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Abstract— We present a novel strategy to partition a document
collection onto several servers and to perform effective collection
selection. The method is based on the analysis of query logs. We
proposed a novel document representation calledquery-vectors
model. Each document is represented as a list recording the
queries for which the document itself is a match, along with their
ranks. To both partition the collection and build the collection
selection function, we co-cluster queries and documents. The
document clusters are then assigned to the underlying IR servers,
while the query clusters represent queries that return similar
results, and are used for collection selection. We show that this
document partition strategy greatly boosts the performance of
standard collection selection algorithms, including CORI, w.r.t.
a round-robin assignment. Secondly, we show that performing
collection selection by matching the query to the existing query
clusters and successively choosing only one server, we reach an
average precision-at-5 up to 1.74 and we constantly improve
CORI precision of a factor between 11% and 15%. As a side
result we show a way to select rarely asked-for documents.
Separating these documents from the rest of the collection allows
the indexer to produce a more compact index containing only
relevant documents that are likely to be requested in the future.
In our tests, around 52% of the documents (3,128,366) are not
returned among the first 100 top-ranked results of any query.

I. I NTRODUCTION

Millions of new Web pages are created every month. The
Web is getting richer and richer and is storing a vast part of
the information available worldwide: it is becoming, to many
users in the world, a tool for augmenting their knowledge,
supporting their theses, comparing their ideas with reputable
sources. Differently from libraries, though, the Web’s growth
and structure is not under the control of a central librarian:
contents and links are added and changed without any super-
vision.

This is why web search engines are among the most used
applications of modern information technology. The size of the
data available to search engines and information retrieval (IR)
systems in general is growing exponentially: very sophisticated
techniques are needed to implement efficient search strategies
for very large data-bases. Parallel and distributed information
retrieval systems are a way to tackle this problem.

A parallel information retrieval system is usually deployed
on large clusters of servers running multipleIR coremodules,
each of which is responsible for searching a partition of the
whole index. When each sub-index is relative to a disjoint
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Fig. 1. Organization of a parallel information retrieval system.

sub-collection of documents, we have adocument-partitioned
index organization, while when the whole index is split, so
that different partitions refer to a subset of the distinct terms
contained in all the documents, we have aterm-partitioned,
index organization. Each organization of the index requires
a specific process to evaluate queries, and involves different
costs for computing and I/O, and network traffic patterns.

In both cases, in front of the cluster, we have an additional
machine hosting abroker, which has the task of scheduling
the queries to the various servers, and collecting the results
returned back. The broker then merges and orders the results
received on the basis of their relevance, produces the ranked
list of matching documents, and it builds the results page
containing URL, titles, snippets, and so on. This page is finally
returned to the user.

Figure 1 shows the logical organization of a parallel IR
system, wherek is the number of servers hosting IR Core
modules,q the number of terms in a given query, andr the
number of ranked results returned for the query.

Document partitioning is the strategy usually chosen by
the most popular web search engines [3]. In the document-
partitioned organization, the broker may choose among two
possible strategies for scheduling a query. A naı̈ve, yet very



common, way of scheduling queries is to broadcast each of
them to all the underlying IR cores. This method has the
advantage of enabling a perfect load balancing among all of
the servers. On the other hand it has the major drawback of
exploiting all the servers for each query submitted. The other
possible way of scheduling is to choose, for each query, the
most authoritative server(s). By doing, we reduce the number
of IR cores queried. Relevance of each server to a given
query is computed by means of a collection selection function
that is built, usually, upon statistics computed over each sub-
collection.

In this work, we present a novel strategy to perform docu-
ment partitioning and collection selection. We use the query
log to drive the assignment of documents, with the goal of
putting together the documents that answer a given query. We
do this, first, by representing each document as aquery-vector,
i.e. a (sparse) vector listing the queries to which it answers,
weighted with the search score and, second, by performing
co-clustering [10] on the query-document contingency matrix.
The resulting document clusters are used to partition the
documents onto IR cores, while the query clusters are used
to perform our collection selection strategy.

