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Abstract
Today, the development of Grid applications is a very difficult task, due to

the lack of Grid programming environments, standards, off-the-shelf software
components, and so on.

Nonetheless, we can observe an emerging trend: more and more services are
available as Web Services, and can be linked to form an application. This is why
we envision a market where developers can pick up the software components
they need for their application. A natural process of evolution in this market
will reward components that are faster, cheaper, more reliable or simply more
popular.

In this work, we present our vision of GRIDLE, a search engine for software
components. It will rank components on the basis of their popularity, their cost
and performance, and other users’ preferences. We built a prototype of GRIDLE,
which works on Java classes. It is able to give them a rank based on the social
structure of Java classes.
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1. Introduction

Present-day Grid programming is considered a very hard task, due to the lack
of mature and easily available software components, of a standard for workflow
description, of easy-to-use development environments, and so on.

Many authors envision the existence of a marketplace for software compo-
nents where developers can gather components for their applications [5]. This
model, if globally accepted, would find its natural end in the Grid platform.
The main obstacles to this goal seem to be the: (a) the lack of a standard for
describing components and their interactions, and (b) the need for a service able
to locate relevant components, which satisfy some kind of cost constraints. Re-
cent advances in Component and Grid technology, such as JavaBeans, ActiveX,
and Grid Services, are providing a basis for interchangeable parts. The Grid
and the Internet, instead, provide a means for consumers (i.e. programmers) to
locate available components.

Moreover, standardization efforts on component models will simplify the
use of components for building component-based Grid Applications[1]. We
can expect that in a very near future, there will be thousands of components
providers available on the Grid. Within this market of components, the same
kind of service will be sold by different vendors at different prices, and with
different quality.

It is clear that when this way of developing applications will become fully
operational, the most challenging task will be to find the best components
suitable for each user. As far as we know, there has been limited effort in
the Grid research community towards this goal. In this paper, we discuss the
challenges we have to face in designing a search service for locating software
components on the Grid. Indeed, the specifications of our search engine rely
heavily on the concept of ecosystem of components.

This idea can be described with an analogy to the Web. In our vision, a
software component can be compared to a Web page and an application built
by composing different blocks can be seen as a Web site (i.e. a composition
of different Web pages). From the application perspective, each part can be
either a locally available component (i.e. a local web page), or a remote one
(i.e. a remote web page). In addition, the links interconnecting Web pages
can be compared to the links indicating interactions among components of the
same application. The most interesting characteristic of this model, anyway, is
that a user can, possibly, make available the relationships between the different
components involved in the application.

As a matter of fact, a very popular workflow language, BPEL4WS, is de-
signed to expose links among Web Services. It allows a two-level application
description: an executable description, with the specification of the processes,
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and an abstract description, which specifies the invocations of and the interac-
tions with external web services [15].

It could be argued that a developer would not publicize how s/he has realized
an application. We do not think so. Today, there are many examples of popular
Internet services that publicize their use of other important and effective ser-
vices: AOL, for instance, claims that it uses the Open Directory Project as its
backbone for offering its search service. Translated to the Grid, the importance
of an application could be raised by using another popular component.

As already said, our system tackles the concept of workflow graphs for
modeling Grid Application to compute a static importance value. This will be
used as a measure of the quality of each application. The idea is rather simple:
the more an application is referred by other applications, the more important
this application is considered. This concept is very close to the well known
PageRank [14] measure used by Google [7] to rank the pages it stores.

This contribution is structured as follows. In the next section, we introduce
the concept of the ecosystem of components, and we discuss our initial findings.
Then, we introduce our vision of GRIDLE, a tool for searching components on
the Grid. In particular, we discuss its architecture, the ranking metrics, and we
show our initial results with our first prototype. After an overview of related
work, we conclude.

This paper extends our previous work, presented at Web Intelligence 2004 [17].

