
Using Web Services
to Run Distributed Numerical Applications

Diego Puppin, Nicola Tonellotto, and Domenico Laforenza

Institute for Information Science and Technologies
ISTI - CNR, via Moruzzi, 56100 Pisa, Italy

{diego.puppin,nicola.tonellotto,domenico.laforenza}@isti.cnr.it

Abstract. MPI is a de facto standard for high performance numerical
applications on parallel machines: it is available, in a variety of imple-
mentations, for a range of architectures, ranging from supercomputers
to clusters of workstations. Nonetheless, with the growing demand for
distributed, heterogeneous and Grid computing, developers are hitting
some of its limitations: e.g. security is not addressed, and geographically
distributed machines are difficult to connect.
In this work, we give an example of a parallel application, implemented
with the use of Web Services. Web Services represent an emerging stan-
dard to offer computational services over the Internet. While this solu-
tion does not reach the same performance of MPI, it offers a series of
advantages: high availability, rapid design, extreme heterogeneity.

1 Introduction

The emergence of computational Grids is shifting the interest of the computa-
tional scientists. Their applications are not anymore (or not only) CPU-bound
numerical kernels, but can be seen as collections of services. This causes a grow-
ing need for ways to connect heterogeneous tools, machines and data reposito-
ries. In this direction, there is a growing demand for a standard, cross-platform
communication and computational infrastructure.

At the present day, MPI is a de facto standard for the development of nu-
merical kernels: parallel applications have been using MPI for years; several MPI
implementations are available for a variety of machines; binding to many pro-
gramming languages are available. Nonetheless, MPI incurs in communication
problems, very difficult to overcome, when the application is spread over remote
machines, when firewalls are present, when machine configurations are different.
There have been some experimental works to overcome these limitations, but so
far there is no agreement on a common solution.

On the other side, there is a growing interest toward the Service Oriented Ar-
chitecture (SOA) [1], a computing paradigm that considers services as building
blocks for applications, and Web Services (WSs) are one of its implementations.
A WS is a specific kind of service, identified by a URI, whose description and
transport utilize open Internet standards. When wrapped as http data, requests
to and responses from any Web Service can cross, without problems, firewalls,

D. Kranzlmüller et al. (Eds.): EuroPVM/MPI 2004, LNCS 3241, pp. 207–214, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



208 D. Puppin, N. Tonellotto, and D. Laforenza

differences in implementation languages or in operating systems. This is why
we discuss about the opportunity of using Web Services to implement parallel
applications, as an alternative to MPI. Clearly, it is not our intention to state
that Web Services are candidates for substituting MPI for scientific applica-
tions: rather, we want to show that WSs can be fruitfully used in an area where
typically MPI is used, when there is a stronger need for flexibility and interop-
erability among application components. We want to face this comparison from
many different points of view: ease of programming, performance, availability.

The rest of the paper is structured as follows. In the next section, we give an
overview of related work. Then, we introduce Web Services and their features. In
section 4, we compare these two approaches by using a very simple benchmark
application. Lastly, we conclude by showing some open research directions.

2 Related Work

There is an emerging attention to the convergence of MPI parallel software and
the Service-Oriented Architecture. An interesting approach to this is taken in [2],
where authors show an effective way to include a legacy MPI algorithm into a
larger application using the OGSA standard, by creating a surrounding Grid
Service. Also, whole parallel applications are wrapped as Web Services in recent
works [3, 4].

Our work differs in that we are trying to use WSs as workers for a numerical
application, rather than wrapping the whole application to be used as a service.

On the other side, there is interest in overcoming some limitations of MPI so
to use it to program distributed applications:

– the internal nodes of a private cluster often do not have a static public IP,
and cannot connect directly to the nodes outside the cluster; this way, they
cannot participate to the MPI world of an application running remotely;

– if a machine is behind a firewall, MPI messages could be filtered out by it.