Main contributions of this paper are:

1) a new representation of documents asquery-vectors;
2) a novel representation of collections based on the co-

clustering results;
3) a new strategy for document partitioning and collec-

tion selection, that proved to be more effective than
CORI [7];

4) a way to identify rarely asked-for documents: we showed
that about half of the documents of our collection are
not returned as top-scoring results of any query.

The last finding means that these documents could be
removed from the collection without a significant loss of
precision.

This contribution is structured as follows. In the next sec-
tion, we discuss some related work. Then, we describe the way
our data are modeled and the way we applied co-clustering.
In Section IV, we show the architecture of our system and
how we perform collection selection. Section V shows the
experimental results. Finally, we conclude and present our
future work.

II. RELATED WORK

Document partitioning (DP) has been shown by many
researchers to be the best choice among parallelization scheme.
It offers, in fact, the best tradeoff between load balancing and
load distribution.

There are a number of papers evaluating DP parallel IR
systems; see for instance [1], [4], [5], [32], [34]

All of the above mentioned studies adopt a common archi-
tecture for parallel IRSs. It follows themaster/workermodel
where workers are the actual search modules which receive
queries from and return results to the master that is also known
as thequery broker(QB).

DP has the primary goal of load balancing [2]. Documents
are split up randomly. Each query is broadcasted to all the
servers, and results from each of them are merged. Clearly,
with a random distribution, the average load is smoothly
distributed but it is also generally high.

Term partitioning is another technique [2]. The inverted lists
describing which documents contain a given term, are divided
among a bunch of servers. For each query, the system forwards
the query to the servers holding the list related to the query
terms. Common terms (or commonly asked-for terms) drive
the load.

In all the above cases index is generally randomly parti-
tioned without following any particular ordering.

A very different approach is followed by pSearch [40] and
SSW [29]. pSearch performs an initial LSI transformation that
is able to identifyconceptsout of the document base. LSI
(Latent Semantic Indexing) works by performing a singular
value decomposition (SVD) of the document-term matrix,
which projects the term vector onto a lower-dimensional
semantic space. Then, the projected vector are mapped onto a
Content Addressable NetworkCAN [38]. Search and insertion
is done using the CAN space. In other words, when a query is
submitted, it is projected using the SVD to the CAN, and then
neighbors are responsible for answering with the documents
they hold.

SSW [29] also uses LSI to reduce the dimensionality of
data, but then uses a small-world network rather than a CAN.
Again, a query is answered by the neighbors of the node
responsible for the query vector, once mapped on the LSI-
transformed space.

Today, it is commonly held that realistic parallel IR systems
will have to manage distinct indexes. In our opinion, a possible
way to ensure timely and economic retrieval is designing a QB
module so that it will forward a given query only to workers
managing documents related to the query topic. In other words,
we are speaking about adoptingcollection selectiontechniques
aimed at reducing a query search space by querying only a
subset of the entire group of Workers available. Nevertheless,
particular attention should be paid in using this technique.
In fact, it could result in a loss of relevant documents thus
obtaining degradation in the effectiveness figure.

In the last ten years a large number of research works dealt
with the collection selection problem [6]–[9], [11], [12], [14]–
[27], [30], [31], [33], [35]–[37], [39], [41], [43]–[45].

The most common approaches to distributed retrieval exploit
a number of heterogeneous collections grouped by source and
time period. Acollection selection index (CSI)summarizing
each collection as a whole, is used to decide which collections
are most likely to contain relevant documents for the query.
Document retrieval will actually only take place at these
collections. In [23] and [9] several selection methods have
been compared. The authors showed that the naı̈ve method of
using only a collection selection index lacks in effectiveness.
Many proposals tried to improve both the effectiveness and
the efficiency of the previous schema.

