform that offers a Java virtual ma-
chine. It is important to remind here that, in the context of
Grid computing, executable code may have to be migrated
from one machine to another, and Java byte code seems to be
a very flexible way of doing this.

CCAffeine components run on any CCA-compliant
framework, the installation of which, at the moment, is far
more complex than that of a Java virtual machine. On the
other side, the components can be invoked from a vari-
ety of programming languages.

Easy visual manipulation. Java Beans and CCA components
are both designed to be easily manipulated with graphical
tools. This can be an interesting feature if the component is
to be used in a Problem Solving Environment (PSE) or some
computer-aided application designer.

Standardization. Java is one of the most wide-spread soft-
ware standards. There is large availability of software, and a
large number of discussion symposia. CCA is still a proposal
of standard, which is competing with several other ones for
large acceptance.

Type control. CCA offers a very strong type control, based
on port typing and object inheritance/specialization. In Java,
type matching can be sometimes overridden if methods with
no arguments are used: with Java Beans, control on the type
of communicating entities is limited.

Performance of scientific kernels. Java code running on a vir-
tual machine can have lower performance than optimized C
or Fortran code. CCAffeine components also incurs in a high
overhead due to type conversion.

Also, most of scientific/numeric code is written in lan-
guages other than Java (Fortran, C): it can be wrapped to run
within CCA with some effort, while porting to Java can be
much more costly. See below.

3.2. Quantitative Comparison

The scientific community is usually hostile to the use
of Java for high-performance computing. The main critique
goes to the inefficiency of its most common implementation,
based on byte code and a virtual machine for its execution.

Nonetheless, great advancements have been made in re-
cent years: frequent forums are organized among research
groups to share results about high-performance Java applica-
tions, including the Java Grande forum. Among other works,
Moreira et al. [12] have shown that very high performance
(50% to 80% of Fortran performance) can be reached by
Java, using suitable classes and compiler optimizations, on
numeric kernels. Kielmann et al. [9] were able to execute

threads of a Java application, in parallel on different ma-
chines, in a very efficient way.

Java is, without any doubt, a tool of choice for the design
of portable interfaces, web applications, data-base wrappers
and so on. Nonetheless, the low throughput of data-intensive
kernels limited the usage of Java in the scientific commu-
nity, which seems to be more attracted by the use of SIDLs
to reach interoperability.

Clearly, we do not have to overlook the high overhead im-
posed by the latter solution: in term of programming, and in
term of performance. As shown above, the overhead to the
developer is very high when s/he uses a IDL; also, parame-
ter passing can be three times slower than native parameter
passing, using Babel as an example.

To give a more quantitative evaluation of the performance
of Java vs. a SIDL-based component, we considered three im-
plementations of a simple matrix multiply. One is a very sim-
ple C implementation, using pointers to store the matrices.
The second defines and then uses a new Java class, which of-
fers methods for multiplication and printing of matrices. The
third uses Babel to define the interface for a CCAffeine com-
ponent that performs the product of two given matrices, and
another that prints a given matrix. The implementation is then
written in C++.

The Java implementation is a single file of 68 lines. In C,
81 lines are needed. Babel generates 202 files of stubs, skele-
tons and implementations. 8 of them were modified to in-
corporate the C++ implementation (adapted from the C im-
plementation to use Babel arrays) and 4 were written from
scratch.

The Java implementation is very compact, and can be run
on any machine that runs a Java Virtual Machine or a Java
compiler. Also, the new class could be easily wrapped as a
Java Bean and then used within a Java Bean framework (such
as BeanBuilder).

The components developed with Babel and CCA are ex-
pected to interoperate with any other software developed with
the Babel interface, even if written in another language, and
can run on any CCA-compliant framework (XCAT, CCAf-
feine...).

The cost to get interoperability across different program-
ming languages through Babel is very high for the program-
mer, and in term of performance.

In Figure 3 we compare the CCA implementation, with
Java (bytecode, bytecode with Just-In-Time compiler, com-
piled with gcj and compiled with optimizations -O3), with
C (compiled with and without optimizations).

The overhead introduced by Babel wrapping is very high.
In particular, in order to be portable, the implementation of
arrays is not native and incurs high run-time performance
degradation. The Java code, compiled with optimization,
reaches a performance comparable to the CCAffeine imple-
mentation. As expected, both fall far behind the faster C im-
plementation.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05) 
0-7695-2315-3/05 $ 20.00 IEEE



Figure 3. Comparison of matrix multiply, with
CCAffeine, C, and Java.

