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Abstract—We present a novel strategy to partition a document query results

collection onto several servers and to perform effective collection
selection. The method is based on the analysis of query logs. We
proposed a novel document representation calledjuery-vectors

model. Each document is represented as a list recording the
queries for which the document itself is a match, along with their
ranks. To both partition the collection and build the collection
selection function, we co-cluster queries and documents. The Broker
document clusters are then assigned to the underlying IR servers, e

while the query clusters represent queries that return similar
results, and are used for collection selection. We show that this

document partition strategy greatly boosts the performance of

standard collection selection algorithms, including CORI, w.r.t. IR Core IR Core IR Core
a round-robin assignment. Secondly, we show that performing 1 2 k
collection selection by matching the query to the existing query

clusters and successively choosing only one server, we reach an i i i
average precision-at-5 up to 1.74 and we constantly improve

CORI precision of a factor between 11% and 15%. As a side
result we show a way to select rarely asked-for documents. ] o ) . ]
Separating these documents from the rest of the collection allows Fig. 1. Organization of a parallel information retrieval system.
the indexer to produce a more compact index containing only
relevant documents that are likely to be requested in the future.
In our tests, around 52% of the documents (3,128,366) are not

returned among the first 100 top-ranked results of any query. sub-collection of documents, we havelacument-partitioned

index organization, while when the whole index is split, so
I. INTRODUCTION that different partitions refer to a subset of the distinct terms

Millions of new Web pages are created every month. THontained in all the documents, we haveeam-partitioned
Web is getting richer and richer and is storing a vast part B1d€x organization. Each organization of the index requires
the information available worldwide: it is becoming, to man§* SPecific process to evaluate queries, and involves different
users in the world, a tool for augmenting their knowledg&OSts for computing and I/O, and network traffic patterns.
supporting their theses, comparing their ideas with reputab|e|n both cases, in front of the cluster, we have an additional
sources. Differently from libraries, though, the Web's growtfachine hosting #roker, which has the task of scheduling
and structure is not under the control of a central librariatie queries to the various servers, and collecting the results
contents and links are added and changed without any Sug@purned back. The broker then merges and orders the results
vision. received on the basis of their relevance, produces the ranked

This is why web search engines are among the most udis§ of matching documents, and it builds the results page
applications of modern information technology. The size of tHgontaining URL, titles, snippets, and so on. This page is finally
data available to search engines and information retrieval (IFefurned to the user.
systems in general is growing exponentially: very sophisticatedFigure 1 shows the logical organization of a parallel IR
techniques are needed to implement efficient search strategigsfem, where: is the number of servers hosting IR Core
for very large data-bases. Parallel and distributed informatiomodules,q the number of terms in a given query, andhe
retrieval systems are a way to tackle this problem. number of ranked results returned for the query.

A parallel information retrieval system is usually deployed Document partitioning is the strategy usually chosen by
on large clusters of servers running multipie coremodules, the most popular web search engines [3]. In the document-
each of which is responsible for searching a partition of thgartitioned organization, the broker may choose among two
whole index. When each sub-index is relative to a disjoiossible strategies for scheduling a query. Aveayet very



common, way of scheduling queries is to broadcast each ofDP has the primary goal of load balancing [2]. Documents
them to all the underlying IR cores. This method has thare split up randomly. Each query is broadcasted to all the
advantage of enabling a perfect load balancing among all sdrvers, and results from each of them are merged. Clearly,
the servers. On the other hand it has the major drawbackwath a random distribution, the average load is smoothly
exploiting all the servers for each query submitted. The othdistributed but it is also generally high.
possible way of scheduling is to choose, for each query, theTerm partitioning is another technique [2]. The inverted lists
most authoritative server(s). By doing, we reduce the numlascribing which documents contain a given term, are divided
of IR cores queried. Relevance of each server to a givamong a bunch of servers. For each query, the system forwards
query is computed by means of a collection selection functidhe query to the servers holding the list related to the query
that is built, usually, upon statistics computed over each sulfms. Common terms (or commonly asked-for terms) drive
collection. the load.