Moffat et al. [33] use a centralized index on blocks of



B documents. For example, each block might be obtained
by concatenating documents. A query first retrieves block
identifiers from the centralized index, then searches the highly
ranked blocks to retrieve single documents. This approach
works well for small collections, but causes a significant
decrease in precision and recall when large collections have
to be searched.

In [20]–[22], [41], H. Garcia–Molinaet. al.propose GlOSS,
a broker for a distributed IR system based on the boolean
IR model. It uses statistics over the collections to choose
the ones which better fits the user’s requests. The authors of
GlOSS make the assumption of independence among terms in
documents so, for example, if termA occursfA times and the
term B occursfB times in a collection withD documents,
than they estimated thatfA

D · fB

D ·D documents contain bothA
andB. In [19] the authors of GlOSS generalize their ideas to
vector space IR systems (gGlOSS), and propose a new kind
of server hGlOSS that collects information for several GlOSS
servers and select the best GlOSS server for a given query.

In [7], the authors compare the retrieval effectiveness of
searching a set of distributed collections with that of searching
a centralized one. The system they use to rank collections
is an inference network in which leaves represent document
collections, and representation nodes represent the terms that
occur in the collection. The probabilities that flow along the
arcs can be based upon statistics that are analogous totf and
idf in classical document retrieval: document frequencydf
(the number of documents containing the term) and inverse
collection frequencyicf (the number of collections containing
the term). They call this type of inference network acollection
retrieval inference network, or CORI for short. They found
no significant differences in retrieval performance between
distributed and centralized searching when about half of the
collections on average were searched for a query. Since the
total number of collections was small (approximately 17), and
the percentage of collections searched was high, their results
may not reflect the true retrieval performance in a realistic
environment.

CVV (Cue-Validity Variance) is proposed in [45]. It is a a
new collection relevance measure, based on the concept of
cue-validityof a term in a collection: it evaluates the degree
to which terms discriminate documents in the collection. The
paper shows that effectiveness ratio decreases as very similar
documents are stored within the same collection.

In [43] the authors evaluate the retrieval effectiveness of
distributed information retrieval systems in realistic environ-
ments. They propose two techniques to address the problem.
One is to use phrase information in the collection selection
index and the other is query expansion. In [11] Dolinet al.
present Pharos, a distributed architecture for locating diverse
sources of information on the Internet. Such architectures
must scale well in terms of information gathering with the
increasing diversity of data, the dispersal of information
among a growing data volume. Pharos is designed to scale
well w.r.t. all these aspects, to beyond105 sources. The use of
a hierarchical metadata structure greatly enhances scalability

because it features a hierarchical network organization.
In [44] collection selection strategies using cluster-based

language models have been investigated. Xuet al. proposed
three new methods of organizing a distributed retrieval system
based on the basic ideas presented before. This three methods
areglobal clustering, local clustering, andmultiple-topic rep-
resentation. In the first method, assuming that all documents
are made available in one central repository, a clustering of
the collection is created; each cluster is a separate collection
that contains only one topic. Selecting the right collections
for a query is the same as selecting the right topics for the
query. This method is appropriate for searching very large
corpora, where the collection size can be in the order of
terabytes. The next method islocal clusteringand it is very
close to the previous one except the assumption of a central
repository of documents. This method can provide competitive
distributed retrieval without assuming full cooperation among
the subsystems. The disadvantage is that its performance is
slightly worse than that of global clustering. The last method
is multiple-topic representation. In addition to the constraints
in local clustering, the authors assume that subsystems do
not want to physically partition their documents into several
collections. A possible reason is that a subsystem has already
created a single index and wants to avoid the cost of re-
indexing. However, each subsystem is willing to cluster its
documents and summarize its collection as a number of topic
models for effective collection selection. With this method a
collection corresponds to several topics. Collection selection
is based on how well the best topic in a collection matches
a query. The advantage of this approach is that it assumes
minimum cooperation from the subsystem. The disadvantage
is that it is less effective than both global and local clustering.