2. The Ecosystem of Component

In the first phase of our experiment, we collected and analyzed about 7700
components in the form of Java classes. Clearly, Java classes are only a very sim-
plified model of software components, because they are supported by only one
language, they cannot cooperate with software developed with other languages,
but they also support some very important features: their interface can be easily
manipulated by introspection; they are easily distributed in form of single JAR
files; they have a very consistent documentation in the form of JavaDocs; they
can be manipulated visually in some IDEs (BeanBox, BeanBuilder etc.).

We were also able to retrieve very high-quality Java Docs for the several
projects, including Java 1.4.2 API; HTML Parser 1.5; Apache Struts; Globus
3.9.3 MDS; Globus 3.9.3 Core and Tools; Tomcat Catalina; JavaDesktop 0.5,
JXTA; Apache Lucene; Apache Tomcat 4.0; Apache Jasper; Java 2 HTML;
DBXML; ANT; Nutch.

For each class, we determined which other classes it used and were used by.
With usage, we mean the fact that a class A has methods returning, or using as
an argument, objects of another class B: in this case, we recorded a link from
A to B. This way, we generated a directed graph describing the social network
of the Java library.
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Figure 1. Social behavior of Java classes: Power-Law distribution

We could observe some very interesting phenomena. First of all, the number
of links to each class follows a typical power-law rule: very few classes are
linked by very many others, while several classes are linked by only a few other
classes.

In Figure 1, the reader can see a graph representing the number of incoming
links to each class, in log-log scale. Classes are sorted by the number of
incoming links. The distribution follows closely a power-law pattern, a small
exception given by the first few classes (Object, Class etc.) which are used by
almost all other derived classes to provide basic services, including introspection
and serialization.

This is a very interesting result: within Java, the popularity of a class among
programmers seems to follow the pattern of popularity shown by the Web, blogs
and so on. This is very promising: hopefully, we will be able to build a very
effective ranking for components out of this.
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3. GRIDLE

3.1 Grid Applications and Workflows

To date, there has been very limited work on Grid-specific programming
languages. This is not too surprising since automatic generation of parallel
applications from high-level languages usually works only within the context
of well defined execution models [22], and Grid applications have a more com-
plex execution space than parallel programs. Some interesting results on Grid
programming tools have been reached by scripting languages such as Python-
G [11], and workflow languages such as DAGMAN [18]. These approaches
have the additional benefit that they focus on coordination of components writ-
ten in traditional programming languages, thus facilitating the transition of
legacy applications to the Grid environment.

This workflow-centric vision of the Grid is the one we investigate in this work.
We envision a Grid programming environment where different components can
be adapted and coordinated through workflows, also allowing hierarchical com-
position. According to this approach, we thus may compose metacomponents,
in turn obtained as a workflow that uses other components. An example of
workflow graph is shown in Figure 2. Even if this graph is flat, it has been ob-
tained by composing together different metacomponents, in particular “flight
reservation” and “hotel reservation” components. We have not chosen a typical
scientific Grid application, but rather a business-oriented one. This is because
we are at the moment of convergence of the two worlds, and because we would
like to show that such Grid programming technologies could also be used in
this case.

The strength of the Grid should be the possibility of picking up components
from different sources. The question is now: where are the components located?
In the following we present some preliminary ideas on this issue.

3.2 Application Development Cycle

In our vision, the application development should be a three-staged pro-
cess, which can be driven not only by an expert programmer, but also by an
experienced end-user, possibly under the supervision of a problem solving envi-
ronment (PSE). In particular, when a PSE is used, we would give the developer
the capability of using components coming from:

a local repository, containing components already used in past applica-
tions, as well as others we may have previously installed;

a search engine, which is able to discovery the components that fit users’
specifications.

Hence, the three stages which drive the application development process are:
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Figure 2. An example of a workflow-based application for arranging a conference trip. The
user must reserve two flights (outward and return) before reserving the hotel for the conference.
Note that, in the case that only the third hotel has available rooms, a car is needed and must be
booked too.

1 application sketching;

2 components discovering;

3 application assembling/composition.

