
© C. Karamanolis 1 Distributed Algorithms

Synchronous message-passing
distributed systems

ATOMIC COMMITMENTATOMIC COMMITMENT

Problem definition:
A set ofn processes0,1,2,…,n-1
Processi hasinitial “opinion” (value)vote i ∈∈∈∈{0,1}

0: “reject transaction”
1: “willing to accept transaction”

Processi may reach anirrevocable decision,decision i ∈∈∈∈{0,1}
0: “abort transaction”
1: “commit transaction”

Motivation:
Distributed databases -- a distributed transaction takes effect either
in all participating sites or innoneof them.

vote i =

decision i =

© C. Karamanolis 2 Distributed Algorithms

Atomic Commitment
Specifications (correctness conditions)

� Agreement: No two processes decide different values.

� Validity :

� If anyprocess votes 0, then 0 is the only possible decision value,
and

� If all processes vote 1 and there are no failures, then 1 is the only
possible decision value.

� Termination : comes in two flavours...

� Strong Termination: All correct processes eventually decide.

or

� Weak Termination: If there are no failures, then all processes
eventually decide.

© C. Karamanolis 3 Distributed Algorithms

Atomic Commitment
Specifications (Uniform Agreement)

Why does the Agreement condition refer tofaulty as
well ascorrect processes? Practical implications?

Why does the Agreement condition refer tofaulty as
well ascorrect processes? Practical implications?

� Agreement:
No two processes (whethercorrector faulty) decide
different values.

CalledUniform Agreement.

© C. Karamanolis 4 Distributed Algorithms

Atomic Commitment
Specifications (Weak Termination)

Why hasWeak Termination been introduced?Why hasWeak Termination been introduced?

In general, it isimpossible to achieve Strong Termination
in the presence of failures!

See next...

� Weak Termination:
All processes decide (terminate), when there are no
link or process failures.

© C. Karamanolis 1 Distributed Algorithms

Synchronous message-passing
distributed systems

ATOMIC COMMITMENTATOMIC COMMITMENT

Problem definition:
A set ofn processes0,1,2,…,n-1
Processi hasinitial “opinion” (value)vote i ∈∈∈∈{0,1}

0: “reject transaction”
1: “willing to accept transaction”

Processi may reach anirrevocable decision,decision i ∈∈∈∈{0,1}
0: “abort transaction”
1: “commit transaction”

Motivation:
Distributed databases -- a distributed transaction takes effect either
in all participating sites or innoneof them.

vote i =

decision i =

© C. Karamanolis 2 Distributed Algorithms

Atomic Commitment
Specifications (correctness conditions)

� Agreement: No two processes decide different values.

� Validity :

� If anyprocess votes 0, then 0 is the only possible decision value,
and

� If all processes vote 1 and there are no failures, then 1 is the only
possible decision value.

� Termination : comes in two flavours...

� Strong Termination: All correct processes eventually decide.

or

� Weak Termination: If there are no failures, then all processes
eventually decide.

© C. Karamanolis 3 Distributed Algorithms

Atomic Commitment
Specifications (Uniform Agreement)

Why does the Agreement condition refer tofaulty as
well ascorrect processes? Practical implications?

Why does the Agreement condition refer tofaulty as
well ascorrect processes? Practical implications?

� Agreement:
No two processes (whethercorrector faulty) decide
different values.

CalledUniform Agreement.

© C. Karamanolis 4 Distributed Algorithms

Atomic Commitment
Specifications (Weak Termination)

Why hasWeak Termination been introduced?Why hasWeak Termination been introduced?

In general, it isimpossible to achieve Strong Termination
in the presence of failures!

See next...

� Weak Termination:
All processes decide (terminate), when there are no
link or process failures.

© C. Karamanolis 1 Distributed Algorithms

Synchronous message-passing
distributed systems

ATOMIC COMMITMENTATOMIC COMMITMENT

Problem definition:
A set ofn processes0,1,2,…,n-1
Processi hasinitial “opinion” (value)vote i ∈∈∈∈{0,1}

0: “reject transaction”
1: “willing to accept transaction”

Processi may reach anirrevocable decision,decision i ∈∈∈∈{0,1}
0: “abort transaction”
1: “commit transaction”

Motivation:
Distributed databases -- a distributed transaction takes effect either
in all participating sites or innoneof them.

vote i =

decision i =

© C. Karamanolis 2 Distributed Algorithms

Atomic Commitment
Specifications (correctness conditions)

� Agreement: No two processes decide different values.