In this paper we present a novel techniques that is used to
simultaneously derive a partitioning strategy and an effective
selection function. The novelty in our technique is the use of
query logs to extract statistical information that are used to
drive partitioning. In turn, the algorithm used tocluster the
documents produces also a very compact representation of the
clusters on which we build our collection selection function.

Query logs have been recently discovered as an effective
way to enhance the performance of a web search engine.
Recently it has been used to develop effective and efficient
policies for caching results [13], [28]. In this paper we exploit
query logs in order to extract a description of a document
based not on the set of terms it contains (i.e. the bag-of-
word model) but, instead, on the set of queries it results to
be relevant to.

III. PROBLEM DESCRIPTION

Typically, partitioning and selection strategies are based on
information gathered from the document collection. Partition-
ing, in particular, is either random, or based on clustering
documents using k-means [44]. In both cases, documents are
partitioned without any knowledge of what queries will be
like. We believe that information and statistics about queries
may help in driving the partitions to an optimal choice.



Our goal is to cluster the most relevant documents for each
query in the same partition. The cluster hypothesis states that
closely associated documents tend to be relevant to the same
requests[42]. Clustering algorithms, like the k-means method
cited above, exploit this claim by grouping documents on the
basis of their content. We instead based our method on co-
clustering queries with the documents returned in reply to each
one. The algorithm we adopt is described in [10] and is based
on a model exploiting the joint probability of picking up a
given couple(q, d), whereq is a given query andd is a given
document. All these probabilities values are collected into a
contingency matrix.

Several IR problems are modeled with contingency matri-
ces. For instance, the common vector model for describing
documents as vector of terms can be described as a contin-
gency matrix, where each entry is the probability of choosing
some term and some document. Obviously, common terms and
long documents will have higher probability.

Given a contingency matrix, co-clustering is the general
problem of performing simultaneously a clustering of columns
and rows, in order to maximize some clustering metrics (e.g.
inter-cluster distance). In [10], the authors give a very interest-
ing theoretical model: co-clustering is meant to minimize the
loss of information between the original contingency matrix
and its approximation given by the co-clustered matrix.

They extend the problem by considering the entries as
empirical joint probabilities of two random variables, and they
present an elegant algorithm that, step by step, minimizes the
loss of information. The algorithm is guaranteed to find an
optimal co-clustering, meaning that every other co-clustering
with the same number of clusters shows a bigger loss of
information.

A. Model of the Problem

As said in the introduction, our goal is to partition the
documents of our collection into several clusters, using queries
as our driver. This way, documents matching a given query
are expected to be located in the same cluster. To do this, we
perform co-clustering on the queries from our query-log and
the documents from our base.

The way we consider documents for co-clustering can be
seen as a new way of modeling documents. So far, two popular
ways of modeling documents have been proposed:bag-of-
words, andvector space. Since we know which documents are
given as answers to each query, we can represent a document
as aquery-vector.
Query-vector model. Let Φ be a query log containing queries
q1, q2, . . . , qm. Let di1, di2, . . . , dini be the list of documents
returned as results to queryqi. Furthermore, letrij be the
rank value associated to the pair(qi, dj). A documentdj is
represented as anm-dimensional vectorδj = [χij ]

T , where
χij ∈ [0, 1] is the rank of documentsdj returned as an answer
to queryqi. The entries ofχij are then normalized in order
to sum to 1.

Documents that are not hit by any query in the query log
are represented bynull query-vectors. This is a very important

feature of our model because it allows us to remove more
than half of the documents from the collection without losing
precision. This will be described in detail below.