4. A Choice for a Component Model

As shown, two main ways are available today for compo-
nent publication and management: one is based on a descrip-
tion language, along with compilers to generate stubs and
skeletons; the second is based on object introspection and de-
sign conventions, and allows a very fast deployment of Java
classes (see Figure 4).

The use of an interface description language (see Fig-
ure 4(a)), such as Babel [1] and CCM [2], can be very costly,
in term of learning curve, code rewriting, and possibility of
errors: in our opinion, present day interface description lan-
guages are taking an innatural approach, because they ask
the developer to start writing an interface, and then to adapt
the existing code to the automatically generated skeleton/stub
files. This can be particularly time-consuming with legacy
code.

As shown in Figure 4(b), JavaBeans proposes a differ-
ent approach, based on introspection. Compiled JavaBeans
classes are able to respond to specific queries about the meth-
ods they provide, presenting to the framework a full descrip-
tion of the available methods, and their interface (name, ar-
guments and their type, returned value). Moreover, the Java
Beans API sets a standard for more advanced tools, such as
an explicit Customizer — presented to the designer when s/he
wants to customize the Bean — and a redefined BeanInfo
method, that overrides the automatically collected informa-
tion.

We strong believe design conventions will emerge natu-
rally with the advent of a Grid economy [6], in a way sim-
ilar to what happened with the Web. Any Web-designer is
free to design his/her pages in the preferred way, and any
Web-browser can open them. Nonetheless, if s/he wants the
web site to be discovered easily by a search engine, s/he will

Legacy
Code

Introspec.+
DesignPtrn

Automatically
generated
interface

Legacy
Code

DesignPtrn

Signature
Extraction

Bridging

Compiler

Code

Framework
Component

Framework
Component

Interface
Description

Interface
Compiler

Wrapped
Code

Compiler

Adaptation

Framework
Component

Java
Byte−code

(a) (b) (c)

Figure 4. Different approaches to component
development: (a) is based on an IDL compiler;
(b) is the one followed by Java Beans; (c) is the
one we propose, based on automatic manipu-
lation of legacy code.

adhere to some HTML/XML standards, such as META tags,
textual ALT tags for images and so on. Moreover, s/he will
use some self-explaining description for the information pro-
vided: a car-company, for example, should add, somewhere
in the web site, in a clear textual form, the words “car” and
“company”.

We propose a new approach, such as the one in Fig-
ure 4(c): legacy code is analyze in order to extract the signa-
ture of functions and variables; then, design conventions are
recognized in it, and are used to develop the bridging code,
needed to link the software unit with the framework and the
other componenents at hand. The next section explores this
opportunity.

4.1. Extracting Information from Compiled Code

A direction we are investigating is the possibility of ex-
tracting information about methods signature from the com-
piled code, in a way similar to Java Beans. There are very ef-
fective tools for code developed with some modern languages
such a C#, Lisp, Java, Visual Basic. For Java, for instance,
Mocha can extract full information from the code, because
Java byte-code is very rich of information.

Binary code offers a more complex challenge. To reach
higher performance, debugging information and many data
related to the symbol table are stripped out of the executable
file. On the other side, dynamically linked libraries are usu-
ally called by name: often function names and types is avail-
able in the binary. Also, the headers sometimes offered with
libraries can be parsed to reconstruct some of the informa-
tion needed to use the code.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05) 
0-7695-2315-3/05 $ 20.00 IEEE



As a matter of fact, some tools are available also for lan-
guages other than Java. GDB can retrieve some information,
especially if debugging data are kept. Other basic utilities for
binary code (known as binutils) are available on Unix sys-
tems.

The process we envision, is so:

� legacy code is developed with the tools of choice of the
development team;

� compiled code and, if available, source code and head-
ers, are analyzed to extract signatures of interest: meth-
ods’ names and types are discovered in the code; de-
sign conventions are applied to understand the basic se-
mantics and the relationships among functions; the ap-
plication developer is offered the opportunity to choose
which methods to publish, and which to keep hidden (if
not clear from the code).

