
Adapting Convergent Scheduling
Using Machine-Learning

Diego Puppin
Institute for Information Science and Technologies

ISTI - CNR, Pisa, Italy
diego.puppin@alum.mit.edu

Mark Stephenson, Saman Amarasinghe,
Martin Martin and Una-May O’Reilly
Massachusetts Institute of Technology�

mstephen, saman � @cag.lcs.mit.edu�
mcm, unamay � @ai.mit.edu

Abstract

Convergent scheduling is a general framework for in-
struction scheduling and cluster assignment for parallel,
clustered architectures. A convergent scheduler is composed
of many independent passes, each of which implements a
specific compiler heuristic. Each of the passes shares a
common interface, which allows them to be run multiple
times, and in any order. Because of this, a convergent sched-
uler is presented with a vast number of legal pass orderings.

In this work, we use machine-learning techniques to au-
tomatically search for good orderings. We do so by evolv-
ing, through genetic programming, s-expressions that de-
scribe a particular pass sequence, where some passes can
be executed conditionally if some conditions are found in
the given code. In particular, we implemented a few tests on
the present state of the code being compiled. We are able
to find improved sequences for a range of clustered archi-
tectures. These sequences were tested with cross-validation,
and generally outperform Desoli’s PCC and UAS.

1. Introduction

Instruction scheduling on modern microprocessors is an
increasingly difficult problem. In almost all practical in-
stances, it is NP-complete, and it often faces multiple con-
tradictory constraints. For superscalars and VLIWs, the two
primary issues are parallelism and register pressure. Tradi-
tional scheduling frameworks handle conflicting constraints
and heuristics in an ad hoc manner. One approach is to di-
rect all efforts toward the most serious problem. For exam-
ple, many RISC schedulers focus on finding ILP and ig-
nore register pressure altogether. Another approach is to at-
tempt to address all the problems together. For example,
there have been reasonable attempts to perform instruction
scheduling and register allocation at the same time. The

third, and most common approach, is to address the con-
straints one at a time in a sequence of passes. This approach
however, introduces pass ordering problems, as decisions
made by early passes are based on partial information and
can adversely affect the quality of decisions made by sub-
sequent passes.

Convergent Scheduling alleviates pass ordering prob-
lems by spreading scheduling decisions over the entire com-
pilation. Each pass makes soft decisions about instruction
placement: it asserts its preference of instruction placement,
but does not impose a hard schedule on subsequent passes.
All passes in the convergent scheduler share a common in-
terface: the input and output to each one is a collection of
spatial and temporal preferences of instructions: a pass op-
erates by modifying these data. As the scheduler applies the
passes in succession, the preference distribution will con-
verge to a final schedule that incorporates the preferences
of all the constraints and heuristics.

Passes can be run multiple times, and in any order.
Thus, while mitigating ordering problems due to hard con-
straints, a convergent scheduler is presented with a limit-
less number of legal pass orders. In our previous work [6],
we tediously hand-tuned the pass order. This paper builds
upon it by using machine learning techniques to automat-
ically find good orderings for a convergent scheduler. Be-
cause different parallel architectures have unique schedul-
ing needs, the speedups our system is able to obtain by cre-
ating architecture-specific pass orderings is impressive.

Equally impressive is the ease with which it finds effec-
tive sequences. Using a modestly sized cluster of worksta-
tions, our system is able to quickly find good convergent
scheduling sequences. In less than two days, it discovers se-
quences that produce speedup ranging from 12% to 95%
over previous work, and generally outperform UAS [7] and
PCC [3].

The rest of this paper is structured as follows: in the next
section, our genetic programming and compiler frameworks
are described. Section 3 reports our results, which are com-

pared with related work in section 4. Finally, section 5 con-
cludes.

2. Experimental Infrastructure

2.1. Genetic Programming

From one generation to the next, architectures in the
same processor family may have extremely different inter-
nal organizations, and thus have unique compilation needs.
We therefore developed a machine-learning tool to automat-
ically customize our convergent scheduler to any given ar-
chitecture. The tool generates a sequence of passes from
those described in [6].

Of the many available machine-learning techniques, we
chose to employ genetic programming (GP) because its at-
tributes fit the needs of our application. As many other evo-
lutionary algorithms, it is based on the thesis that a compu-
tational version of fitness-based selection, reproductive in-
heritance and blind variation acting upon a population will
lead the individuals in subsequent generations to adapt to-
ward better performance in their environment.

GP’s attractive features include its ability to explore
high-dimensional spaces, its high scalability (it can run ef-
fectively on a distributed cluster of workstations), and the
fact that its solutions are human-readable, compared with
other algorithms (e.g. neural networks) where the solution
is embedded in a very complex state space.