In this work, we present a novel strategy to perform docu- In all the above cases index is generally randomly parti-
ment partitioning and collection selection. We use the quetipned without following any particular ordering.
log to drive the assignment of documents, with the goal of A very different approach is followed by pSearch [40] and
putting together the documents that answer a given query. W8W [29]. pSearch performs an initial LSI transformation that
do this, first, by representing each document gaery-vector is able to identifyconceptsout of the document base. LSI
i.e. a (sparse) vector listing the queries to which it answefsatent Semantic Indexing) works by performing a singular
weighted with the search score and, second, by performiwglue decomposition (SVD) of the document-term matrix,
co-clustering [10] on the guery-document contingency matriwthich projects the term vector onto a lower-dimensional
The resulting document clusters are used to partition tsemantic space. Then, the projected vector are mapped onto a
documents onto IR cores, while the query clusters are usédntent Addressable Netwo@AN [38]. Search and insertion
to perform our collection selection strategy. is done using the CAN space. In other words, when a query is

Main contributions of this paper are: submitted, it is projected using the SVD to the CAN, and then

1) a new representation of documentsgagry-vectors neighbors are responsible for answering with the documents

2) a novel representation of collections based on the d§€Y hold. . o
clustering results: SSW [29] also uses LSI to reduce the dimensionality of

3) a new strategy for document partitioning and collecd-atav but then uses a small-world network rather than a CAN.

tion selection, that proved to be more effective thaft9@in, & query is answered by the neighbors of the node
CORI [7]; responsible for the query vector, once mapped on the LSI-

4) away to identify rarely asked-for documents: we showdfnsformed space. o
that about half of the documents of our collection are.Today, it is commonly held that realistic parallel IR systems

not returned as top-scoring results of any query. will have to manage distinct indexgs. In our o'pinion., a'possible
The last findina means that these documents could gy to ensure timely and economic retrieval is designing a QB
removed fr rln tlhg lection without iunifi nt | u Eiodule so that it will forward a given query only to workers
er ci) ien 0 € coflectio out a sighificant 10ss o anaging documents related to the query topic. In other words,
precision.. we are speaking about adoptiogllection selectionechniques
This contribution is structured as follows. In the next S€Gimed at reducing a query search space by querying only a
tion, we discuss some related work. Then, we describe the set of the entire group of Workers available. Nevertheless,

;)ursdatq ar:avmodeltra]d an(rj] the Vrvfly we ap;?hed CO'CIUSte”;ﬁirticular attention should be paid in using this technique.
n Section 1V, we show the architecture of our system a fact, it could result in a loss of relevant documents thus

how we perform collection selection. Section V shows thgbtaining degradation in the effectiveness figure

experimental results. Finally, we conclude and present OUr . the last ten years a large number of research works dealt
future work. with the collection selection problem [6][9], [11], [12], [14]-
[27], [30], [31], [33], [35]-[37], [39], [41], [43]-[45].
The most common approaches to distributed retrieval exploit
Document partitioning (DP) has been shown by mary number of heterogeneous collections grouped by source and
researchers to be the best choice among parallelization schetinge period. Acollection selection index (CSBummarizing
It offers, in fact, the best tradeoff between load balancing ar@ch collection as a whole, is used to decide which collections

Il. RELATED WORK

load distribution. are most likely to contain relevant documents for the query.
There are a number of papers evaluating DP parallel Bocument retrieval will actually only take place at these
systems; see for instance [1], [4], [5], [32], [34] collections. In [23] and [9] several selection methods have

All of the above mentioned studies adopt a common archieen compared. The authors showed that thieenmethod of
tecture for parallel IRSs. It follows thmaster/workemmodel using only a collection selection index lacks in effectiveness.
where workers are the actual search modules which receMany proposals tried to improve both the effectiveness and
queries from and return results to the master that is also knotine efficiency of the previous schema.
as thequery broker(QB). Moffat et al. [33] use a centralized index on blocks of