The contingency matrix introduced above, can now be
formally defined asΥ = [δi]1≤i≤n wheren is the number of
distinct documents that are returned as answers to the queries.1

For eachi, j each entryΥij = rij/
∑
i∈D

∑
j∈Φ

rij is the rank of

the documentdj for the queryqi normalized so thatΥ entries
sum up to one. The contingency matrix just defined can be
used into the co-clustering algorithm to obtain the document
clusters identifying the partitions.

Furthermore, co-clustering considers both documents and
queries. We thus have two different kind of results: (i) groups
made of documents answering to similar queries, and (ii)
groups of queries with similar results. The first kind of results
is used to build the document partitioning strategy, while the
second is the key to our collection selection strategy (see
below).

Before going on with our discussion we would like to show
that our model is consistent with the theory supporting co-
clustering.

Theorem 1:Let Υ be the contingency matrix in the query-
vector model. Letp (qi, dj) be the probability of picking up
documentdj and queryqj . Then,Υi,j = p (qi, dj)

Proof: By basic probability theory we have that
p (qi, dj) = p (qi|dj) × p (dj).

p (qi|dj) is the probability of picking upqi by choosing
at random among the elements of the vectordj . The query
is not chosen uniformly at random but the probability is the
ratio among its normalized relevancerij and the sum of the
normalized rank values contained withindj .

p (qi|dj) =
rij∑

i∈Φ

rij

p(dj) is, instead the probability of picking up a document
dj by choosing at random among all the documents and by
weighting each document according to its general ranking.

p(dj) =

∑
i∈Φ

rij∑
i∈D

∑
j∈Φ

rij

where in all the formulas aboverij is equal to0 if document
dj is not relevant to queryqi. Also, please note that the
denominators are never equal to0 because we removed the
emptydocuments (not answering to any query).

Now, by simply multiplyingp (qi|dj) by p (dj), we obtain
that

p (qi|dj) × p (dj) =
rij∑

i∈Φ

rij
×

∑
i∈Φ

rij∑
i∈D

∑
j∈Φ

rij
=

rij∑
i∈D

∑
j∈Φ

rij

1Emptydocuments, i.e. documents never recalled by any query, are removed
from the matrix, to speed up the convergence of the algorithm. Only recalled
documents are considered.



which is equal toΥij by definition.
The theorem above is important justifies the use ofΥ in

the co-clustering algorithm: the working hypothesis for the
convergence is thus satisfied.

The result of co-clustering is a matrix̂P defined as:

P̂ (qca, dcb) =
∑

i∈qcb

∑
j∈dca

rij

In other words, each entrŷP (qca, dcb) sums the contri-
butions of rij for the queries in the query clustera and
the documents in document clusterb. We call this matrix
simply PCAP. The values of PCAP are important because they
measure the relevance of a document cluster to a given query
cluster. This induces naturally a simple but effective collection
selection algorithm.

IV. OUR METHOD

We used the ideas presented in the previous section to design
a distributed IR system for Web pages. Our strategy is as
follows.

First, we train the system with the query log of thetraining
period, by using a reference centralized index to answer all
queries submitted to the system. We record the top-ranking
results for each query. Then, we perform co-clustering on the
query-document matrix. The documents are then partitioned
onto several IR cores according to the results of clustering.

We partition the documents into 17 clusters: the first 16
clusters are the clusters returned by co-clustering, and the last
one holds theemptyquery-vectors, i.e. the documents that are
not returned by any query, represented by null query-vectors.

After the training, we perform collection selection as shown
in the next section. The cores holding the selected collections
are queried, and results are merged. In order to have com-
parable document ranking within each core, we distribute the
global collection statistics to each IR server. So, the ranking
functions are consistent, and results can be very easily merged,
simply by sorting documents by their rank.

We keep logging the results of each query, also after the
end of the training period, in order to further train the system
and also to accommodate anytopic shift. Topic shift refers to
the fact that, over time, the interests of the users of a search
engine can change. For instance, in the case of an unexpected
calamity, there can be a sudden increase of queries about the
issue.