In the general GP framework, individuals are represented
as parse trees (or equivalently, as LISP s-expressions). In
our case, the parse trees represent a sequence of condition-
ally executed passes. Table 1 shows the grammar we use to
describe pass orders. The � variable � expression is used to
extract pertinent information about the status of the sched-
ule, and the shape of the block under analysis. This intro-
spection allows the scheduler to run different passes based
on state of the schedule. The variables that our system con-
siders currently are shown in table 2.

The algorithm starts by creating an initial population of
200 random expressions. It then compiles and runs each of
the benchmarks in our training set for each individual in the
population. Each individual is then assigned a fitness based
on how fast each of the associated programs in the train-
ing set executes. In our case, the fitness is simply the av-
erage speedup for the benchmarks in the training set, com-
pared to the hand-tuned sequence used in [6]. We also re-
ward parsimony by giving preference to the shorter of two
otherwise equivalently fit sequences.

The weakest individuals (20%) are discarded, and re-
placed with new individuals: half of them completely ran-
dom, the other half created via the crossover operator from
the fittest individuals. To guard against stagnant popula-
tions, GP often uses mutation. One possible mutation sim-

�
sexpr � ::= (‘sequence’

�
sexpr � �

sexpr �)�
(‘if’

�
variable � �

sexpr � �
sexpr �)�

(
�
pass �)

�
variable � ::= #1 - Is imbalanced�

#2 - Is fat�
#3 - Is within CPL�
#4 - Is placement bad

�
pass � ::= ‘PATH’

�
‘COMM’

�
‘NOISE’

�
‘INITTIME’�

‘SUCC’
�
‘LOAD’

�
‘EDGES’

�
‘DEP’�

‘BEST’
�
‘FUNC’

�
‘PLACE’

�
‘FIRST’�

‘SEQUENTIAL’
�
‘CLUSTER’

�
‘EMPHCP’

Table 1. Grammar for genome s-expressions.

ply replaces a randomly chosen subtree with a new random
expression. The GP algorithm halts when a user-defined
number of iterations (40, in our case) has been reached.

2.2. Compiler Flow and
Simulation Environment

Our compilation process begins in the SUIF front-
end [8]. In addition to performing alignment analy-
sis [5], the front-end carries out traditional optimizations
such as loop unrolling, constant propagation, copy propa-
gation, and dead code elimination.

The result of the compilation process is a compiled sim-
ulator that we use to collect performance numbers. The sim-
ulator accurately models the latency of each functional unit.
We assume that all functional units are fully pipelined. Fur-
thermore, the simulator enforces lock-step execution. Thus,
if a memory instruction misses in the cache, all clusters
will stall. The memory system is run-time configurable so
we can easily isolate the performance of various memory
topologies. In total, the back-end comprises nine compiler
passes and a simulation library.

3. Results

We compared the performance of convergent schedul-
ing with two existing assignment/scheduling techniques for
clustered VLIW architectures: PCC [3] and UAS [7]. We
augmented each existing algorithm with preplacement in-
formation (see [6]).

For each of the three tested architectures (four and two
clusters with limited communication bandwidth (4cl-comm,
2cl-comm), and four clusters with reduced number of reg-
isters (4cl-regs)), we tried to evolve an application-

independent conditional sequence of passes for the com-
piler.

The evolved sequence outperformed the initial sequence,
hand-tuned for a four-cluster architecture with full commu-
nication bandwidth, of 95%, 12% and 68% in the three ar-
chitectures (see figures). The convergent scheduler outper-
forms UAS and PCC, except in the case of limited registers,
where performance is lower by 6% and 2% respectively. We
are investigating new passes that address this aspect.

We also tested the robustness of our system by using
leave-one-out cross validation. The evolution was rerun ex-
cluding one of the seven benchmarks, and the result was
tested again on the excluded benchmark. The seven cross-
validation evolutions reached results very similar (within
3%) to the full evolution, for the excluded benchmarks too.

With these initial experiments, we verified that conver-
gent scheduling is well suited to a set of different architec-
tures. An improved sequence of passes can be found run-
ning our evolutionary framework on 20 dual Pentium 4 ma-
chines, in less than 40 hours. Once found, it can be used as
the core of an architecture-specific application-independent
compiler.

We noticed that sequences that contain conditional ex-
pressions never appeared in the best individuals. It turns out
that running a pass is more beneficial than running a test
to condition its execution. This is largely because conver-
gent scheduling passes are somewhat symbiotic by design:
running extra passes is usually not detrimental to the final
result. So, our bias for shorter genomes (parsimony pres-
sure) penalizes sequences with extra tests. Nevertheless, we
still believe in the potential of this approach, and leave fur-
ther exploration to future work.