B documents. For example, each block might be obtainbdcause it features a hierarchical network organization.
by concatenating documents. A query first retrieves blockIn [44] collection selection strategies using cluster-based
identifiers from the centralized index, then searches the highynguage models have been investigated.eXwal. proposed
ranked blocks to retrieve single documents. This approattivee new methods of organizing a distributed retrieval system
works well for small collections, but causes a significariiased on the basic ideas presented before. This three methods
decrease in precision and recall when large collections haue global clustering local clustering andmultiple-topic rep-
to be searched. resentation In the first method, assuming that all documents
In [20]-[22], [41], H. Garcia—Molinaet. al. propose GIOSS, are made available in one central repository, a clustering of
a broker for a distributed IR system based on the boolethe collection is created; each cluster is a separate collection
IR model. It uses statistics over the collections to chooseat contains only one topic. Selecting the right collections
the ones which better fits the user’s requests. The authorsfaf a query is the same as selecting the right topics for the
GIOSS make the assumption of independence among termsjirery. This method is appropriate for searching very large
documents so, for example, if terhoccursf, times and the corpora, where the collection size can be in the order of
term B occurs fp times in a collection withD documents, terabytes. The next method liscal clusteringand it is very
than they estimated th%i . %B - D documents contain both  close to the previous one except the assumption of a central
and B. In [19] the authors of GIOSS generalize their ideas t@pository of documents. This method can provide competitive
vector space IR systems (gGIOSS), and propose a new kiidtributed retrieval without assuming full cooperation among
of server hGIOSS that collects information for several GIOSBe subsystems. The disadvantage is that its performance is
servers and select the best GIOSS server for a given querglightly worse than that of global clustering. The last method
In [7], the authors compare the retrieval effectiveness @f multiple-topic representatiorin addition to the constraints
searching a set of distributed collections with that of searchimg local clustering, the authors assume that subsystems do
a centralized one. The system they use to rank collectiomst want to physically partition their documents into several
is an inference network in which leaves represent documerllections. A possible reason is that a subsystem has already
collections, and representation nodes represent the terms tratited a single index and wants to avoid the cost of re-
occur in the collection. The probabilities that flow along thendexing. However, each subsystem is willing to cluster its
arcs can be based upon statistics that are analogayfsand documents and summarize its collection as a number of topic
idf in classical document retrieval: document frequeafy models for effective collection selection. With this method a
(the number of documents containing the term) and inversellection corresponds to several topics. Collection selection
collection frequencycf (the number of collections containingis based on how well the best topic in a collection matches
the term). They call this type of inference networkallection a query. The advantage of this approach is that it assumes
retrieval inference netwotrkor CORI for short. They found minimum cooperation from the subsystem. The disadvantage
no significant differences in retrieval performance betweésthat it is less effective than both global and local clustering.
distributed and centralized searching when about half of theln this paper we present a novel techniques that is used to
collections on average were searched for a query. Since #i@ultaneously derive a partitioning strategy and an effective
total number of collections was small (approximately 17), arsklection function. The novelty in our technique is the use of
the percentage of collections searched was high, their resujtgery logs to extract statistical information that are used to
may not reflect the true retrieval performance in a realistdrive partitioning. In turn, the algorithm used tduster the
environment. documents produces also a very compact representation of the
CVV (Cue-Validity Variancgis proposed in [45]. It is a a clusters on which we build our collection selection function.
new collection relevance measure, based on the concept oQuery logs have been recently discovered as an effective
cue-validityof a term in a collection: it evaluates the degresvay to enhance the performance of a web search engine.
to which terms discriminate documents in the collection. THeecently it has been used to develop effective and efficient
paper shows that effectiveness ratio decreases as very sinplalicies for caching results [13], [28]. In this paper we exploit
documents are stored within the same collection. query logs in order to extract a description of a document
In [43] the authors evaluate the retrieval effectiveness bhsed not on the set of terms it contains (i.e. the bag-of-
distributed information retrieval systems in realistic environword model) but, instead, on the set of queries it results to
ments. They propose two techniques to address the probldm.relevant to.
One is to use phrase information in the collection selection
index and the other is query expansion. In [11] Dadinal.
present Pharos, a distributed architecture for locating diverselypically, partitioning and selection strategies are based on
sources of information on the Internet. Such architecturegormation gathered from the document collection. Partition-
must scale well in terms of information gathering with théng, in particular, is either random, or based on clustering
increasing diversity of data, the dispersal of informatiodocuments using k-means [44]. In both cases, documents are
among a growing data volume. Pharos is designed to scphatitioned without any knowledge of what queries will be
well w.r.t. all these aspects, to beyoheP sources. The use of like. We believe that information and statistics about queries
a hierarchical metadata structure greatly enhances scalabititgy help in driving the partitions to an optimal choice.

