
Load-Balancing and Caching for
Collection Selection Architectures

Diego Puppin, Fabrizio Silvestri, Raffaele Perego
ISTI-CNR, Pisa

name.last@isti.cnr.it

Ricardo Baeza-Yates
Yahoo! Research, Barcelona/Santiago

ricardo@baeza.cl

Abstract— To address the rapid growth of the Internet, modern
Web search engines have to adopt distributed organizations,
where the collection of indexed documents is partitioned among
several servers, and query answering is performed as a parallel
and distributed task. Collection selection can be a way to reduce
the overall computing load, by finding a trade-off between the
quality of results retrieved and the cost of solving queries. In
this paper, we analyze the relationship between the collection
selection strategy, the effect on load balancing and on the caching
subsystem, by exploring the design-space of a distributed search
engine based on collection selection. In particular, we propose a
strategy to perform collection selection in a load-driven way,
and a novel caching policy able to incrementally refine the
effectiveness of the results returned for each subsequent cache
hit. The combination of load-driven collection selection and
incremental caching strategies allows our system to retrieve two
thirds of the top-ranked results returned by a baseline centralized
index, with only one fifth of the computing workload.

I. INTRODUCTION

The Web has brought a dramatic change in the way people
publish, collect and search information. Users rely more and
more on search engine for any information task, often looking
for their needs directly in the result page (the so-called infor-
mation snacking[19]). This is why successful search engines
have to index and search quickly billions of pages, for millions
of users every day.

Very sophisticated techniques are needed to implement effi-
cient search strategies for very large document bases. Parallel
and distributed information retrieval systems are the most
natural way to tackle this problem [2].

A typical distributed information retrieval system is orga-
nized into several layers [3]. Usually a multi-site system is
exploited, where each site holds a copy (or portion) of the
collection, and comprises a number of query servers. Each
query server is, in turn, a hierarchy of modules structured as
in Figure 1. Each module is responsible for a specific task,
and it is fine-tuned to work in the best possible way given its
peculiar workload.

To increase the overall throughput, each module caches
different types of data. At the broker level, we can have
a cache of query results, i.e. results of the most frequently
submitted queries are cached for successive submissions of
the same query. At the level of the search servers (IR cores in
Figure 1), the system may instead cache the posting lists of
the most frequently accessed terms, in order to reduce retrieval

IR Core

1

idx

IR Core

2

idx

IR Core

k

idx

t1,t2,…tq r1,r2,…rr

query results

Broker

Fig. 1. Organization of a parallel information retrieval system.

time. A combination of both can be used to achieve the best
performance (as shown in [24]).

Moreover, the broker is responsible for exploiting the par-
titioning policy of the document database. Depending on the
type of data partitioning adopted, the broker responsibilities
range from forwarding each query to all the IR cores (i.e.
a pure document-partitioned IR system), to performing the
selection of proper servers to which forward distinct query
terms (i.e. a pure term-partitioned IR system). In all the cases
the broker has to receive from the IR cores their partial results,
and merge them to compute the final ranked list returned to
the user.

In the past, a lot of different architectures have been
proposed to enhance the scalability of distributed IR systems.
A common way to tackle the distributed nature of data is
collection selection. In this approach, a query is forwarded
only to the servers considered to be the most authoritative for
it. The way to measure the authoritativeness of a server is
still an open problem, addressed by many different research
groups.

In this paper, we present the problem from a novel per-
spective. We consider the realistic hypothesis that a Web IR
system with collection selection is using a cache, and we want
to exploit it to enhance not only the efficiency of the system,
but also its effectiveness. To this end we introduce a strategy to
guide collection selection using the instant load of the system
to achieve a good load balance. The broker will poll more

and more servers, if they are idle, but will reduce its requests
to only very relevant sub-collections if the system is heavily
loaded.

We also discuss a novel class of caching strategies that we
call incremental caching. When a query is submitted to our
system, its results are looked for in the cache. In the case
of a hit, some results previously retrieved from a subset of
servers will be available from the cache. The incremental cache
however will try to poll more servers for each subsequent hit,
and will update the list of top-scoring results stored in the
cache. Over time, the cached queries will get perfect coverage,
because results from all the servers will be available. This is
true, in particular, for common or bursty queries: the system
will show great performance in answering them. On the other
hand, the quality of results stored in the cache introduces
another dimension which has to be considered when the cache
is full, and one of its entry should be evicted to make place
for a new query.

The rest of the paper is organized as follows. Section
II discusses related work. Then, we present our collection
selection model in Section III. Section IV discusses our
strategies for load balancing and load reduction, while Section
V introduces the class of incremental caching policies and
proposes a framework for evaluating the effectiveness of its
integration within a collection selection IR system. Section VI
describes in detail the different caching policies possible in our
framework. The experimental results are discussed in Section
VII. Finally, Section VIII draws some conclusions and future
work.

II. RELATED WORK

There have been a lot of papers dealing with models
for partitioning a document collection. Document partitioning
(DP), in fact, has been shown by many researchers to be the
best choice among parallelization schemes, by offering the best
tradeoff between load balancing and load distribution [16], [7],
[1].

Today, it is commonly held that realistic parallel IR systems
will have to manage distinct indexes. In our opinion, a possible
way to ensure timely and economic retrieval is designing a
broker module so that it will forward a given query only
to workers managing documents related to the query topic.
In other words, we are speaking about adopting collection
selection techniques aimed at reducing a query search space
by querying only a subset of the entire group of workers
available. Nevertheless, particular attention should be paid in
using this technique. In fact, it could result in a loss of relevant
documents, causing a degradation in effectiveness.

The most common approaches to distributed IR exploit a
number of heterogeneous collections grouped by source and
time period. A collection selection index (CSI), summarizing
each collection as a whole, is used to decide which collections
are most likely to contain relevant documents for the query.
Document retrieval will take place at these collections only.
In [12] and [9] several selection methods have been compared.