While CORI, among others, perform selection based on
term and document statistics, our model is trained to follow
the taste of the users: it learns out of the query log. If the
range and the topic of queries change substantially over time,
it might happen that documents relevant to the new queries are
not clustered together, with the net result of a loss of precision
if only the first few IR cores are queried.

To adjust to this possibility, the co-clustering algorithm can
be periodically performed by an off-line server and documents
can be moved from one cluster to another in order to improve
precision and reduce server load. One interesting thing is that

there is no need for a central server running a centralized
version of the search engine because the rank returned by the
individual IR cores is consistent with the one a central server
would return.

A. Collection Selection

Our selection strategy is based on the PCAP matrix returned
by the co-clustering algorithm. The queries belonging to each
query cluster are joined together intoquery dictionaryfiles.
Each dictionary files stores the text of each query belonging
to a cluster, as a single text file. When a new queryq is
submitted to our IR system, we use the TF.IDF metric to find
which clusters are the best matches: each dictionary file is
considered as a document, which is indexed with the usual
TF.IDF technique. This way, each query clusterqci receives a
score relative to the queryq (rq(qci)).

This is used to weight the contribution of PCAP̂P (i, j) for
the document cluster (or IR core)dcj , as follows:

rq(dcj) =
∑

i

rq(qci) × P̂ (i, j)

The last IR core (#17) is always queried as the last one,
because the PCAP matrix chooses only among the 16 clusters
returned by co-clustering.

V. EXPERIMENTAL RESULTS

We performed our test using the WBR99 collection. WBR99
consists of 5,939,061 documents documents, about 22 GB
uncompressed, representing a snapshot of the Brazilian Web
(domains .br) as spidered by www.todobr.com.br. It comprises
about 2,700,000 different terms. We could use also the query
log of www.todobr.com.br for the period January through
October 2003.

Due to the nature of data, we do not have a list of human-
chosen relevant documents for each query. WBR99 includes
only 50 evaluated queries. Thus, following the example of pre-
vious works [43], we consider the top-ranking pages returned
by a central index to be relevant. In particular, when measuring
precision at 5, we consider only the top five documents to be
relevant. Similarly, for precision at 10 and so on.

For our experiment, we used Zettair2, a compact and fast
text search engine designed and written by the Search Engine
Group at RMIT University. We modified it so to implement
our collection selection strategies (CORI and PCAP).

A. Query-Driven Allocation vs. Random Allocation

Our first experiments were aimed at showing that our
document partitioning strategy boosted the results of standard
collection selection algorithms. In order to do this, we com-
pared the performance of CORI on our query-driven partition
with that on a random document allocation.

In the test, our system was trained with the first three weeks
of queries. In other words, we recorded the results of the
queries submitted to the system for this period, and we used

2Available under a BSD-style license at http://www.seg.rmit.edu.au/zettair/.



Precision at 1 2 4 8 16 17
5 0.3 0.57 1.27 2.62 4.6 5
10 0.59 1.16 2.55 5.0 9.3 10
20 1.20 2.49 5.04 9.77 18.71 20

TABLE I

PRECISION OFCORI ON A RANDOM ALLOCATION , WHEN USING THE

FIRST 1, 2, 4, 8, 16OR 17 CLUSTERS. QUERIES FROM THE FOURTH WEEK.

this to build the query-vector representation of documents and
to perform the co-clustering algorithms.

The first three weeks of the log comprise about 190,000
unique queries. We chose to use only unique queries, because
the caching system of modern search engines is able, to a
certain degree, to avoid issuing the same query multiple times
to the system.

The other choice was to consider also repeated queries. This
choice would have boosted the relative weights of popular
queries in the co-clustering algorithm, with the results of
creating a document clustering that favors popular queries.
This can be a detrimental choice if caching is actually present.
We plan to test this in our future work.

The record of the training queries takes about 130 MB in a
binary representation. The co-clustering algorithm took about
10 minutes to run on a single machine.