� Validity :

� If anyprocess votes 0, then 0 is the only possible decision value,
and

� If all processes vote 1 and there are no failures, then 1 is the only
possible decision value.

� Termination : comes in two flavours...

� Strong Termination: All correct processes eventually decide.

or

� Weak Termination: If there are no failures, then all processes
eventually decide.

© C. Karamanolis 3 Distributed Algorithms

Atomic Commitment
Specifications (Uniform Agreement)

Why does the Agreement condition refer tofaulty as
well ascorrect processes? Practical implications?

Why does the Agreement condition refer tofaulty as
well ascorrect processes? Practical implications?

� Agreement:
No two processes (whethercorrector faulty) decide
different values.

CalledUniform Agreement.

© C. Karamanolis 4 Distributed Algorithms

Atomic Commitment
Specifications (Weak Termination)

Why hasWeak Termination been introduced?Why hasWeak Termination been introduced?

In general, it isimpossible to achieve Strong Termination
in the presence of failures!

See next...

� Weak Termination:
All processes decide (terminate), when there are no
link or process failures.

© C. Karamanolis 1 Distributed Algorithms

Synchronous message-passing
distributed systems

ATOMIC COMMITMENTATOMIC COMMITMENT

Problem definition:
A set ofn processes0,1,2,…,n-1
Processi hasinitial “opinion” (value)vote i ∈∈∈∈{0,1}

0: “reject transaction”
1: “willing to accept transaction”

Processi may reach anirrevocable decision,decision i ∈∈∈∈{0,1}
0: “abort transaction”
1: “commit transaction”

Motivation:
Distributed databases -- a distributed transaction takes effect either
in all participating sites or innoneof them.

vote i =

decision i =

© C. Karamanolis 2 Distributed Algorithms

Atomic Commitment
Specifications (correctness conditions)

� Agreement: No two processes decide different values.

� Validity :

� If anyprocess votes 0, then 0 is the only possible decision value,
and

� If all processes vote 1 and there are no failures, then 1 is the only
possible decision value.

� Termination : comes in two flavours...

� Strong Termination: All correct processes eventually decide.

or

� Weak Termination: If there are no failures, then all processes
eventually decide.

© C. Karamanolis 3 Distributed Algorithms

Atomic Commitment
Specifications (Uniform Agreement)

Why does the Agreement condition refer tofaulty as
well ascorrect processes? Practical implications?

Why does the Agreement condition refer tofaulty as
well ascorrect processes? Practical implications?

� Agreement:
No two processes (whethercorrector faulty) decide
different values.

CalledUniform Agreement.

© C. Karamanolis 4 Distributed Algorithms

Atomic Commitment
Specifications (Weak Termination)

Why hasWeak Termination been introduced?Why hasWeak Termination been introduced?

In general, it isimpossible to achieve Strong Termination
in the presence of failures!

See next...

� Weak Termination:
All processes decide (terminate), when there are no
link or process failures.

© C. Karamanolis 5 Distributed Algorithms

Atomic Commitment
Impossibility result

Consider the following system model:

� Completelyconnectednetwork !

� Synchronous!

� No processes failures !

� link failures may occur (no bound on # of faulty links)

Impossibility ofStrong AC with link failuresImpossibility ofStrong AC with link failures

Theorem: In such a system model, there isno algorithm that
solves theStrong AC problem (non-blocking algorithm).

Theorem: In such a system model, there isno algorithm that
solves theStrong AC problem (non-blocking algorithm).

Proof ?...
© C. Karamanolis 6 Distributed Algorithms

Atomic Commitment
Impossibility result (proof for 2 processes)

Proof by contradiction. Assume a solution exists for 2 processes: algorithm A.
Without loss of generality assume that both processes send msgs at every round of A.
• Let a be execution of A when both p, q start with 1. By Termination, both decide
and by Validity-2, they decide 1. Suppose they both decide withinr rounds.

• Executiona1: all msgs after round r lost (due to link failures).
• Starting froma1, construct a series of executionseachof them being identical to its
predecessor for one of the processes (no difference on the decision of the process),
assuming the last msg of predecessor execution lost; eventually there is an execution
where both p and q decide 1 without any msgs being delivered between them.