The authors showed that the naı̈ve method of using only a col-
lection selection index lacks in effectiveness. Many proposals
tried to improve both the effectiveness and the efficiency of
the previous schema.

Moffat et al. [18] use a centralized index on blocks of
B documents. For example, each block might be obtained
by concatenating documents. A query first retrieves block
identifiers from the centralized index, then searches the highly
ranked blocks to retrieve single documents. This approach
works well for small collections, but causes a significant
decrease in precision and recall when large collections have
to be searched.

In [8], the authors compare the retrieval effectiveness of
searching a set of distributed collections with that of searching
a centralized one. The system they use to rank collections
is an inference network in which leaves represent document
collections, and representation nodes represent the terms that
occur in the collection. The probabilities that flow along the
arcs can be based upon statistics that are analogous to tf and
idf in classical document retrieval: document frequency df
(the number of documents containing the term) and inverse
collection frequency icf (the number of collections containing
the term). They call this type of inference network a collection
retrieval inference network, or CORI for short. They found
no significant differences in retrieval performance between
distributed and centralized searching when about half the
collections, on average, were searched for a query.

ReDDE, presented in [25], is an improvement over CORI
for collections that are uncooperative or of different sizes. It
also improves on the strategy to re-rank the results coming
from those collections. While very effective, it does not
apply to our case, as collections are cooperative and balanced
(similar size).

In [29], collection selection strategies using cluster-based
language models have been investigated. Xu et al. proposed
three new methods of organizing a distributed retrieval sys-
tem based on the basic ideas presented before. This three
methods are global clustering, local clustering, and multiple-
topic representation. In the first method, assuming that all
documents are available in one central repository, a clustering
of the collection is created; each cluster is a separate collection
that contains only one topic. Selecting the right collections
for a query is the same as selecting the right topics for the
query. This method is appropriate for searching very large
corpora, where the collection size can be in the order of
terabytes. The next method is local clustering and it is very
close to the previous one, except the assumption of a central
repository of documents. This method can provide competitive
distributed retrieval without assuming full cooperation among
the subsystems. The disadvantage is that its performance is
slightly worse than that of global clustering. The last method
is multiple-topic representation. In addition to the constraints
in local clustering, the authors assume that subsystems do
not want to physically partition their documents into several
collections. A possible reason is that a subsystem has already
created a single index and wants to avoid the cost of re-

2

indexing. However, each subsystem is willing to cluster its
documents and summarize its collection as a number of topic
models for effective collection selection. With this method a
collection corresponds to several topics. Collection selection
is based on how well the best topic in a collection matches
a query. The advantage of this approach is that it assumes
minimum cooperation from the subsystem. The disadvantage
is that it is less effective than both global and local clustering.
This paper actually introduces a technique that is similar to
ours, but while the authors base their distribution schema only
on knowledge coming from the textual collection, we also rely
on knowledge coming from the past usage of the system.

Caching is a useful technique on the Web: it enables a
shorter average response time, it reduces the workload on
back-end servers and the overall amount of utilized bandwidth.
When a user is browsing the Web, both his/her client and the
contacted servers can cache items. Browsers can cache Web
objects instead of retrieving them repeatedly, while servers
can cache pre-computed answers or partial data used in the
computation of new answers. A third possibility, although of
less interest to the scope of this paper, is storing frequently
requested objects in the proxies to mediate the communication
between clients and servers [20].

Query logs constitute a valuable source of information for
evaluating the effectiveness of caching systems. While there
are several papers analyzing query logs for different purposes,
just a few consider caching for search engines. As noted by Xie
and O’Hallaron [27], many popular queries are in fact shared
by different users. This level of sharing justifies the choice of
a server-side caching system for Web search engines.

Previous studies on query logs demonstrate that the majority
of users visit only the first page of results, and that many
sessions end after just the first query [26], [14], [13], [4].

In [26], Silverstein et al. analyzed a large query log of the
AltaVista search engine, containing about a billion queries
submitted in more than a month. Tests conducted included
the analysis of the query sessions for each user, and of the
correlations among the terms of the queries. Similarly to other
works, their results show that the majority of the users (in
this case about 85%) visit the first result page only. They
also show that 77% of the users’ sessions end up just after
the first query. A similar analysis is carried out in [14].
With results similar to the previous study, they concluded
that while IR systems and Web search engines are similar in
their features, users of the latter are very different from users
of IR systems. A very thorough analysis of users’ behavior
with search engines is presented in [13]. Besides the classical
analysis of the distribution of page-views, number of terms,
number of queries, etc., they show a topical classification of
the submitted queries that point out how users interact with
their preferred search engine. Beitzel et al. [4] analyzed a
very large Web query log containing queries submitted by a
population of tens of millions users searching the Web through
AOL. They partitioned the query log into groups of queries
submitted in different hours of the day. The analysis, then,

tried to highlight the changes in popularity and uniqueness of
topically categorized queries within the different groups.

One of the first papers that exploits user query history
is by Raghavan and Sever [22]. Although their technique is
not properly caching, they suggest using a query base, built
upon a set of persistent “optimal” queries submitted in the
past, in order to improve the retrieval effectiveness for similar
future queries. Markatos [17] shows the existence of temporal
locality in queries, and compares the performance of different
caching policies.