To speed up our experimental phase, we simulated the
document allocation by running Zettair on the full index
of documents, and by filtering the results according to our
allocation. This let us quickly change the allocation and
estimate the results without actually moving the data around.
As said before, this strategy does not change the ranking of
documents on the IR cores because it is possible to send the
collection statistics to each core so to normalize the ranking.

Along with this allocation, we considered a random alloca-
tion, where documents are assigned randomly to the servers,
an equal share to each one.

We used CORI as our collection selection strategy for the
two allocations. We tested it with the queries for the fourth
week, i.e. we used the queries for one week following the
training period. The test comprise about 194,200 queries. In
this case, we considered the statistics of repeated queries,
because they represent the effective performance as perceived
by user.

On random partition, CORI performs rather poorly (see
Figure I). The results are actually very close to what we
would get with a random collection selection (0.3 out of
5 is very close to 1 out of 17). This means that, with a
poor document partition strategy, CORI does not perform an
effective collection selection. It performs dramatically better
with a carefully prepared partition (see below).

B. CORI vs. PCAP

In this subsection, we measure the performance of our
collection selection strategy w.r.t. CORI. In this case, we
test two different allocation strategies on the same document
allocation, as generated by the co-clustering algorithm.

CORI
Precision at 1 2 4 8 16 17
5 1.57 2.27 2.99 3.82 4.89 5.00
10 3.06 4.46 5.89 7.56 9.77 10.00
20 6.01 8.78 11.64 15.00 19.52 20.00

PCAP
Precision at 1 2 4 8 16 17
5 1.74 2.30 2.95 3.83 4.85 5.00
10 3.45 4.57 5.84 7.60 9.67 10.00
20 6.93 9.17 11.68 15.15 19.31 20.00

TABLE II

PRECISION OF THECORI AND PCAPSTRATEGY, WHEN USING THE FIRST

1, 2, 4, 8, 16OR 17 CLUSTERS. QUERIES FROM THE FOURTH WEEK.

CORI
Precision at 1 2 4 8 16 17
5 1.55 2.29 3.01 3.83 4.89 5.00
10 3.05 4.48 5.92 7.62 9.77 10.00
20 5.97 8.77 11.61 15.10 19.54 20.00

PCAP
Precision at 1 2 4 8 16 17
5 1.73 2.26 2.89 3.76 4.84 5.00
10 3.47 4.51 5.75 7.50 9.66 10.00
20 6.92 9.02 11.47 14.98 19.29 20.00

TABLE III

PRECISION OF THECORI AND PCAPSTRATEGIES, WHEN USING THE

FIRST 1, 2, 4, 8, 16OR 17 CLUSTERS. QUERIES FROM THE FIFTH WEEK.

In this case, we tested the two selection strategies for the
first and the second week after the training. We did this
because we wanted to measure the effect oftopic shift over
time. Any difference in precision between the first and the
second week gives us a flavor of what the effect of topic
shift is. Clearly, we can keep the training going over time:
this experiment can suggest us the frequency with which we
should refresh our document partitions.

Again, for precision at 5, we consider only the five top-
ranking documents (on the full index) to be relevant. Similarly,
for precision at 10 we observe the top 10, and so on.

The first experimental results (Tables II and III) show that,
in the fourth week (the first after training), PCAP is performing
better than CORI: the precision reached with the first cluster
is improved of a factor between 11% and 15% (highlighted
entries). This is confirmed by the fifth week (the second after
training). If present, the topic shift did not affect our results
in a significant way.