• What about if p started with value 0? Should still decide 1 -Impossibility of A!

t

p q1 1

Round 1

Round r

a’

t

p q1 1

Round 1

Round r

a2a1

t

p q1 1

Round 1

Round r

© C. Karamanolis 7 Distributed Algorithms

Atomic Commitment

An atomic commitment algorithm is said to benon-blocking
if it permits transaction termination to proceed at correct
participants despite failures of others or failures of links.

An atomic commitment algorithm is said to benon-blocking
if it permits transaction termination to proceed at correct
participants despite failures of others or failures of links.

Algorithms that have this property are desirable since they limit the
time intervals during which transactions may be holding valuable
system resources (locked resources).

© C. Karamanolis 8 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm

The simplest algorithm to solve the AC problem istwo-phase commit;
it solves onlyWeak AC, in the presence of bothprocess& link failures.
Frequently used in practice.

Model:
n processes: 0,1,2, … ,n-1

Process0: thecoordinator
Processes1,2, … ,n-1 : theparticipants

All communication iscoordinator↔↔↔↔ participants

2 n-11

0

vote1
vote2

voten-1

2 n-11

0

decision
decision

Round 1 Round 2

© C. Karamanolis 5 Distributed Algorithms

Atomic Commitment
Impossibility result

Consider the following system model:

� Completelyconnectednetwork !

� Synchronous!

� No processes failures !

� link failures may occur (no bound on # of faulty links)

Impossibility ofStrong AC with link failuresImpossibility ofStrong AC with link failures

Theorem: In such a system model, there isno algorithm that
solves theStrong AC problem (non-blocking algorithm).

Theorem: In such a system model, there isno algorithm that
solves theStrong AC problem (non-blocking algorithm).

Proof ?...
© C. Karamanolis 6 Distributed Algorithms

Atomic Commitment
Impossibility result (proof for 2 processes)

Proof by contradiction. Assume a solution exists for 2 processes: algorithm A.
Without loss of generality assume that both processes send msgs at every round of A.
• Let a be execution of A when both p, q start with 1. By Termination, both decide
and by Validity-2, they decide 1. Suppose they both decide withinr rounds.

• Executiona1: all msgs after round r lost (due to link failures).
• Starting froma1, construct a series of executionseachof them being identical to its
predecessor for one of the processes (no difference on the decision of the process),
assuming the last msg of predecessor execution lost; eventually there is an execution
where both p and q decide 1 without any msgs being delivered between them.

• What about if p started with value 0? Should still decide 1 -Impossibility of A!

t

p q1 1

Round 1

Round r

a’

t

p q1 1

Round 1

Round r

a2a1

t

p q1 1

Round 1

Round r

© C. Karamanolis 7 Distributed Algorithms

Atomic Commitment

An atomic commitment algorithm is said to benon-blocking
if it permits transaction termination to proceed at correct
participants despite failures of others or failures of links.

An atomic commitment algorithm is said to benon-blocking
if it permits transaction termination to proceed at correct
participants despite failures of others or failures of links.

Algorithms that have this property are desirable since they limit the
time intervals during which transactions may be holding valuable
system resources (locked resources).

© C. Karamanolis 8 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm

The simplest algorithm to solve the AC problem istwo-phase commit;
it solves onlyWeak AC, in the presence of bothprocess& link failures.
Frequently used in practice.

Model:
n processes: 0,1,2, … ,n-1

Process0: thecoordinator
Processes1,2, … ,n-1 : theparticipants

All communication iscoordinator↔↔↔↔ participants

2 n-11

0

vote1
vote2

voten-1

2 n-11

0

decision
decision

Round 1 Round 2

© C. Karamanolis 5 Distributed Algorithms

Atomic Commitment
Impossibility result

Consider the following system model:

� Completelyconnectednetwork !

� Synchronous!

� No processes failures !

� link failures may occur (no bound on # of faulty links)

Impossibility ofStrong AC with link failuresImpossibility ofStrong AC with link failures

Theorem: In such a system model, there isno algorithm that
solves theStrong AC problem (non-blocking algorithm).

Theorem: In such a system model, there isno algorithm that
solves theStrong AC problem (non-blocking algorithm).