Several solutions have been proposed. In order to connect distinct private
machine clusters, PACX-MPI [5] uses a two-level communication: MPI-based
within the cluster, and TCP/IP-based across clusters. Two daemons, sitting
on publicly visible nodes, mediate the two types of communications. MPICH-
G2 [6] uses Globus services to cross firewall boundaries, so to connect clusters
within different, secure administrative domains. An extension to MPICH-G2,
called MPICH-GP [7] and still under development, uses the Linux NAT address
translation, along with a user-level proxy, to make two firewall-protected clusters,
with private IP address, to cooperate as a single MPI machine, with limited
overhead.

3 Web Services

Web Services (WS) are a way to make data and computational services available
on the Internet: using the WS standard, machines connected through the Inter-
net can interact with each other to perform complex activities. A simple http



Using Web Services to Run Distributed Numerical Applications 209

Fig. 1. A logical representation of messages hierarchy for Web Services (left). Web
Service life cycle (right).

connection is usually enough to connect to a server and use the services it offers.
One of the goals of this architecture is to give a standard interface to new or
existing applications, i.e. to offer a standard description to any computational
service, which can be stored in public repositories.

The WS standard is designed around three main types of messages, based on
XML (see Figure 1): Web Service Description Language (WSDL) [8] is used to
describe the service implementation and interface; Simple Object Access Protocol
(SOAP) [9], used in the communication and data exchange between a WS and
a client; Universal Description, Discovery and Integration (UDDI) [10], used to
register and discover public services.

Figure 1 shows the typical scenario of Web Service utilization. The Web
Service is first published using a UDDI repository (1). When a Web Service
consumer is looking for a specific service, it submits a query to the repository (2),
which answers back with the URL of the service that best matches the query (3).
By using this URL, the Consumer asks for the WSDL describing the needed
service (4); then, by using this WSDL description (5), it invokes the service (with
a SOAP message) (6). The Web Service Consumer and Web Service provider
have to share only the description of the service in a WSDL standard format.
So, Internet access and support for SOAP message are all that is needed to use
a Web Service.

The use of a WS is simplified by WS-oriented frameworks, which implement
the infrastructure to communicate over the Internet with SOAP messages, and
offer a procedure-call abstraction to service invocation (see Figure 2).

4 Experimental Results

We compared MPI and WSs with a simple client/server (task farm) applica-
tion: workers perform an intensive computational loop on floating-point values,
sent in blocks (with varying granularity) by the master, which then collects the
results. Clearly, this limited experimentation is not exhaustive of the matter.



210 D. Puppin, N. Tonellotto, and D. Laforenza

Fig. 2. Web Service architecture.

Rather, it wants to be an initial evaluation of the difference of the two discussed
methodologies.

We performed two experiments. First, to understand the overhead related
to the use of WSs, our applications were tested on our local cluster, using its
internal private network. It is built up of 8 nodes, each of which with a dual
2 GHz Intel Xeon processor, 1 GB RAM memory. On the internal network, all
nodes have a unique static IP that can be used by applications.

Second, we launched our WS-based application across the Internet: we in-
stalled our services on remote machines in San Diego. They have a (slower) 1.4
GHz AMD Athlon K6 processor, 1 GB RAM memory. They are not accessible
with MPI because they are sitting behind firewalls.

MPI Implementation. Our farm application was implemented very simply with
MPI: a master is responsible for distributing sequences of floating-point numbers
among slaves, which are running on the internal nodes; then, it waits for answer,
and gives new data to the idle workers. Our tests were performed using MPICH-
1.2.5. Its implementation is a single C file, 218-line long, and can be run with a
single shell command.

WS Implementation. To test the WS implementation, we installed a web server
on each of the internal nodes of the cluster, and we used their internal IP to
connect to them. We also linked our service to the web servers running on the
remote machines in San Diego.

We used Apache Tomcat (V4.0) and Apache Axis. Tomcat is an open-source
Web Application container developed with Java. Axis allows the developer to use
Java classes as WS, by intercepting SOAP messages and by offering a procedure-
call abstraction.

The master, running on the cluster front-end, invokes the services of the
farm workers: each worker appears as a WS running on a different machine. The



Using Web Services to Run Distributed Numerical Applications 211

Fig. 3. Completion time of a MPI farm (left) and a WS farm (right), with different
granularity, varying the number of workers, on our local cluster. Time in seconds.

master, with the roles of dispatcher and collector, is implemented as a client
application. The master spawns a thread for each worker, with the responsibility
of waiting for the responses and submitting new values to it.