Ill. PROBLEM DESCRIPTION



Our goal is to cluster the most relevant documents for eafdature of our model because it allows us to remove more
query in the same partition. The cluster hypothesis states than half of the documents from the collection without losing
closely associated documents tend to be relevant to the sgmecision. This will be described in detail below.

requestg42]. Clustering algorithms, like the k-means method The contingency matrix introduced above, can now be
cited above, exploit this claim by grouping documents on tHermally defined asl" = [§;]1<i<», Wheren is the number of
basis of their content. We instead based our method on ebistinct documents that are returned as answers to the gderies.
clustering queries with the documents returned in reply to eakbr eachi, j each entryY,; =r;;/ >~ > r;; is the rank of
one. The algorithm we adopt is described in [10] and is baSﬁ]d €D JED

on a model exploiting the ioint brobability of picking up a '€ documentl; for the queryg; normalized so thall entries
. P 9 ) P y o p! 9 upagn up to one. The contingency matrix just defined can be
given couple(q, d), whereq is a given query and is a given

o - _used into the co-clustering algorithm to obtain the document
document. All these probabilities values are collected into g . e .
continoency matrix clusters identifying the partitions.
Sevgral IyR roblems are modeled with contingency matri Furthermore, co-clustering considers both documents and
Rp gency malili eries. We thus have two different kind of results: (i) groups
ces. For instance, the common vector model for describi

documents as vector of terms can be described as a con de of docu_ment_s ar_13v_vering to similar_ que_ries, and (i

. . . . Fbups of queries with similar results. The first kind of results
gency matrix, where each entry is th? probability of choosi IS used to build the document partitioning strategy, while the
some term and some document. Ob"'°“~°ﬁ'¥7 common terms as'é@ond is the key to our collection selection strategy (see
long documents will have higher probability. b

: . . o low).
Given a contingency matrix, co-clustering is the generaFBefore going on with our discussion we would like to show

problem of performing simultaneously a clustering of columrmat our model is consistent with the theory supporting co-
and rows, in order to maximize some clustering metrics (e'QUStering

inter-cluster distance). In [10], the authors give a very interest-
ing theoretical model: co-clustering is meant to minimize the Theorem 1:Let T be the contingency matrix in the query-
loss of information between the original contingency matritector model. Letp (¢;,d;) be the probability of picking up
and its approximation given by the co-clustered matrix. documentd; and queryg;. Then, Y, ; = p(¢:,d;)

They extend the problem by considering the entries as
empirical joint probabilities of two random variables, and they ~ Proof: By basic probability theory we have that
present an elegant algorithm that, step by step, minimizes thli» &;) = p (aild;) x p(d;). o _
loss of information. The algorithm is guaranteed to find an P (4ild;) is the probability of picking upg; by choosing
optimal co-clustering, meaning that every other co-clusterifgy fandom among the elements of the veatpr The query

with the same number of clusters shows a bigger loss igfnot chosen uniformly at random but the probability is the
information. ratio among its normalized relevaneg and the sum of the

normalized rank values contained withip.
A. Model of the Problem

ros
As said in the introduction, our goal is to partition the p(aild;) = Zli%
documents of our collection into several clusters, using queries icd “

as our driver. This way, dqcuments matching a given query)(d,) is, instead the probability of picking up a document
are expected to be located in the same cluster. To do this, ¥€by choosing at random among all the documents and by

perform co-clustering on the queries from our query-log angeighting each document according to its general ranking.
the documents from our base.

The way we consider documents for co-clustering can be Z Tij
seen as a new way of modeling documents. So far, two popular p(d;) = %
Tij

ways of modeling documents have been propodsy-of-
words andvector spaceSince we know which documents are

. where in all the formulas above; is equal to0 if document
given as answers to each query, we can represent a documen
; IS not relevant to queryy;. Also, please note that the
as aquery-vector

. . _denominators are never equal @obecause we removed the
Query-vector model Let ® be a query log containing queries

; emptydocuments (not answering to any query).
41,92, - -, Gm- L€t di1,dso, ..., din, be the list of documents . Co g ‘ .
returned as results to quegy. Furthermore, let-;; be the Now, by simply multiplyingp (g:|d;) by p (d;), we obtain

rank value associated to the pdif;,d;). A documentd; is that

represented as am-dimensional vectob; = [x;;]”, where Tij e Tij
Xi; € [0,1] is the rank of documents; returned as an answer P (¢ild;) x p(d;) = S S S S S
to queryg;. The entries ofy;; are then normalized in order ico 7 i€D jED 7 i€D jED !