Lempel and Moran propose PDC (Probabilistic Driven
Caching), a new query answers caching policy based on
the idea of associating a probability distribution with all the
possible queries that can be submitted to a search engine [15].
PDC uses a combination of a SLRU cache [17] (for requests
of the first page) and a heap for storing answers of queries
requesting pages next to the first. Priorities are computed on
previously submitted queries. The distribution is built over
statistics computed on the previously submitted queries. For
all the queries that have not previously seen, the distribution
function evaluates to zero. This probability distribution is used
to compute a priority value that is exploited to order the entries
of the cache: highly probable queries are highly ranked, and
have a low probability to be evicted from the cache. Indeed,
a replacement policy based on this probability distribution is
only used for queries regarding pages subsequent to the first
one. For queries regarding the first page of results, a SLRU
policy is used [17]. Furthermore, PDC is the first policy to
adopt prefetching to anticipate user requests. To this purpose,
PDC exploits a model of user behavior. A user session starts
with a query for the first page of results, and can proceed
with one or more follow-up queries (i.e., queries requesting
successive page of results). When no follow-up queries are
received within τ seconds, the session is considered finished.
This model is exploited in PDC by demoting the priorities
of the entries of the cache referring to queries submitted
more than τ seconds ago. To keep track of query priorities, a
priority queue is used. PDC results measured on a query log
of AltaVista were very promising (up to 53.5% of hit-ratio
with a cache of 256, 000 elements and 10 pages prefetched).

Fagni et al. show that combining static and dynamic caching
policies together with an adaptive prefetching policy achieves
a high hit ratio [11]. In their experiments, they observe that
devoting a large fraction of entries to static caching along
with prefetching obtains the best hit ratio. They also show
the impact of having a static portion of the cache on a
multithreaded caching system. Through a simulation of the
caching operations they show that, due to the lower contention,
the throughput of the caching system can be doubled by
statically fixing a half of the cache entries.

The work presented in this paper tries to combine the
previous two approaches by designing a new family of caching
policies, explicitly thought for a distributed IR system based
on collection selection.

3

Query/Doc d1 d2 d3 d4 d5 d6 ... dn
q1 - 0.5 0.8 0.4 - 0.1 ... -
q2 0.3 - 0.2 - - - ... 0.1
q3 - - - - - - ... -
q4 - 0.4 - 0.2 - 0.5 ... 0.3
...
qm 0.1 0.5 0.8 - - - ... -

TABLE I
IN THE QUERY-VECTOR MODEL, EVERY DOCUMENT IS REPRESENTED BY

THE QUERY IT MATCHES (WEIGHTED WITH THE SCORE).

III. COLLECTION SELECTION
USING THE QV DOCUMENT MODEL

Traditionally, two main ways are used to model the doc-
uments from a collection: the so-called bag-of-words model,
which represent a document with the set of terms present in it;
and the vector space, which gives a different weight to every
occurring term.

These two representations are very long boolean or real
vectors, and even though they have been successfully used
in traditional IR systems, they are prone to the curse of
dimensionality [5] when used in other contexts like clustering
[30].

The QV representation of a document is built out of a query-
log. A reference search engine is used in the first phase: for
every query in the training set, the system stores the top results,
along with their score. In our case, we store 100 results.

Table I gives an example. The first query q1 recalls, in order,
d3 with score 0.8, d2 with score 0.5 and so on. Query q2
recalls d1 with score 0.3, d3 with score 0.2 and so on. We
may have empty columns, when a document is never recalled
by any query (in this example, d5). Also, we can have empty
rows when a query returns no results (q3).

To be more precise, let Q be a query log containing queries
q1, q2, . . . , qm. Let di1, di2, . . . , dini be the list of documents
returned as results to query qi. Furthermore, let rij be the
score that document dj gets as result of query qi (0 if the
document is not a match).

A document dj is represented as an m-dimensional vector
d̄j = [r̄ij]

T , where r̄ij ∈ [0, 1] is the normalized value of rij :

r̄ij =
rij∑
ij rij

We call this a query vector, because we represent documents
by the score of the queries it matches. The r̄ij values form a
contingency matrix R, which can be seen as a joint probability
distribution and used by the co-clustering algorithm by Dhillon
et al. [10]. Their approach creates, simultaneously, clusters
of rows (queries) and columns (documents) out of an initial
matrix, with the goal of minimizing the loss of information. To
improve performance, empty columns and rows are removed
from the matrix before clustering. Documents corresponding
to empty columns are put together in an overflow document
cluster.

PCAP dc1 dc2 dc3 dc4 dc5 rq(qci)
qc1 0.5 0.8 0.1 0.2
qc2 0.3 0.2 0.1 0.8
qc3 0.1 0.5 0.8 0

rq(dc1) = 0× 0.2 + 0.3× 0.8 + 0.1× 0 = 0.24
rq(dc2) = 0.5× 0.2 + 0 + 0 = 0.10
rq(dc3) = 0.8× 0.2 + 0.2× 0.8 + 0 = 0.32
rq(dc4) = 0.1× 0.2 + 0 + 0 = 0.02
rq(dc5) = 0 + 0.1× 0.8 + 0 = 0.08

TABLE II
EXAMPLE OF PCAP TO PERFORM COLLECTION SELECTION.

The result of co-clustering is a matrix P̂ defined as:

P̂ (qca, dcb) =
∑

i∈qcb

∑
j∈dca

r̄ij

Each entry P̂ (qca, dcb) sums the contributions of r̄ij for the
queries in the query cluster qca and the documents in docu-
ment cluster dcb. The values of this matrix, called PCAP, are
important because they measure the relevance of a document
cluster to a given query cluster.

This induces a simple but effective collection selection
algorithm. The queries belonging to each query cluster are
joined together into query dictionary files. Each dictionary files
stores the text of each query belonging to a cluster, as a single
text file. When a new query q is submitted to the IR system,
the BM25 [23] metric is used to find which clusters are the
best matches: each dictionary file is considered as a document,
which is indexed in the vector space, and then queried with
the usual BM25 technique. This way, each query cluster qci

receives a score relative to the query q, say rq(qci).
This is used to weight the contribution of PCAP P̂ (i, j) for

the document cluster dcj , as follows:

rq(dcj) =
∑

i

rq(qci)× P̂ (i, j)

Table II gives an example. The top table shows the PCAP
matrix for three query clusters and five document clusters.
Suppose BM25 scores the query-clusters respectively 0.2, 0.8
and 0, for a given query q. After computing rq(dci), we will
choose the collection dc3, dc1, dc2, dc5, dc4 in this order.