4. Related work

Many researchers have used machine-learning tech-
niques to solve hard compiling problems. Nonethe-
less, our work offers many novel contributions. To the
best of our knowledge, this is the first time a com-
piler is evolved, in an unsupervised way, independently
from specific applications. Previous works [4, 2] used evo-
lution on a per-application basis to reach compact,
high-performance code on DSP and embedded proces-
sors. Calder et al.[1] used supervised learning to improve
the branch prediction heuristics of their compiler. Our prob-
lem demands an unsupervised method since optimal com-
piler sequences are not known.

5. Conclusions

Time-to-market pressures make it difficult to effectively
target next generation processors. Convergent scheduling’s
simple interface alleviates such constraints by facilitating

Variable True if
Is imbalanced the difference in load between the

most and the least loaded cluster is
larger than ���������	��
���������

Is fat the number of independent critical
paths is larger than the number of
tiles

Is within CPL the number of instructions in the
block is smaller than the number of
tiles times the critical path length

Is placement bad the number of unplaced instructions
is more than half the number of in-
structions in the block

Table 2. Variables used by our system. Their
values can change after each pass.

rapid prototyping of passes. In addition, an architecture-
specific pass is not as susceptible to bad decisions made by
previously run passes.

Because the scheduler’s framework allows passes to be
run in any order, there are countless legal pass orders to con-
sider. This work shows how machine-learning techniques
could be used to automatically search the pass-order solu-
tion space. Our genetic programming technique allowed us
to easily re-target new architectures, by discovering more
effective sequences. Also, cross validation showed that per-
formance improvement is not limited to the benchmarks on
which the sequence was trained.

To conclude, we would like to highlight that the general
framework of convergent scheduling can be extended also
for other scheduling/assignment problems. For instance, it
can be used for the task of scheduling on distributed archi-
tectures, where the computation grain is coarser. The gen-
eral infrastructure can be used to map computation on ma-
chines, instead of clusters within a processor. Convergent
scheduling can be adapted to new metrics of communica-
tion and distance. We leave this to future work.

Acknowledgements

This work has been partially supported by the Italian Na-
tional Research Council (CNR) FIRB project GRID.it “En-
abling platforms for high-performance computational grids
oriented to scalable virtual organizations.”

References

[1] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin,
M. Mozer, and B. Zorn. Evidence-Based Static Branch Pre-
diction Using Machine Learning. In ToPLaS-19, 1997.

[2] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing
for reduced code space using genetic algorithms. In LCTES,
1999.

[3] G. Desoli. Instruction Assignment for Clustered VLIW DSP
Compilers: A New Approach. Technical Report HPL-98-13,
HP Labs, January 1998.

[4] G. W. Grewal and C. T. Wilson. Mappping Reference Code
to Irregular DSPs with the Retargetable, Optimizing Compiler
COGEN(T). In MICRO-34, pages 192–202, 2001.

[5] S. Larsen and S. Amarasinghe. Increasing and detecting mem-
ory address congruence. In PACT-2002, Charlottesville, VA,
September 2002.

[6] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Con-
vergent scheduling. In MICRO-35, 2002.

[7] E. Ozer, S. Banerjia, and T. M. Conte. Unified assign and
schedule: A new approach to scheduling for clustered regis-
ter file microarchitectures. In MICRO-31, pages 308–315.

[8] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe,
J. M. Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng,
M. W. Hall, M. S. Lam, and J. L. Hennessy. SUIF: An Infras-
tructure for Research on Parallelizing and Optimizing Com-
pilers. SIGPLAN, 29(12):31–37, Dec. 1994.

Speedup on 4cl−comm

Benchmark
vvmul rbsorf yuv tomcatv mxm fir cholesky AVG

S
pe

ed
−

up

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Model PCC UAS Conv. Evolved

Figure 1. Speedup on 4cl-comm compared with 1-cluster convergent scheduling (original sequence).
CONV is the baseline sequence (hand-tuned in our previous work), and EVOLVED is the performance
of the sequence evolved for this architecture.

Speedup on 2cl−comm

Benchmark
vvmul rbsorf yuv tomcatv mxm fir cholesky AVG

S
pe

ed
−

up

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

Model PCC UAS Conv. Evolved

Figure 2. Speedup on 2cl-comm.

Benchmark
vvmul rbsorf yuv tomcatv mxm fir cholsky AVG

S
pe

ed
−

up

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Model PCC UAS Conv. Evolved

Figure 3. Speedup on 4cl-regs.