Starting from stage � (i.e. sketching), developers may specify an abstract
workflow graph or plan. The abstract graph would contain what we call
place-holder components and flow links indicating the way information passes
through the application’s parts.

A place-holder component represents a partially specified object that just
contains a brief description of the operations to be carried out and a description
of its functions. The place-holder component, under this model, can be thought
as a query submitted to the component search module, in order to obtain a list
of (possibly) relevant component for its specifications.

Obviously, the place-holder specifications can be as simple as specifying
only some keywords related to non functional characteristics of the component
(e.g. its description in natural language), but it can soon become complex if
we include also functional information. For example, the “Flight Reservation”
component can be searched through a place-holder query based on the key-
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words: airplane, reserve, flight, trip, take-off, but we can also ask for a specific
method signature to specify the desired destination and take-off time.

3.3 The Component Search Module

In the last years, the study of Web Search Engines has become a very impor-
tant research topic. In particular, a large effort has been spent on Web models
suitable for ranking query results [2].

We would like to approach the problem of searching software components
using this mature technology. We would like to exploit the concept of ecosystem
of components to design a solution able to discover and index applications’
building blocks, and allows the search of the most relevant components for a
given query. Furthermore, the most important characteristic is the exploitation
of the interlinked structure of metacomponents (workflows) in the designing of
smart Ranking algorithms. These workflows ranking schemas, in fact, will be
aware of the context where the components themselves are placed.

To summarize, Figure 3 shows the overall architecture of our Component
Search Engine, GRIDLE, a GoogleTM-like Ranking, Indexing and Discovery
service for a Link-based Eco-system of software components. Its main modules
are the Component Crawler, the Indexer and the Query Answering.

Figure 3. The architecture of GRIDLE.

The Component Crawler module is responsible for automatically retrieving
new components. The Indexer has to build the index data structure of GRIDLE.
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This step is very important, because some information about the relevance of the
components within the ecosystem must be discovered and stored in the index.
The last module is the Query Answering module, which actually resolves the
components queries on the basis of the index. As other search engines, our
searching algorithm is made up of two steps. First, GRIDLE tries to resolve
the place-holder by using the components contained in the local repository. If
a suitable component is found locally, then this is promptly returned to the user
without searching further on remote sites. On the other hand, if it cannot be
found locally, a Query Session is started. The goal is to retrieve a ranked list of
components that are relevant to the specification given in the place-holder plan
graph.

After the searching phase, we have to put together all the chosen modules
in order to: (1) fill in all the place-holders, and (2) materialize the connections
among the components.

As an example, let us consider the steps above in the development process of
the example depicted in Figure 2. In a Grid software development environment
a programmer could have sketched the abstract workflow plan graph depicted
in Figure 4.

Figure 4. A partially specified workflow graph, describing the application of Figure 2 at the
highest level possible.

Starting from here, s/he would proceed as follow. First, s/he would look for
a flight reservation component matching the place-holder. Let us suppose that
such a component is available locally. GRIDLE will automatically return a
pointer to it and expand the place-holder with the found component (binding).
Figure 5 shows the workflow graph as it appears at this point of development.
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In the picture we can see that the found component has been instantiated twice,
for both the outward and return flight reservations.

Figure 5. The abstract workflow graph as it appears after the “flight reservation component”
has been found.

Then, the user selects the “Hotel Reservation” place-holder. Since this is
not available in the local repository, a query session is initiated. GRIDLE
starts looking for a component. The search process is two-staged. In its first
part, GRIDLE tries to find an initial (possibly inaccurate) list of components.
Then, the user has to refine it until a shorter, more relevant, list of components
is obtained. Once the search phase is concluded, the user will pick up the
most suitable component (binding). Finally, when all the components are fully
specified, the developer will continue refining the application until it meets
his/her original requirements.