In [21], PCAP is shown to out-perform CORI for the task
of combined document partitioning and collection selection.
We will use PCAP in all our experiments including collection
selection. In particular, the overflow cluster, with documents
never recalled, is queried only when there is no match in the
query dictionaries, or when the server holding it is idle.

IV. APPLICATIONS TO LOAD REDUCTION

Document partitioning is the strategy usually chosen by the
most popular web search engines [6]. Each document in the
base is assigned to one computing server, which creates a
local index of its subset of documents. By sharing the global
statistics on term frequencies, the servers can have coherent
document scoring. A broker, in front of the computing servers,

4

has the responsibility of routing the query to the servers, and
collecting results from them.

The broker may choose among two main strategies for
scheduling a query: a naı̈ve, yet very common, way is to
broadcast each query to all the underlying servers; the second
one is to perform collection selection and use only a subset of
servers. By doing so, the total computing load can be reduced.
Here, we want to minimize the number of queried collections
that are required to achieve a given level of precision. In [21],
we show that using collection selection we can get very good
coverage by querying only a limited number of clusters. We
present here a set of strategies to reduce the computing load in
a search engine, by exploiting the QV’s strength in collection
selection.

If the search engine broadcasts the query to each server, we
have that each of them, obviously, has to elaborate 100% of
the queries. If we choose to query only one of N servers (the
most promising one), each server, on average, will elaborate
a fraction 1/N of the queries. There can be peaks when one
server is hit more often than the others, which can raise the
fraction it has to elaborate in a given time window. Clearly,
this strategy reduces the number of results returned to the user.
There is a trade-off in result quality and computing load. If
we want to increase the quality, we can query more servers
each time, with a growth in the average load to each server.

Due to the nature of data used in our test set (web pages
and a query log), we do not have a large enough collection of
human-chosen relevant documents for each query: it is impos-
sible to have a valid measure of precision. Thus, following the
example of previous works [28], we count the coverage, i.e.
how many of the top results, as returned by a reference search
engine, are available from the selected collections (see the next
section). In [21], we show that, in a configuration with 16+1
servers, the coverage is about one third, for different values
of M .

We simulated a distributed search engine, doing some
simplifying assumptions.

• The computing load of an IR core to answer one query
on its local index is counted as 1, independently from
the query and the queried server. This is justified by the
fact that the sub-collections are of similar size. The server
holding the overflow collection, composed of about 50%
documents, is considered to be 16 times slower than the
other servers.

• We measure the computing load of a server as the number
of queries that are forwarded to it within a window of the
query load. Unfortunately, we could not use information
on query timing. So, a server contacted for each query
in a given window, has 100% load. A server contacted
by one query out of two, has 50% load. We imagine to
have very big machines that can handle the full load, and
then we cap the maximum load so to use smaller, low-fat
machines.

• The search engine front-end can merge the results coming
from the servers and sort them. This can be done just by
computing the global term statistics at the end of the

indexing.

Our simulation works as follows. Each query is submitted to
a centralized search engine that indexes all the documents. We
used Zettair1, a compact and fast text search engine designed
and written by the Search Engine Group at RMIT University.

Using the clustering results of the co-clustering algorithm,
we know how many of the top-ranking documents are stored
in each sub-collection.

We use our collection selection strategy to rank the docu-
ment clusters, and then we choose to which servers we should
broadcast the query, according to different strategies (below).
At this point, we can record an increase in the load for the
servers hit by the query, and we compute the coverage.

Collection selection was done in different ways:

• Fixed < T >: it chooses the first T servers, with T
given once for all. The computing load can increase
freely in this configuration. This was used to measure
the computing power required to sustain a guaranteed
number of queried servers.

• Load-driven basic < l >: the system contacts all servers,
with different priority. The query will be forwarded first
to the best server, unless it is overloaded. The second
server is contacted with lower priority, i.e. if its load is
not greater than, say, 90% the maximum. The third one
is also contacted with even lower priority, i.e. in the case
its load is lower than, say, 80% the maximum, and so on.
The last one is contacted only if it is idle. This is done
to prioritize queries to the most promising servers: if two
queries involve a server s, and the load in s is high, only
the query for which s is very promising will be served
by s, and the other one will be dropped. This way, the
overloaded server will be not hit by queries for which it
is only a second choice.
We set the load threshold l to match the values measured
with the previous strategy. For instance, if we measure
that with with fixed 4, the peak load is 40%, we compare
it with load-driven basic < 40% >.

• Load-driven boost < l, T >: same as load-driven, but
here we contact the first T servers with maximum priority,
and then the other ones with linearly decreasing priority.
By boosting, we are able to keep the lower loaded servers
closer to the load threshold. Boosting is valuable when
the available load is higher, as it enables us to use the
lower loaded servers more intensively.

The fixed strategy is used to measure the load needed to
guarantee that T servers will be used to answer each query, and
the coverage we can get under this scheme. The load-driven
strategies are ways to exploit the difference in computing load
of different servers.

The interaction with a caching system is very interesting.
If we have a fixed selection, the cache will store the results
from the chosen T servers. In case of a hit, the stored results
will be used to answer the query.

1Available under a BSD-style license at http://www.seg.rmit.edu.au/zettair/.

5

In the case of the load-driven selection, the cache still stores
the results of the servers that accepted the query. As just said,
many servers can be dropped if they are overloaded or the
priority is low. In case of a hit, the system will contact again
the servers not contacted before. If they answer this time, their
results will be added to the cache. This way, a repeated query
can, over time, get very good coverage.