Proof ?...
© C. Karamanolis 6 Distributed Algorithms

Atomic Commitment
Impossibility result (proof for 2 processes)

Proof by contradiction. Assume a solution exists for 2 processes: algorithm A.
Without loss of generality assume that both processes send msgs at every round of A.
• Let a be execution of A when both p, q start with 1. By Termination, both decide
and by Validity-2, they decide 1. Suppose they both decide withinr rounds.

• Executiona1: all msgs after round r lost (due to link failures).
• Starting froma1, construct a series of executionseachof them being identical to its
predecessor for one of the processes (no difference on the decision of the process),
assuming the last msg of predecessor execution lost; eventually there is an execution
where both p and q decide 1 without any msgs being delivered between them.

• What about if p started with value 0? Should still decide 1 -Impossibility of A!

t

p q1 1

Round 1

Round r

a’

t

p q1 1

Round 1

Round r

a2a1

t

p q1 1

Round 1

Round r

© C. Karamanolis 7 Distributed Algorithms

Atomic Commitment

An atomic commitment algorithm is said to benon-blocking
if it permits transaction termination to proceed at correct
participants despite failures of others or failures of links.

An atomic commitment algorithm is said to benon-blocking
if it permits transaction termination to proceed at correct
participants despite failures of others or failures of links.

Algorithms that have this property are desirable since they limit the
time intervals during which transactions may be holding valuable
system resources (locked resources).

© C. Karamanolis 8 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm

The simplest algorithm to solve the AC problem istwo-phase commit;
it solves onlyWeak AC, in the presence of bothprocess& link failures.
Frequently used in practice.

Model:
n processes: 0,1,2, … ,n-1

Process0: thecoordinator
Processes1,2, … ,n-1 : theparticipants

All communication iscoordinator↔↔↔↔ participants

2 n-11

0

vote1
vote2

voten-1

2 n-11

0

decision
decision

Round 1 Round 2

© C. Karamanolis 5 Distributed Algorithms

Atomic Commitment
Impossibility result

Consider the following system model:

� Completelyconnectednetwork !

� Synchronous!

� No processes failures !

� link failures may occur (no bound on # of faulty links)

Impossibility ofStrong AC with link failuresImpossibility ofStrong AC with link failures

Theorem: In such a system model, there isno algorithm that
solves theStrong AC problem (non-blocking algorithm).

Theorem: In such a system model, there isno algorithm that
solves theStrong AC problem (non-blocking algorithm).

Proof ?...
© C. Karamanolis 6 Distributed Algorithms

Atomic Commitment
Impossibility result (proof for 2 processes)

Proof by contradiction. Assume a solution exists for 2 processes: algorithm A.
Without loss of generality assume that both processes send msgs at every round of A.
• Let a be execution of A when both p, q start with 1. By Termination, both decide
and by Validity-2, they decide 1. Suppose they both decide withinr rounds.

• Executiona1: all msgs after round r lost (due to link failures).
• Starting froma1, construct a series of executionseachof them being identical to its
predecessor for one of the processes (no difference on the decision of the process),
assuming the last msg of predecessor execution lost; eventually there is an execution
where both p and q decide 1 without any msgs being delivered between them.

• What about if p started with value 0? Should still decide 1 -Impossibility of A!

t

p q1 1

Round 1

Round r

a’

t

p q1 1

Round 1

Round r

a2a1

t

p q1 1

Round 1

Round r

© C. Karamanolis 7 Distributed Algorithms

Atomic Commitment

An atomic commitment algorithm is said to benon-blocking
if it permits transaction termination to proceed at correct
participants despite failures of others or failures of links.

An atomic commitment algorithm is said to benon-blocking
if it permits transaction termination to proceed at correct
participants despite failures of others or failures of links.

Algorithms that have this property are desirable since they limit the
time intervals during which transactions may be holding valuable
system resources (locked resources).

© C. Karamanolis 8 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm

The simplest algorithm to solve the AC problem istwo-phase commit;
it solves onlyWeak AC, in the presence of bothprocess& link failures.
Frequently used in practice.