The binding phase may be as simple as forwarding the output channel of
a component to the input of the next (as for Unix pipes), but it may be more
complex if data and/or protocol conversions are needed. The framework should
try to determine the type and the semantics of components’ input/output ports,
using any available header, XML and textual descriptions, Web ontologies,
pattern matching and naming conventions. With this information, the program-
mer should choose the best chain of conversions, and ask the framework to
instantiate an ad-hoc filter, performing the transformation needed.

3.4 Ranking Metrics

Valid ranking metrics are fundamental in order to have relevant search results
out of the pool of known components. As said above (Section 2), the social
structure of the component ecosystem is clearly the main source of information
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about component relevance: components that are used by several many other
trusted components are clearly more relevant. Below, we illustrate two more
metrics: reputation and XML similarity.

3.4.1 Building a Market: Trust and Reputation. In this market of
components, trust and reputation will play a very important role. Vendors that
are known for their dependability and for offering a reliable service, will be pre-
ferred to newcomers, obscure providers or small vendors. Consider for instance
buying a car: a big dealer will have a reputation built out of the comments of
the buyers, and can charge a higher price in exchange for a reputable service.
On the other side, one buyer can choose a less known seller, if the price is
advantageous.

A tool called DBIN [19], developed at Università Politecnica delle Marche,
is able to spread comments about resource across a big community of users. In
other words, any user of a specific resource can add a comment to it, and this
will reach all the other user in a very scalable pattern. Filters can be used to
accept only comments from trusted peers.

This idea could be used to build the reputation of software components: each
user will receive comments and suggestions about the software they are using
or planning to use.

All this information can be considered in the ranking of components. A
similar approach is taken by eBay1, where vendors are ranked by the number
of negative and positive feedback they received.

3.4.2 XML Interface Matching. In order to offer an effective search
tool, it is very important to offer a way to browse and analyze the known compo-
nents. There are very important results about XML classification and clustering
[8, 13]. We can build over these results the following way: component inter-
faces can be analyzed and transformed into XML documents, which can be
clustered and organized using tools for computing XML similarity. A similar
approach is taken in [21]to cluster computational resources out of a dynamic
network.

Ranking can include the degree of similarity between each component and
the place-holder designed by the developer.

3.5 Searching Java Classes

The Java Documentation is a very rich body of documentation about the Java
API. It is publicly available and published with a very consistent format, which

1http://www.ebay.com/
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Figure 6. Web-interface of GRIDLE.

can be automatically processed by a machine. Out of this, we were able to
identify social patterns among Java classes (see Section 2).

Out of our preliminary results, we developed a very simple search engine,
able to find high-relevance classes out of our repository. Classes can be ranked
by TF.IDF (a common information retrieval method, based on a metric that keeps
into account both the number of occurencies of a term within each document
and the number of documents in which the term itself appears) or by Class
Rank, our version of PageRank for Java classes, based on the class usage links
(see Section 2). Figure 6 shows the first web interface of our tool.

3.6 Component Search Engines: Related Work

In the last years, thanks to technologies like Internet and the Web, a number
of interesting approaches [3, 16]to the problem of searching for software com-
ponents, as well as a number of interesting papers analyzing new and existing
solutions [9–10], have been proposed.

In [3], Odyssey Search Engine (OSE), a search engine for Components is
presented. OSE is an agent system responsible for domain information (i.e.,
domain items) search within the Odyssey infrastructure. It is composed of an
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interface agent (IA), filtering agents (FAs), and retrieval agents (RAs). The IA
is the agent responsible for display the search results according to the users’
profile. These profiles are modeled by identifying groups of users with similar
preferences, stereotypes and so forth. The FAs match user keywords and the
textual description of each component, returning those with the greatest number
of occurrences of user keywords. Finally, the RAs are the agents responsible
for searching for relevant components among different domain descriptions.