V. INCREMENTAL CACHING

As shown in Figure 1, a distributed Web IR system is
composed of a set of k IR core servers. Each of them usually
indexes a disjoint sub-collection of documents, which are
partitioned according to some predetermined strategy. In the
following, we will give some definitions that will serve to
define our family of Incremental Caching policies.

Definition 1: A query-result record is a quadruple of the
form < q, p, r, s >, where: q is the query string, p is the
number of the page of results requested, r is the ordered list
of results associated to q and p, s is the set of servers from
which results in r are returned. Each result is represented by
a pair < doc id, score >.

As anticipated, if we cache an entry < q, p, r, s >, this
means that only the servers in s were selected and polled, and
that they returned r. Also, since in an incremental cache results
stored might be updated, we need to store the score (along with
the document identifier) to compare the new results with the
old ones.

From this first definition, we can see the first difference
between a traditional and an incremental cache: results in an
incremental cache are continuously modified by adding results
from the servers that have not been queried yet. The set s
serves to this purpose and keeps track of the servers that have
been contacted so far.

Definition 2: The result list returned by the IR system
(using caching and collection selection) for a query q is
indicated as r (q).

Definition 3: The result list obtained by querying all the k
IR core servers for a query q is denoted by r∗ (q).

We can have that r (q) 6⊂ r∗ (q), because the subset of IR
core servers queried so far returned low-relevance results that
are not included when we get additional relevant results.

Definition 4: Let q be a query, and R be an incremental
replacement policy. We define coverage for a query the value

cR =
|r (q) ∩ r∗ (q)|

|r∗ (q)|
If |r∗ (q)| = 0, cR is not defined and does not contribute to
average.

Definition 5: Let Q be a query stream, and Q1 ⊂ Q the set
of queries with at least one match. Let R be an incremental
caching replacement policy. We define the average coverage
as:

cR (Q) =

∑
q∈Q1

cR (q)

|Q1|
We are also interested in measuring the peak load that a

server has to manage when dealing with a query stream. This

is important because a server has to be sized up to the peak
load, if we want to be able to serve all request.

Definition 6: For each IR core server in the system, given
an incremental cache replacement policy R, a query stream Q,
and a window size W , we call instant load at time t li,tR (Q)
the fraction of queries answered by server i from the set of W
queries ending at t. We define the peak load for i liR (Q) as
the maximum li,tR (Q) over t, and the maximum load lR (Q)
as the maximum liR (Q) all over the k servers.

In our experiments, we set W equal to 1000, i.e. we keep
track of the maximum fraction of queries that hit a server out
of a rotating window of 1000 queries. With no cache and no
collection selection, we expect to have a maximum load of
100%.

Definition 7: For a query stream Q, and an incremental
caching policy R, the hit-ratio hR (Q) is the number of queries
answered by the incremental cache divided by the number of
queries in Q.

Now that we have defined these concepts, we can easily
define the three parameters that will help us in measuring the
performance of an incremental caching system.

Performance Indicators of an Incremental Cache
The performance of an incremental cache using replace-
ment policy R on a query stream Q can be measured
by three different metrics:

1) the hit-ratio hR (Q);
2) the average coverage cR (Q);
3) the maximum load lR (Q).

VI. DIFFERENT TYPES OF INCREMENTAL CACHES

We will present a list of possible cache approaches, starting
from a very simple system to more complex incremental
caches. With this, we would like to explore the design-space
of this important component of an IR system.

A. No caching, no collection selection

This policy consists simply of forwarding each query to
each IR core, with no caching at all.

ΦN (q, p)

1) Forward the query to all the k servers;
2) collect results r;
3) don’t cache results;
4) return r.

B. No caching, selection policy ρ (q)

This policy applies collection selection, in order to reduce
the computing load, but does not perform caching. The system
selects a subset s of the k IR core servers using the collection
selection strategy ρ (q), and then forwards them the query. The
selection policy can be as simple as a random choice, or more
complex as CORI [8] or PCAP [21].

6

Φρ (q, p)

1) Select s using ρ (q);
2) forward the query to s;
3) collect results r from s;
4) don’t cache results;
5) return r.

C. Caching policy P , no collection selection

This caching policy corresponds to apply a standard cache
(using replacement policy P) to a pure document-partitioned
distributed IR system. If the results for a query are not found
in cache, then the query is forwarded to all the servers.

P (q, p)

1) Look up (q,p).
2) If found < q, p, r >:

a) update the cache according to P ;
b) return r.

3) If not found:
a) forward the query to all servers;
b) let r be the result set;
c) select and remove the best candidate for

replacement;
d) store < q, p, r >;
e) return r.

Please note that, the caching policy could choose not to
remove any stored entry and drop the new results instead, if
the entry is believed to be a one-timer. This is planned to be
part of our future work.

D. Caching policy P , selection policy ρ (q)

In this case, the cache is storing the results coming from
the selected servers, for the query q. Subsequent hits are not
changing the result set.

Pρ (q, p)

1) Look up (q,p).
2) If found < q, p, r >:

a) update the cache according to P ;
b) return r.

3) If not found:
a) forward the query to a subset of the k

servers, s, selected as ρ (q);
b) let r be the result set;
c) select and remove the best candidate for

replacement;
d) store < q, p, r >;
e) return r.

Caching Yes / No / Incremental result update
Collection Selection CORI / PCAP / Random / None
Selection Strategy Fixed number (choosing N)

/ Load driven (choosing load)
Cache partitioning Full dynamic / SDC

TABLE III
THE DESIGN-SPACE FOR A COLLECTION SELECTION SYSTEM WITH

CACHING.

E. Incremental caching policy P̃ , selection policy ρ (q)

This approach differs from the previous because, at each
hit, the system adds results to the cached entry, by querying
further servers each time.