Creating a WS is relatively simple: a Java class has to be developed, with
the code implementing the numerical kernel. Then, it has to be deployed into
Tomcat. We developed a set of scripts that perform most of this task automat-
ically, using ssh. An MPI programmer interested in using WSs to implement
his/her application, should focus mainly on translating its algorithm so to use
a client/server (procedure-call) paradigm. We are interested in using one-way
WS communications to mimic MPI messages: in the future, porting an MPI
applications to WSs should be much simpler.

The WS implementation of our benchmark is composed of three Java files:
the implementation of the master (318 lines), the worker interface (6 lines), and
the worker implementation (20 lines). Its length is motivated by the verbosity of
Java, and by the need of creating new threads for each worker. Also, the infor-
mation about the topology of the computing environment is encoded within the
master, while, in the MPI application, it is part of the environment configuration.

4.1 Programming Complexity and Performance

The MPI application behaves as expected, with good scalability, as shown in
Figure 3(left). The best speedup is obtained with granularity 100.

The WS-based version, running on the local cluster, has an overhead ranging
from 3x to 4x. This is due to a number of factors, including difference in per-
formance from Java to C, overhead in message marshalling and unmarshalling
(heavier for SOAP than MPI), overhead of the Web Service container (communi-
cation is not mediated in MPI). Also, the use of the procedure-call paradigm can



212 D. Puppin, N. Tonellotto, and D. Laforenza

Fig. 4. Completion time of a WS farm when using remote machines. Time in seconds.

slow down the control flow, because there is the need for multiple threads, wait-
ing for replies from the services. Recent advancements in RPC-based scheduling
(e.g. [11]) could be useful in this context too.

Our WS-based application was able to use the computing services offered by
a set of remote machines located in San Diego. We were able to use a pool of up
to 35 workers. Using a total of 25 workers, with the best choice of granularity,
we completed our application in 11.59 seconds, that is about twice as much as
the best timing we had running MPI locally (5.87 seconds, with 7 workers).

In this example, the overhead related to moving from an MPI implementation
to a WS implementation is somewhat limited, and can be acceptable if firewalls
and difference in operating systems or programming languages prevent the use
of MPI. Using WSs, we could connect to a set of (slower) remote machines, not
reachable with MPI, and had an acceptable overall performance (2x slower).

4.2 Communication Overhead

MPI messages are very compact, and highly optimized: the MPI envelope is
very small compared to the payload, as it stores very limited information, such as
sender’s and receiver’s ID, message tag and MPI communicator number, totaling
16 bytes of data. Also, the array of double-precision numbers is sent in a very
compact binary way, 8 bytes per element (see Table 1(a)).

On the other side, SOAP has to pay a high cost in order to be inter-operable:
the payload is not sent in a binary form, but in a more portable, verbose way –
doubles are converted to ASCII, and then converted back by the receiver. This
enlarges greatly the message size (see Table 1(b)), and also is cause of a big
performance overhead (discussed in detail in [12]).

Many researchers are exploring ways to reduce the overhead introduced by
SOAP. The most interesting effort in this direction is being performed by W3C,



Using Web Services to Run Distributed Numerical Applications 213

Table 1. Message size (bytes) for MPI (a) and WS (b), varying granularity.

Granularity In data Out Data MPI request MPI reply Overhead

1 8 8 24 24 200%
10 80 80 96 96 20%

100 800 800 816 816 2%
1000 8000 8000 8016 8016 0.2%

10000 80000 80000 80016 80016 0.002%

(a)

Granularity In data Out Data SOAP Req. SOAP Resp. Overhead

100 800 800 2692 4181 236% - 422%
500 4000 4000 11992 18981 199% - 374%

1000 8000 8000 23494 37482 193% - 368%
10000 80000 80000 230496 370483 188% - 363%

(b)

which is investigating the XML-binary Optimized Packaging protocol (XOP),
which allows binary transmission of data between services when possible [13].

5 Conclusions and Future Work

While MPI is a strong, efficient, very accepted standard for parallel applica-
tions, there is a growing need for more general solutions, especially when dis-
tributed/Grid applications are to be developed. A variety of MPI extensions
have been proposed, each addressing a specific MPI limitation, but so far there
is no general agreement on a standard solution.