Model:
n processes: 0,1,2, … ,n-1

Process0: thecoordinator
Processes1,2, … ,n-1 : theparticipants

All communication iscoordinator↔↔↔↔ participants

2 n-11

0

vote1
vote2

voten-1

2 n-11

0

decision
decision

Round 1 Round 2

© C. Karamanolis 9 Distributed Algorithms

recv Round_1 msgs from all participants;
// if not from all, then cannot decide!
if received “1” from all participants and vote 0=1 then

decision 0 := 1; // commit
else

decision 0 := 0; // abort

∀∀∀∀i, 0 ≤≤≤≤i<n

Initially: vote i ∈{0,1}
decision i = undefined

participant i, 1 ≤≤≤≤i<n

Round 1:

Round 2:

send vote i to coordinator;
if vote i = 0 then decision i := 0; // abort

if decision i = undefined then
recv Round_2 msg D from coordinator;
// if not, cannot decide!
decision i := D;

coordinator 0

Round 1:

Round 2: send decision 0 to all participants;

Two-Phase Commit (2PC) Algorithm

© C. Karamanolis 10 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

� Let ∃votei=0 andi=0 (coordinator), then from the “else” statement of
coordinator Round-1, decisioni=0; this is the value transmitted to
participants in Round-2. Also, the only point that a participant i can
make decisioni:=1 is Round-2, line #4, where it is required that a
decision=1 is received from coordinator -- impossible (coordinator has
decided 0). Thus, the only possible final decision value in this case is 0.

� Let ∃votei=0 andi≠≠≠≠0 (participant); i transmits votei to coordinator. The
coordinator only decides 1 if all votes are 1; thus, it cannot decide 1 in
this case. Also, for a participant to decide 1, a prerequisite is that the
coordinator decides 1 -- impossible in this case. Thus, the only possible
final decision value in this case is also 0.

Lemma 1: 2PC satisfies Validity-1 (safety).Lemma 1: 2PC satisfies Validity-1 (safety).

© C. Karamanolis 11 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

Lemma 2: 2PC satisfies Validity-2 (safety).Lemma 2: 2PC satisfies Validity-2 (safety).

� If all processes (participants and coordinator) vote 1, then Round-1, line
#3 statement of the coordinator algorithm is executed; that is,
decision0=1. For participant i, i≠0, decisioni is set only in Round-2, line
#4 and is always allocated the value sent by coordinator. Thus, decisioni
is set to 1 in this case and this is the only possible decision.

Exercise: proof by contradiction(hint: use Lemma 1&2)...

From Lemma 1&2 2PC satisfies “Validity” (Safety)

2PC satisfies “Agreement” (Safety)

© C. Karamanolis 12 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

Lemma 3: 2PC satisfies Weak Termination (liveness) in the
absence of failures.

Lemma 3: 2PC satisfies Weak Termination (liveness) in the
absence of failures.

� Let that coordinator (i=0) does not decide. There is only one point in
the algorithm where it may not decide (block): Round-1, line #2, where
it waits to receive msgs from participants. If no failures occurs
(“weak”), then all Round-1 msgs are received -- blocking impossible.

� Let that participant i (i≠0) does not decide. There is only one point in
the algorithm where it may not decide (block): Round-2, line #2, where
it waits for the coordinator’s decision. If the coordinator does not fail
and there are no communication failures, the decision is received --
blocking impossible.

From Lemma 3 and the definition of Weak Termination...

2PC satisfies “Weak Termination” (Liveness)

© C. Karamanolis 9 Distributed Algorithms

recv Round_1 msgs from all participants;
// if not from all, then cannot decide!
if received “1” from all participants and vote 0=1 then

decision 0 := 1; // commit
else

decision 0 := 0; // abort

∀∀∀∀i, 0 ≤≤≤≤i<n

Initially: vote i ∈{0,1}
decision i = undefined

participant i, 1 ≤≤≤≤i<n

Round 1:

Round 2:

send vote i to coordinator;
if vote i = 0 then decision i := 0; // abort

if decision i = undefined then
recv Round_2 msg D from coordinator;
// if not, cannot decide!
decision i := D;

coordinator 0

Round 1:

Round 2: send decision 0 to all participants;

Two-Phase Commit (2PC) Algorithm

© C. Karamanolis 10 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

� Let ∃votei=0 andi=0 (coordinator), then from the “else” statement of
coordinator Round-1, decisioni=0; this is the value transmitted to
participants in Round-2. Also, the only point that a participant i can
make decisioni:=1 is Round-2, line #4, where it is required that a
decision=1 is received from coordinator -- impossible (coordinator has
decided 0). Thus, the only possible final decision value in this case is 0.