P̃ρ (q, p)

1) Look up (q,p).
2) If found < q, p, r, s >:

a) forward the query to the appropriate sub-
set of servers (excluding s); add them to
s;

b) add the results to r, and update s;
c) update the cache according to P̃ ;
d) return r.

3) If not found:
a) forward the query to a subset of the k

servers, s, selected as ρ (q);
b) let r be the result set;
c) select and remove the best candidate for

replacement;
d) store < q, p, r, s >;
e) return r.

Once chosen the main caching structure, several options
are still available for the collection selection approach and the
cache structure.

Load-driven collection selection: There are two main
ways of performing collection selection, as shown in the
previous section: fixed or load-driven (possibly with boost). In
the second case, clearly, the broker has to model the dynamic
load of each server, e.g. by counting the number of queries
forwarded to each in a time window. The priority is used
to prevent queries from overloading low-relevance servers,
leaving them free to answer when the priority is higher.

Static-Dynamic Caching (SDC): The system could use
the SDC caching policy introduced by Fagni [11], and reserve
a part of the resources to a static cache.

All these choices can be combined in any desired combina-
tions, generating a very large design-space (see Table III).

VII. EXPERIMENTAL RESULTS

A. Setup

We performed all our test using the WBR99 collection.
WBR99 consists of 5,939,061 documents, about 22 GB un-

7

compressed, representing a snapshot of the Brazilian Web
(domains .br) as spidered by www.todobr.com.br. It comprises
about 2,700,000 different terms. We could use also the query
log of www.todobr.com.br for the period January through
October 2003. The main features of our data are:

d : 5,939,061 documents taking (uncompressed) 22 GB;
t : 2,700,000 unique terms;
t′ : 74,767 unique terms in queries;
tq : 494,113 (190,057 unique) queries in the training set;
q1 : 194,200 queries in the test set;
ed : 3,128,366 documents never recalled;
dc : 16 + 1 document clusters;
qc : 128 query clusters.

For our experiment, we used Zettair. We modified it so to
implement the PCAP collection selection strategy. The query-
vector representation is built using, as a training set, the first
three weeks of our query log, which comprise about 190,000
unique queries. We chose to use only unique queries, as
samples of the users’ interests.

This means that, at the logical level, documents are repre-
sented by vectors in R190,000. On the other side, the vector-
space representation is a vector in R2,700,000, because we have
2,700,000 distinct terms in our base.

After removing the empty QV documents (documents never
recalled during training), the collection was clustered into 16
document clusters. The empty QV documents were grouped
into an overflow cluster. This means that the overall cluster is
holding about 50% of the collection, while the other 16 servers
are holding 1/32 each. In our experiments, we considered the
overflow cluster to be 16 times slower.

We also created 128 query clusters, which were transformed
into query dictionaries and indexed to be used by PCAP (as
explained above). In the test we show below, co-clustering
algorithm was run with 20 iterations. Due to limited space,
we cannot show the results with different configurations, but
they are very similar in the main trends.

We used the fourth week from the query-log as test set: the
queries from the fourth week were submitted to the distributed
search engine, and we measured the coverage of the selected
collections. In this case, we do not use unique queries, but all
occurring queries, because this is a more faithful estimation
of the coverage as perceived by users.

We do not show here the results measured when using the
fifth week, because they do not present major differences.

B. System configurations and results

We tested five system configurations, with three cache sizes
(8000, 16000 and 32000 entries):

1) No caching, no collection selection;
2) Caching policy LRU, no collection selection;
3) Caching policy LRU, selection policy PCAP, fixed

choice (1, 2, 4, 8);
4) Caching policy LRU, selection policy PCAP, load-driven

choice (21.1, 32.5, 43.9, 55.5);
5) Incremental caching policy LRU, selection policy PCAP,

load-driven choice (21.1, 32.5, 43.9, 55.5).

The values 21.1, 32.5, 43.9 and 55.5 represent the peak
load reached in the third configuration. In configuration 4 e
5, we try to poll servers, in a load-driven way, up to these
load thresholds. Load-driven basic selection resulted inferior
to load-driven boosted selection in all circumstances. Due to
limited space, we do not show the comparison, and in the
following we will always use the boosted version. Results are
shown in Table IV.

The first experiment is used to set up our reference. It
reaches 100% load because of its lack of cache and selection.
The net effect of caching is measured by the second config-
uration. The hit ratio varies from 51.8% to 55.9%, according
to the cache size. This is a very good result, as an infinite
cache would reach a 57% hit ratio on our query-log, with more
than 84,000 unique entries. Interestingly, only about 54,000 of
this cache entries are read after their creation, because about
30,000 queries are one-timer. Some recent studies are trying
to address this issue. In any case, the cache reduces the load
of about 40% (from 100% down to 58.1%).

The next strategies are very strong in reducing the load,
at the cost of a reduction in result quality: by performing
collection selection, we can reduce the number of queries that
reaches each server, but clearly some results will be lost. First,
we tested a fixed collection selection, that polls 1, 2, 4 and 8
servers.2 We measured that, in these configurations, the peak
load is about 21.1%, 32.5%, 43.9% and 55.5% respectively.
These values were used as threshold for the configurations
with dynamic selection (with and without incremental cache).

Even if the fixed collection selection brings some benefit,
with a very nice trade-off of coverage vs. load, the most
impressive results are reached with load-driven selection.
With a very limited load (21.1%), the load-driven collection
selection strategy can go over 57% coverage. The incremental
cache is able to give another boost, by improving the coverage
of frequent queries: the average coverage raises to 65% - 67%
(varying with the cache size).

Figure 2 shows the effect of the advanced strategies on
coverage, with a cache of 32000 entries. When using the fixed
collection selection strategy, the shown load levels are reached
by polling 1, 2, 4 and 8 servers. In these configurations, the
coverage ranges from 37% to 75%. With the dynamic collec-
tion selection, coverage improves clearly, ranging from 58.8%
to 83.5%. With the incremental cache, repeated queries retrieve
more results, from more servers, improving the perceived
quality of results: the more common a query is, the more
servers will be used to answer to it. The coverage improves
radically, ranging from 67.6% to 87.1%.