In [16], the Agora components search engine is described. Agora is a pro-
totype developed by the Software Engineering Institute at the Carnegie Mellon
University. The object of this work is to create an automatically generated, in-
dexed, worldwide database of software products classified by component type
(e.g., JavaBean, CORBA or ActiveX control). Agora combines introspection
with Web search engines in order to reduce the cost of bringing software com-
ponents to, and finding components in, the software marketplace. It supports
two basic functions: the location and indexing of components, and the search
and retrieval of a component. For the first task, Agora uses a number of agents
which are responsible for retrieving information through introspection. At the
time the paper was written, Agora supported only two kind of components:
JavaBeans, and CORBA components. The task of searching and retrieving
components is split into two distinct steps: in the first, a keyword-based search
is performed and then, once the results have been presented to the user, s/he
can refine or broaden the search criteria, based on the number and quality of
matches. interesting features of Agora is the capability of discovering auto-
matically the sites containing software components. The technique adopted
to automatically find components is quite straight-forward but appears to be
effective. Agora simply crawls the Web, as a typical Web crawler does, and
whenever it encounters a pages containing an �������������
	 tag, it downloads and
indexes the related component.

In [9], Frakes and Pole analyze the results of an empirical experiment with a
real Component Search Application, called Proteus. The study compares four
different methods to represent reusable software components: attribute-value,
enumerated, faceted, and keyword. The authors tested both the effectiveness
and the efficiency of the search process. The tests were conducted on a group of
thirty-five subjects that rated the different used methods, in terms of preference
and helpfulness in understanding components. Searching effectiveness was
measured with recall, precision, and overlap values drawn from the Information
Retrieval theory [20]. Among others, the most important conclusion cited in
the paper is that no method did more than moderately well in terms of search
effectiveness, as measured by recall and precision.

In [10], the authors cite an interesting technique for ranking components
within a set of given programs. Ranking a collection of components simply
consists of finding an absolute ordering according to the relative importance of
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components. The method followed by the authors is very similar to the method
used by the Google search engine [7]to rank Web pages: PageRank [4]. In
ComponentRank, in fact, the importance of a component2 is measured on the
basis of the number of references (imports, and method calls) other classes
make to it within the given source code.

Another interesting project is Prospector3 . It is a search engine able to seek
out code examples that use any or all of J2SE 1.4, Eclipse 3.0, and Eclipse GEF
(Graphical Editing Framework) code. IBM is working with the U.C. Berkeley
Computer Science Department to fund the venture with a fraction of its $1
billion annual developer budget. Prospector searches the graph for paths from
the "have" class to the "want" class and then converts the paths into legal Java
source code. The approach proposed by Prospector can be very interesting in
designing tools for component bridging.

The Knowledge Grid project [6]at University of Calabria also shows an inter-
esting strategy. It offers a development environment, called VEGA, where the
user can sketch a Data Mining application to be run on a set of resources known
as Knowledge Grid. Using an ad-hoc ontology for data mining application
(representing data sources, algorithms and so on), the system can show the user
a set of data bases and tools that the user can connect to run their application.

Our approach differs in that we want to limit the introduction of standards
(i.e. ontologies) from above, but rather we want to utilize naturally emerging
social patterns and links among existing software. Nonetheless, the features
and goals of their environment are of strong interest.

4. Conclusions

In this contribution, we presented our vision of a new tool allowing the
design of workflow-based Grid applications where a composition of different
workflows can be seen as a single autonomous meta-component. The main issue
presented in the work is the component search service, which allows users to
locate the components they need. We believe that in the near future there will be
a growing demand for ready-made software services, and current Web Search
technologies will help in the deployment of effective solutions. The search
engine, based on information retrieval techniques, in our opinion should be
able to rank components on the basis of: their similarity with the place-holder
description, their popularity among developers (something similar to the hit
count), their use within other services (similarly to PageRank) etc.

When this becomes available, building a Grid application will become a
straight-forward process. A non-expert user, aided by a graphical environment,

2Only Java classes are supported in this version.
3http://snobol.cs.berkeley.edu/prospector-bin/search.py
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will give a high-level description of the desired operations, which will be found,
and possibly paid for, out of a quickly evolving market of services. At that point,
the whole Grid will become as a virtual machine, tapping the power of a vast
numbers of resources.
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