to sum to 1.
D ts that hit b in th | 1Emptydocuments, i.e. documents never recalled by any query, are removed
ocuments that are not hit by any query in the query log,, e matrix, to speed up the convergence of the algorithm. Only recalled

are represented byl query-vectorsThis is a very important documents are considered.

i€ED jED

> Tij




which is equal toY;; by definition. B there is no need for a central server running a centralized

The theorem above is important justifies the use€Yofn version of the search engine because the rank returned by the
the co-clustering algorithm: the working hypothesis for thimdividual IR cores is consistent with the one a central server
convergence is thus satisfied. would return.

The result of co-clustering is a matri® defined as: ) )

A. Collection Selection
ﬁ(qcm dey) = Z Z Tij Our selection strategy is based on the PCAP matrix returned
by the co-clustering algorithm. The queries belonging to each

R guery cluster are joined together intuery dictionaryfiles.

In other words, each entry’(gc,, dc,) sums the contri- Each dictionary files stores the text of each query belonging
butions of r;; for the queries in the query cluster and to a cluster, as a single text file. When a new queris
the documents in document cluster We call this matrix submitted to our IR system, we use the TF.IDF metric to find
simply PCAP. The values of PCAP are important because thgjtich clusters are the best matches: each dictionary file is
measure the relevance of a document cluster to a given quesyisidered as a document, which is indexed with the usual
cluster. This induces naturally a simple but effective collectionfF.|DF technique. This way, each query clusier receives a
selection algorithm. score relative to the query (r,(gc;)).

This is used to weight the contribution of PCAEAF{i,j) for
the document cluster (or IR coré};, as follows:

We used the ideas presented in the previous section to design
a distributed IR system for Web pages. Our strategy is as rq(dej) = qu(qci) x P(i, )

1€qcy jEdc,

IV. OUR METHOD

follows.

First, we train the system with the query log of thaining The last IR core (#17) is always queried as the last one,

penqd, by using a reference centralized index to answer Q’Jlecause the PCAP matrix chooses only among the 16 clusters
queries submitted to the system. We record the top-ranki urned by co-clustering

results for each query. Then, we perform co-clustering on the
guery-document matrix. The documents are then partitioned V. EXPERIMENTAL RESULTS

onto several IR cores according to the results of clustering. We performed our test using the WBR99 collection. WBR99
We partition the documents into 17 clusters: the first 1S nsists of 5939 061 documents documents abo.ut 22 GB

clusters are the clusters returned by co-clustering, and the lﬁ‘ﬁf:ompressed, representing a snapshot of the Brazilian Web

one holds themptyquery-vectors, i.e. the documents that arﬁjomains .br) as spidered by www.todobr.com.br. It comprises

not returned by any query, represented by null query-vectolgy, + 2 700,000 different terms. We could use also the query

After the training, we perform collection selection as show,g,g of www.todobr.com.br for the period January through
in the next section. The cores holding the selected collectiog3,ner 2003.

are queried, and results are merged. In order to have comp a to the nature of data, we do not have a list of human-
parable document ranking within each core, we distribute e relevant documents for each query. WBR99 includes
global collection statistics to each IR server. So, the rankira)g“y 50 evaluated queries. Thus, following the example of pre-
fgnctions are c_onsistent, and results can be very easily merg\ﬁgus works [43], we consider the top-ranking pages returned
simply by sorting documents by their rank. by a central index to be relevant. In particular, when measuring

We keep logging the results of each query, also after heagision at 5, we consider only the top five documents to be
end of the training period, in order to further train the system,oyant. Similarly, for precision at 10 and so on.

and also to accommodate atgpic shift Topic shift refers to 5, our experiment, we used Zetfaim compact and fast
the fact that, over time, the interests of the users of a seafgh: search engine designed and written by the Search Engine
engine can change. For instance, in the case of an unexpegied s at RMIT University. We modified it so to implement

palamity, there can be a sudden increase of queries about §{}¢ <gllection selection strategies (CORI and PCAP).
issue.