Clearly, the biggest benefits are measured with small load
threshold levels. When the threshold level is higher, we
can retrieve more results with each approach, reducing the
differences. With very small load threshold, 21%, we can still
retrieve more than 2/3 of the results we would get from the
full index. In this configuration, each server is holding a very

2Clearly, by selecting all 17 servers, we are back to the previous configu-
ration, with no selection. By selecting 16 servers, still there is no collection
selection, but we skip all the results coming from the overflow cluster.

8

Cache size Coll. selection Incremental Coverage % Hit-Ratio % Max Load %
0 None 100 0 100.0
8000 None 100 51.8 58.3
8000 Fixed (1) 37 51.8 21.1
8000 Fixed (2) 47 51.8 32.3
8000 Fixed (4) 59 51.8 43.0
8000 Fixed (8) 75 51.8 54.6
8000 Fixed (17) 100 51.8 58.3
8000 Load-dr. (21.1) 57 51.8 21.1
8000 Load-dr. (32.5) 65 51.8 32.5
8000 Load-dr. (43.9) 72 51.8 43.9
8000 Load-dr. (55.5) 82 51.8 55.5
8000 Load-dr. (21.1) Increm. 65 51.8 21.1
8000 Load-dr. (32.5) Increm. 72 51.8 32.5
8000 Load-dr. (43.9) Increm. 78 51.8 43.0
8000 Load-dr. (55.5) Increm. 85 51.8 52.8
16000 None 100 53.7 58.2
16000 Fixed (1) 37 53.7 21.2
16000 Fixed (2) 47 53.7 32.1
16000 Fixed (4) 59 53.7 42.1
16000 Fixed (8) 75 53.7 54.3
16000 Load-dr. (21.1) 57 53.6 21.1
16000 Load-dr. (32.5) 65 53.7 32.5
16000 Load-dr. (43.9) 73 53.7 43.9
16000 Load-dr. (55.5) 82 53.7 55.5
16000 Load-dr. (21.1) Increm. 65 53.6 21.1
16000 Load-dr. (32.5) Increm. 72 53.7 32.5
16000 Load-dr. (43.9) Increm. 78 53.7 43.0
16000 Load-dr. (55.5) Increm. 86 53.7 52.8
32000 None 100 55.9 58.2
32000 Fixed (1) 37 55.9 21.2
32000 Fixed (2) 47 55.9 31.8
32000 Fixed (4) 59 55.9 42.2
32000 Fixed (8) 75 55.9 54.3
32000 Load-dep (21.1) 58.8 55.9 21.1
32000 Load-dep (32.5) 66.7 55.9 32.5
32000 Load-dep (43.9) 74.2 55.9 43.9
32000 Load-dep (55.5) 83.5 55.9 55.5
32000 Load-dep (21.1) Increm. 67.6 55.9 21.1
32000 Load-dep (32.5) Increm. 74.6 55.9 32.5
32000 Load-dep (43.9) Increm. 80.3 55.9 43.0
32000 Load-dep (55.5) Increm. 87.1 55.9 52.8

TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS

small part of the collection, about 1/32, and is polled every
five queries. Alternatively, with a peak load of 32.5% (less
than 1/3), our system covers almost 75% results.

The incremental cache has also a very beneficial effect for
queries with hard collection selection. If a query is composed
of terms not present in the training set, PCAP will not be able
to make a strong choice, and the selection will be ineffective. If
the query is popular, subsequent hits will retrieve more results,
reducing the effects of a wrong selection.

VIII. CONCLUSIONS

In this paper, we analyzed the design space of a distributed
IR system featuring caching and collection selection. We de-
scribed different approaches to collection selection, designed
to reduce the computing load on the underlying IR system.
Our load-driven collection selection system can poll, with
decreasing priority, less promising servers, this way exploiting
all the available computing load.

Also, the cache can be designed to interact with the selection

Average Coverage

0

10

20

30

40

50

60

70

80

90

100

21.1 32.5 43.9 55.5

Maximum Load

C
o

v
e
r
a
g

e

Fixed

Load-dep

Load-dep incr

Fig. 2. Coverage comparison, with different strategies, with a LRU cache
of 32000 entries. For the fixed strategy, the load levels correspond to polling
1, 2, 3 and 4 servers.

9

system, by updating results in an incremental way. Every time
there is a cache hit, further servers are polled, and their results
are added to the cached entries. An incremental cache, over
time, stores non degraded results for frequent queries, as all
servers will be polled on subsequent hits.

The results are dramatic. We used PCAP to move 50% of
our base in an overflow server, and then we partitioned the
remaining into 16 clusters: each server is holding about 1/32
of the base. By limiting the peak load to about 20% (i.e. by
sending, on average, one query out of five to each sub-server),
we are able to cover more than 2/3 of the results we would
retrieve from a centralized index, with the full collection.
This result is reached by using a small LRU cache (32000
elements), load-driven collection selection and incremental
result updating. Alternatively, we can cover 3/4 of the results
with a peak load of 32.5%.

We believe that collection selection can be a key element in
improving the performance and scalability of modern search
engines, by offering a very nice trade-off between result qual-
ity and query cost (load). It is also able to adapt dynamically
to load peaks, by temporarily reducing the result quality.

This strategy can also be used on bigger systems, on
each sub-collection. Commercial systems can index billions
of pages, with sub-clusters holding millions at a time. Our
strategy can be used on each sub-cluster, in a hierarchical
architecture: each set of millions of documents can be par-
titioned and then collection selection can be used to reduce
the computing load.

Acknowledgments: This work was partially supported by
XtreemOS, an Integrated Project supported by the European
Commission’s IST program (#FP6-033576).