� this information can be used to generate, automatically,
or with some computer-aided process: wrappers in other
languages, so to allow inter-operability, featuring the
minimal data conversion needed; WSDL descriptions,
so to deploy the functions as web services; links to a
graphical interface for composing functions.

5. Related Work

Several attempts have been done to perform automatic
wrapping of existing code for particular frameworks, with
noteworthy results, some of which are listed here.

Taylor et al. [14] developed a way to wrap C function calls
in Java components, to be used within the Triana framework.
Before them, Mintchev and Getov [11] wrapped C libraries
so to be used within a Java program: they were able to use
a C implementation of MPI from Java. Also, Li et al. [10]
wrapped high-performance MPI legacy code (written in C
and Fortran) into Java/CORBA components, and were able
to maintain very good performance after conversion.

We agree that Java is a very versatile tool for software dis-
tribution. Nonetheless, we think that the bridging code should
be generated automatically for the task at hand, skipping all
the unnecessary conversion and optimizing for the compo-
nents to be connected.

6. Conclusions

An effective, quick approach to component management
and publication is fundamental to make component-based
programming an easy task on the Grid.

Component-oriented approaches, based on IDLs, intro-
duce high overhead in the process of wrapping existing code
to be re-used. The CCAffeine framework, taken as an exam-
ple, require the manipulation of several files to connect two
components for a simple matrix multiplication.

This is why we push for a more natural approach, based on
automatic extraction of interfaces, and then computer-aided

generation of suitable bridging layers. Java Beans offer an in-
teresting example, as they base connection and discovery on
interface introspection and design conventions.

In our opinion, there is a need for tools able to analyze
legacy code, extract signature information and then gener-
ate efficient bridging code. The strong results available in the
field of wrapping C into Java components can be a valid start-
ing point.

References

[1] Babel scientific interface description language.
http://www.llnl.gov/ CASC/ components/ babel.html.

[2] Corba and corba component model. http://ditec.um.es/ ˜
dsevilla/ ccm/.

[3] The open grid service infrastructure forum.
http://www.gridforum.org/ogsi-wg/.

[4] R. Armstron, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. McInnes, S. Parker, and B. Smolinsk. Toward a common
component architecture for high-performance scientific com-
puting. In Conference on High Performance Distributed Com-
puting, 1999.

[5] D. E. Bernholdt, W. R. Elwasif, J. S. Kohl, and T. G. W. Ep-
perly. A component architecture for high-performance com-
puting. In Workshop on Performance Optimization for High-
Level Languages and Libraries, June 2002.

[6] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Eco-
nomic models for resource management and scheduling in grid
computing. The Journal of Concurrency and Computation:
Practice and Experience (CCPE) - Special Issue on Grid Com-
puting Environments, 14(13–15):617–630, Nov-Dec 2002.

[7] G. Hamilton. Java Beans, API Specification, Version 1.01-A.
1997.

[8] D. Katz, C. Rasmussen, J. Kohl, R. Armstrong, and
L. McInnes. Cca tutorial at the cca forum win-
ter meeting. http://www.cca-forum.org/tutorials/2003-01-
15/index.html, January 2003.

[9] T. Kielmann, P. Hatcher, L. Boug, and H. Bal. Enabling
Java for high-performance computing: Exploiting Distributed
Shared Memory and Remote Method Invocation. Communi-
cations of the ACM, 44(10):110–117, Oct. 2001. Special issue
on Java for High Performance Computing.

[10] M. Li, O. F. Rana, and D. W. Walker. Wrapping mpi-based
legacy codes as java/corba components. Future Generation
Computer Systems, 18(2):213–223, October 2001.

[11] S. Mintchev and V. Getov. Automatic binding of native scien-
tific libraries to Java. In Proceedings of ISCOPE, pages 129–
136, Marina del Rey, California, December, 1997. Springer
LNCS 1343.

[12] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M. Snir,
and R. D. Lawrence. Java programming for high performance
numerical computing. IBM Systems Journal, 39(1):21–, 2000.

[13] D. Puppin, F. Silvestri, and D. Laforenza. An evaluation of
component-based software design approaches. In CCGRID
2004, Poster session, 2004.

[14] I. Taylor, R. Davies, and H. Marzi. Automatic wrapping of
legacy code and the mediation of its data. In Proceedings of
the UK eScience All Hands Meeting, September 2002.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05) 
0-7695-2315-3/05 $ 20.00 IEEE