While CORI, among others, perform selection based @h Query-Driven Allocation vs. Random Allocation
term and document statistics, our model is trained to follow o first experiments were aimed at showing that our

the taste of the users: it learns out of the query log. If thgscument partitioning strategy boosted the results of standard

range and the topic of queries change substantially over tiRgjlection selection algorithms. In order to do this, we com-

it might happen that documents relevant to the new queries BEFed the performance of CORI on our query-driven partition

not clustered together, with the net result of a loss of precisiggh that on a random document allocation.

if only the first few IR cores are queried. . In the test, our system was trained with the first three weeks
To adjust to this possibility, the co-clustering algorithm cag¢ queries. In other words, we recorded the results of the

be periodically performed by an off-line server and documenggeries submitted to the system for this period, and we used
can be moved from one cluster to another in order to improve

precision and reduce server load. One interesting thing is thalavailable under a BSD-style license at http://www.seg.rmit.edu.au/zettair/.



Precision at\ 1 2 4 8 16 17 CORI

5 03 057 127 262 4.6 5 Precision at 1 2 4 8 16 17
10 059 116 255 5.0 93 10 5 157 227 2.99 3.82 4.89 5.00
20 120 249 504 977 1871 20 10 3.06 4.46 5.89 7.56 9.77 10.00
20 6.01 878 11.64 15.00 19.52 20.00

TABLE |
PCAP

PRECISION OFCORION A RANDOM ALLOCATION, WHEN USING THE Precision at‘ 1 2 4 8 16 17
FIRST1, 2,4, 8, 160R 17 CLUSTERS QUERIES FROM THE FOURTH WEEK 5 1.74 2.30 2.95 3.83 4.85 5.00
10 3.45 457 5.84 7.60 9.67 10.00
20 6.93 9.17 11.68 15.15 19.31 20.00

. . . TABLE ||
this to build the query-vector representation of documents agd

. . RECISION OF THECORIAND PCAPSTRATEGY, WHEN USING THE FIRST
to perform the co-clustering algorithms.

The first three weeks of the log comprise about 190,000
unique queries. We chose to use only unigue queries, because

1,2,4,8,160R 17 CLUSTERS QUERIES FROM THE FOURTH WEEK

the caching system of modern search engines is able, to a corl
certain degree, to avoid issuing the same query multiple times _Precisionat| 1 2 4 8 16 17
to the svstem 5 155 229 301 383 489 500
y - ) ) .10 305 448 592 762 977 10.00
The other choice was to consider also repeated queries. This 29 597 877 1161 1510 1954 20.00
choice would have boosted the relative weights of popular PCAP
queries in the co-clustering algorithm, with the results of ;25 =1 2 4 8 16 17
creating a document clustering that favors popular queries. —5 173 226 289 376 484 500
This can be a detrimental choice if caching is actually present. 10 347 451 575 750  9.66 10.00
We plan to test this in our future work. 20 6.92 902 1147 1498 1929 20.00

The record of the training queries takes about 130 MB in a TABLE IlI
binary representation. Th_e co-cluste_ring algorithm took abouts, . ision oF THECORI AND PCAPSTRATEGIES WHEN USING THE
10 minutes to run on a single machine. FIRST1, 2, 4,8, 160R 17 CLUSTERS QUERIES FROM THE FIFTH WEEK

To speed up our experimental phase, we simulated the
document allocation by running Zettair on the full index
of documents, and by filtering the results according to our
allocation. This let us quickly change the allocation and In this case, we tested the two selection strategies for the
estimate the results without actually moving the data arourfifst and the second week after the training. We did this
As said before, this strategy does not change the rankinghbafcause we wanted to measure the effectopic shift over
documents on the IR cores because it is possible to send tinge. Any difference in precision between the first and the
collection statistics to each core so to normalize the rankingecond week gives us a flavor of what the effect of topic

Along with this allocation, we considered a random allocashift is. Clearly, we can keep the training going over time:
tion, where documents are assigned randomly to the serveiis experiment can suggest us the frequency with which we
an equal share to each one. should refresh our document partitions.