REFERENCES

[1] Claudine Santos Badue, Ramurti Barbosa, Paulo Golgher, Berthier
Ribeiro-Neto, and Nivio Ziviani. Distributed processing of conjunctive
queries. In HDIR ’05: Proceedings of the First International Workshop
on Heterogeneous and Distributed Information Retrieval (HDIR’05),
SIGIR 2005, Salvador, Bahia, Brazil, 2005.

[2] Ricardo Baeza-Yates, Carlos Castillo, Flavio Junqueira, Vassilis Pla-
chouras, and Fabrizio Silvestri. Challenges in distributed information
retrieval (invited paper). In ICDE, 2007.

[3] L. A. Barroso, J. Dean, and U. Hölze. Web search for a planet: The
google cluster architecture. IEEE Micro, 22(2), Mar/Apr 2003.

[4] Steven M. Beitzel, Eric C. Jensen, Abdur Chowdhury, David Grossman,
and Ophir Frieder. Hourly analysis of a very large topically categorized
web query log. In SIGIR, 2004.

[5] Richard Bellman. Adaptive Control Processes. Princeton University
Press, Princeton, NJ., 1961.

[6] S. Brin and L. Page. The Anatomy of a Large–Scale Hypertextual Web
Search Engine. In Proceedings of the WWW7 conference / Computer
Networks, volume 1–7, pages 107–117, April 1998.

[7] Fidel Cacheda, Vassilis Plachouras, and Iadh Ounis. A case study of
distributed information retrieval architectures to index one terabyte of
text. Inf. Process. Manage., 41(5):1141–1161, 2005.

[8] J.P. Callan, Z. Lu, and W.B. Croft. Searching Distributed Collections
with Inference Networks. In E. A. Fox, P. Ingwersen, and R. Fidel,
editors, Proceedings of the Eighteenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
pages 21–28, Seattle, WA, July 1995. ACM Press.

[9] N. Craswell, P. Bailey, and D. Hawking. Server Selection on the World
Wide Web. In Proceedings of the Fifth ACM Conference on Digital
Libraries, pages 37–46, 2000.

[10] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-
clustering. In Proceedings of The Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining(KDD-2003),
pages 89–98, 2003.

[11] Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri, and Salvatore Or-
lando. Boosting the performance of web search engines: Caching and
prefetching query results by exploiting historical usage data. ACM Trans.
Inf. Syst., 24(1):51–78, 2006.

[12] David Hawking and Paul Thistlewaite. Methods for Information Server
Selection. ACM Transactions on Information Systems, 17(1):40–76,
1999.

[13] Bernard Jansen and Amanda Spink. How are we searching the World
Wide Web? A comparison of nine search engine transaction logs. Inf.
Proc. & Management, 42:248–263, 2006.

[14] Bernard J. Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic.
Real life information retrieval: a study of user queries on the web. SIGIR
Forum, 32(1):5–17, 1998.

[15] Ronny Lempel and Shlomo Moran. Predictive caching and prefetching
of query results in search engines. In WWW, 2003.

[16] A. MacFarlane, J. A. McCann, and S. E. Robertson. Parallel search using
partitioned inverted files. In SPIRE ’00: Proceedings of the Seventh
International Symposium on String Processing Information Retrieval
(SPIRE’00), page 209, Washington, DC, USA, 2000. IEEE Computer
Society.

[17] Evangelos P. Markatos. On Caching Search Engine Query Results.
Computer Communications, 24(2):137–143, 2001.

[18] Alistair Moffat and Justin Zobel. Information Retrieval Systems for
Large Document Collections. In Proceddings of the Text REtrieval
Conference, pages 85–94, 1994.

[19] J. Nielsen. Information foraging: Why google makes people leave your
site faster. Available at: http://www.useit.com/alertbox/20030630.html,
2003.

[20] Stefan Podlipnig and Laszlo Boszormenyi. A survey of web cache
replacement strategies. ACM Comput. Surv., 35(4):374–398, 2003.

[21] D. Puppin, F. Silvestri, and D. Laforenza. Query-driven document
partitioning and collection selection. In Infoscale 2006, 2006.

[22] Vijay V. Raghavan and Hayri Sever. On the reuse of past optimal queries.
In Proceedings of the 18th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 344–350,
1995.

[23] S. E. Robertson and S. Walker. Some simple effective approximations to
the 2-poisson model for probabilistic weighted retrieval. In SIGIR ’94:
Proceedings of the 17th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 232–241,
New York, NY, USA, 1994. Springer-Verlag New York, Inc.

[24] Patricia Correia Saraiva, Edleno Silva de Moura, Nivio Ziviani, Wagner
Meira, Rodrigo Fonseca, and Berthier Ribeiro-Neto. Rank–Preserving
Two–Level Caching for Scalable Search Engines. In Proceedings of
the SIGIR2001 conference, New Orleans, LA, September 2001. SIGIR,
ACM.

[25] L. Si and J. Callan. Relevant document distribution estimation method
for resource selection, 2003.

[26] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis of a
very large web search engine query log. In ACM SIGIR Forum, pages
6–12, 1999.

[27] Yinglian Xie and David R. O’Hallaron. Locality in search engine queries
and its implications for caching. In INFOCOM, 2002.

[28] Xu, Jinxi, and W.B. Croft. Effective Retrieval with Disributed Col-
lections. In Proceedings of SIGIR98 conference, Melbourne, Australia,
August 1998.

[29] Jinxi Xu and W. Bruce Croft. Cluster-Based Language Models for
Distributed Retrieval. In Research and Development in Information
Retrieval, pages 254–261, 1999.

[30] G. Zervas and S.M. Rger. The curse of dimensionality and document
clustering. In the IEEE Searching for Information: AI and IR Ap-
proaches, 1999.

10