On the other side, WSs are emerging as a standard for distributed, Internet-
oriented applications. Legacy applications can be easily wrapped into a WS
interface, and made available to any client on the Internet. In this work, we
showed how a computationally intensive application can be performed by using
WSs as workers. While the performance is clearly lower, it can be a choice when
firewalls are present, when operating systems and programming languages are
different.

Also, for a variety of frameworks (.NET, J2EE...), it is very easy to wrap
an existing application into a WS: this can be a way to do rapid prototyping
of the parallel/distributed version of legacy software. Here we showed that a
simple Java class of 20 lines, implementing a numerical kernel, can be simply
transformed into a WS, and then used by a client to perform a distributed
computation. We could run our application on our private cluster, and then
across the Internet with no modification.

Future work includes a comparison of some of the available MPI extensions
with WSs in a real distributed application, a detailed analysis of the overhead
introduced by the use of WSs and of the suitable granularity for applications
built as collections of services. Also, we are interested in implementing the MPI



214 D. Puppin, N. Tonellotto, and D. Laforenza

protocols over WSs: the MPI world could be emulated by a pool of coordinated
services, communicating directly with one another.

Acknowledgements

We want to thank Massimo Serranò for his help with the experimental setting,
and the group led by Dean Tullsen at UCSD for letting us run our tests on their
machines. This work has been partially supported by the MIUR GRID.it project
(RBNE01KNFP) and the MIUR CNR Strategic Project L 499/97-2000.

References

1. Papazoglou, M.P., Georgakopoulos, D., eds.: Service-Oriented Computing. Volume
46 (10) of Communications of ACM. (2003)

2. Floros, E., Cotronis, Y.: Exposing mpi applications as grid services. In: Proceedings
of EuroPar 2004, Pisa, Italy (2004) To appear.

3. Gannon, D.: Software component architecture for the grid: Workflow and cca.
In: Proceedings of the Workshop on Component Models and Systems for Grid
Applications, Saint Malo, France (2004)

4. Balis, B., Bubak, M., Wegiel, M.: A solution for adapting legacy code as web
services. In: Proceedings of the Workshop on Component Models and Systems for
Grid Applications, Saint Malo, France (2004)

5. Beisel, T., Gabriel, E., Resch, M.: An extension to mpi for distributed computing
on mpps. In: Recent Advances in PVM and MPI, LNCS (1997) 75–83

6. Karonis, N., Toonen, B., Foster, I.: MPICH-G2: A Grid-Enabled Implementation
of the Message Passing Interface. JPDC 63 (2003) 551–563

7. Kwon, O.Y.: Mpi functionality extension for grid. Technical report, Sogang Uni-
versity (2003) Available at: http://gridcenter.or.kr/ComputingGrid/ file/gfk/Oh-
YoungKwon.pdf.

8. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (wsdl) 1.1. Technical report, W3C (2003) Available at:
http://www.w3.org/TR/wsdl.

9. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,
Thatte, S., Winer, D.: Simple object access protocol (soap) 1.1. Technical report,
W3C (2003) Available at: http://www.w3.org/TR/SOAP/.

10. Bryan, D., et al.: Universal description, discovery and integration (uddi) protocol.
Technical report, W3C (2003) Available at: http://www.uddi.org.

11. Gautier, T., Hamidi, H.R.: Automatic re-scheduling of dependencies in a rpc-based
grid. In: Proceedings of the 2004 International Conference on Supercomputing
(ICS), Saint Malo, France (2004)

12. Chiu, K., Govindaraju, M., Bramley, R.: Investigating the limits of soap perfor-
mance for scientific computing. In: Proceedings of HPDC 11, IEEE (2002) 246

13. Web Consortium (W3C): The xml-binary optimized protocol (2004) Available at:
http://www.w3.org/TR/xop10/.


	1 Introduction
	2 Related Work
	3 Web Services
	4 Experimental Results
	4.1 Programming Complexity and Performance
	4.2 Communication Overhead

	5 Conclusions and Future Work
	References