C. Precision With Top-100 Documents

We wanted to estimate what the net results of our strategy
is to users. We measured the precision again, but this time
we consideredthe 100 top-ranking documents to be relevant.
Table IV describes the results: the results of the first cluster
selected by PCAP are more relevant, by a factor of about
10%, than those retrieved by CORI. For the first 20 results
are retrieved from the first cluster, we get 13.50 relevant
documents with PCAP, while only 12.08 with CORI (11.7%



CORI
Precision at 1 2 4 8 16 17
5 4.15 7.57 13.05 21.94 35.60 36.98
10 7.31 12.74 20.54 32.16 48.97 50.73
20 12.08 19.86 29.65 43.35 62.35 64.33

PCAP
Precision at 1 2 4 8 16 17
5 4.37 7.40 12.44 21.61 35.75 36.98
10 7.82 12.47 19.53 31.71 48.82 50.73
20 13.50 19.94 28.63 42.96 61.68 64.25

TABLE IV

PRECISION OF THECORI AND PCAPSTRATEGIES. THE 100

TOP-RANKING DOCUMENTS ARE CONSIDERED TO BE RELEVANT.

dc: number of document clusters 17
qc: number of query clusters 128
d: number of documents 5,939,061
t: number of distinct terms 2,700,000
t′: number of distinct terms in the query dictionary 74,767

TABLE V

STATISTICS ABOUT COLLECTION REPRESENTATION.

better). This means that, when we limit ourselves to only one
cluster, the list of results is 10% more precise to the user.

D. Footprint of the Representation

Every collection selection strategy needs a representation of
the collections, which is used to perform the selection. We call
dc the number of different collections (document clusters),qc
the number of query clusters,t the number of terms,t′ the
number of distinct terms in the query log,d the number of
documents,q the number of queries.

CORI representation includes:

• dfi,k, the number of documents in collectioni containing
term k, which is O(dc × t) before compression,

• cwi, the number of different terms in collectioni, O(dc),
• cfk, the number of resources containing the termk, O(t).

This is in the order ofO(dc × t) + O(dc) + O(t), before
compression.

On the other side, the PCAP representation is composed of:

• the PCAP matrix, with the computed̂p, which isO(dc×
qc),

• the index for the query clusters, which can be seen asni,k,
the number of occurences of termk in the query cluster
i, for each term occurring in the queries —O(qc × t′).

This is in the order ofO(dc × qc) + O(qc × t′), before
compression. This is significantly smaller than the CORI
representation asdc << d, t′ << t, and qc << t (see
Table V).

E. Empty Documents

At the end of the training period, we observed that a large
number of documents, around 52% of them (3,128,366), are
not returned among the first 100 top-ranked results of any
query. This means that, during the training period, no user

was invited to open these documents as a result of his/her
query (unless s/he browser beyond the 100-th result).

Separating these documents from the rest of the collection
allows the indexer to produce a more compact index, contain-
ing only relevant documents that are likely to be requested
in the future. This pruning process can speed up the overall
performance significantly.

The pruned documents can be stored in another server, used
only when the user browse for low-relevance documents. In
our test, we showed that the contribution to precision of PCAP
is very low for the last cluster. In Tables II and III, the change
in precision when adding also the last cluster (#17) is in the
range of 2%–3%. For instance, the precision at 5 for the fourth
week passes from 4.85 to 5.

More dramatically said, less than 50% of the documents
contribute more than 97% of the relevant documents.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a novel approach to document
partitioning and collection selection, based on co-clustering
queries and documents. Our new representation of documents
as query-vectors allows us to perform, very efficiently, an
effective partitioning. It also induces a very compact repre-
sentation of the resulting collections. We showed that our
selection strategy out-performed CORI by a factor of 10%,
with a smaller representation of the available collections.

Also, we showed a way to select rarely asked-for docu-
ments. The process of pruning these documents could im-
prove the performance of the system, because less than 50%
contributes more than 97% of the relevant documents: around
52% of the documents (3,128,366) are not returned among the
first 100 top-ranked results of any query.

We would like to compare our approach with other par-
titioning strategies. While the goals are not common (load
balancing, collection selection...), we believe our work adds
to the existing results on document and term partitioning.

We would like to explore, with more experiment, the impact
of our design choice on the final results.
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