We used CORI as our collection selection strategy for the Again, for precision at 5, we consider only the five top-
two allocations. We tested it with the queries for the fourthanking documents (on the full index) to be relevant. Similarly,
week, i.e. we used the queries for one week following ttfer precision at 10 we observe the top 10, and so on.
training period. The test comprise about 194,200 queries. InThe first experimental results (Tables Il and IIl) show that,
this case, we considered the statistics of repeated queriaghe fourth week (the first after training), PCAP is performing
because they represent the effective performance as percelvetder than CORI: the precision reached with the first cluster
by user. is improved of a factor between 11% and 15% (highlighted

On random partition, CORI performs rather poorly (seentries). This is confirmed by the fifth week (the second after
Figure 1). The results are actually very close to what weaining). If present, the topic shift did not affect our results
would get with a random collection selection (0.3 out oh a significant way.

5 is very close to 1 out of 17). This means that, with - ,
poor dogument partition strategy, CORI does not perform e;&n' Precision With Top-100 Documents
effective collection selection. It performs dramatically better We wanted to estimate what the net results of our strategy

with a Carefu"y prepared partition (See be|ow)_ is to users. We measured the preCiSion again, but this time
we consideredhe 100 top-ranking documents to be relevant
B. CORI vs. PCAP Table IV describes the results: the results of the first cluster

In this subsection, we measure the performance of osglected by PCAP are more relevant, by a factor of about
collection selection strategy w.r.t. CORI. In this case, we0%, than those retrieved by CORI. For the first 20 results
test two different allocation strategies on the same documeme retrieved from the first cluster, we get 13.50 relevant
allocation, as generated by the co-clustering algorithm.  documents with PCAP, while only 12.08 with CORI (11.7%



CORI o )
Precision at 1 2 4 8 16 17 was invited to open these documents as a result of his/her
5 415 757 1305 21.04 3560 36.98 query (unless s/he browser beyond the 100-th result).
;8 1;-3; ﬁ-g‘é gg-g‘; igé‘; ‘ég-gé Zg-gg Separating these documents from the rest of the collection

' ' ' ' : : allows the indexer to produce a more compact index, contain-
PCAP ing only relevant documents that are likely to be requested
Precision at 1 2 4 8 16 17 in the future. This pruning process can speed up the overall
5 437 7.40 1244 2161 3575 36.98 f anificantl
10 782 1247 1953 3171 4882 5073  Periormance signincantly. _
20 13.50 19.94 28.63 42.96 61.68 64.25 The pruned documents can be stored in another server, used

only when the user browse for low-relevance documents. In

TABLE IV our test, we showed that the contribution to precision of PCAP
PREGISION OF THECORIAND PCAPSTRATEGIES THE 100 is very low for the last cluster. In Tables Il and III, the change
TOP-RANKING DOCUMENTS ARE CONSIDERED TO BE RELEVANT in precision when adding also the last cluster (#17) is in the
range of 2%—-3%. For instance, the precision at 5 for the fourth
de:  number of document clusters 17 Week passes from 4.85 to 5.
gc:  number of query clusters 128 More dramatically said, less than 50% of the documents
d.  number of documents 5,939,061 contribute more than 97% of the relevant documents.
t: number of distinct terms 2,700,000
t number of distinct terms in the query dictionary 74,767 VI. CONCLUSION AND FUTURE WORK
TABLE V In this work, we presented a novel approach to document
STATISTICS ABOUT COLLECTION REPRESENTATION partitioning and collection selection, based on co-clustering

gueries and documents. Our new representation of documents
as query-vectors allows us to perform, very efficiently, an
) o effective partitioning. It also induces a very compact repre-
better). This means that, when we limit ourselves to only oR@ntation of the resulting collections. We showed that our
cluster, the list of results is 10% more precise to the user. ggjection strategy out-performed CORI by a factor of 10%,
D. Footprint of the Representation with a smaller representation of the available collections.
Iso, we showed a way to select rarely asked-for docu-
nts. The process of pruning these documents could im-
ove the performance of the system, because less than 50%
contributes more than 97% of the relevant documents: around
52% of the documents (3,128,366) are not returned among the
first 100 top-ranked results of any query.
We would like to compare our approach with other par-
] ) o titioning strategies. While the goals are not common (load
« dfi.r, the number of documents in collectiorontaining  pajancing, collection selection...), we believe our work adds
term k, which is O(dc x t) before compression, to the existing results on document and term partitioning.

« cw;, the number of different terms in collectionO(dc), We would like to explore, with more experiment, the impact
« cfy, the number of resources containing the tér(t). ¢ oyr design choice on the final results.

This is in the order ofO(dc x t) + O(dc) + O(t), before
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