� Let ∃votei=0 andi≠≠≠≠0 (participant); i transmits votei to coordinator. The
coordinator only decides 1 if all votes are 1; thus, it cannot decide 1 in
this case. Also, for a participant to decide 1, a prerequisite is that the
coordinator decides 1 -- impossible in this case. Thus, the only possible
final decision value in this case is also 0.

Lemma 1: 2PC satisfies Validity-1 (safety).Lemma 1: 2PC satisfies Validity-1 (safety).

© C. Karamanolis 11 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

Lemma 2: 2PC satisfies Validity-2 (safety).Lemma 2: 2PC satisfies Validity-2 (safety).

� If all processes (participants and coordinator) vote 1, then Round-1, line
#3 statement of the coordinator algorithm is executed; that is,
decision0=1. For participant i, i≠0, decisioni is set only in Round-2, line
#4 and is always allocated the value sent by coordinator. Thus, decisioni
is set to 1 in this case and this is the only possible decision.

Exercise: proof by contradiction(hint: use Lemma 1&2)...

From Lemma 1&2 2PC satisfies “Validity” (Safety)

2PC satisfies “Agreement” (Safety)

© C. Karamanolis 12 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

Lemma 3: 2PC satisfies Weak Termination (liveness) in the
absence of failures.

Lemma 3: 2PC satisfies Weak Termination (liveness) in the
absence of failures.

� Let that coordinator (i=0) does not decide. There is only one point in
the algorithm where it may not decide (block): Round-1, line #2, where
it waits to receive msgs from participants. If no failures occurs
(“weak”), then all Round-1 msgs are received -- blocking impossible.

� Let that participant i (i≠0) does not decide. There is only one point in
the algorithm where it may not decide (block): Round-2, line #2, where
it waits for the coordinator’s decision. If the coordinator does not fail
and there are no communication failures, the decision is received --
blocking impossible.

From Lemma 3 and the definition of Weak Termination...

2PC satisfies “Weak Termination” (Liveness)

© C. Karamanolis 9 Distributed Algorithms

recv Round_1 msgs from all participants;
// if not from all, then cannot decide!
if received “1” from all participants and vote 0=1 then

decision 0 := 1; // commit
else

decision 0 := 0; // abort

∀∀∀∀i, 0 ≤≤≤≤i<n

Initially: vote i ∈{0,1}
decision i = undefined

participant i, 1 ≤≤≤≤i<n

Round 1:

Round 2:

send vote i to coordinator;
if vote i = 0 then decision i := 0; // abort

if decision i = undefined then
recv Round_2 msg D from coordinator;
// if not, cannot decide!
decision i := D;

coordinator 0

Round 1:

Round 2: send decision 0 to all participants;

Two-Phase Commit (2PC) Algorithm

© C. Karamanolis 10 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

� Let ∃votei=0 andi=0 (coordinator), then from the “else” statement of
coordinator Round-1, decisioni=0; this is the value transmitted to
participants in Round-2. Also, the only point that a participant i can
make decisioni:=1 is Round-2, line #4, where it is required that a
decision=1 is received from coordinator -- impossible (coordinator has
decided 0). Thus, the only possible final decision value in this case is 0.

� Let ∃votei=0 andi≠≠≠≠0 (participant); i transmits votei to coordinator. The
coordinator only decides 1 if all votes are 1; thus, it cannot decide 1 in
this case. Also, for a participant to decide 1, a prerequisite is that the
coordinator decides 1 -- impossible in this case. Thus, the only possible
final decision value in this case is also 0.

Lemma 1: 2PC satisfies Validity-1 (safety).Lemma 1: 2PC satisfies Validity-1 (safety).

© C. Karamanolis 11 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

Lemma 2: 2PC satisfies Validity-2 (safety).Lemma 2: 2PC satisfies Validity-2 (safety).

� If all processes (participants and coordinator) vote 1, then Round-1, line
#3 statement of the coordinator algorithm is executed; that is,
decision0=1. For participant i, i≠0, decisioni is set only in Round-2, line
#4 and is always allocated the value sent by coordinator. Thus, decisioni
is set to 1 in this case and this is the only possible decision.

Exercise: proof by contradiction(hint: use Lemma 1&2)...

From Lemma 1&2 2PC satisfies “Validity” (Safety)

2PC satisfies “Agreement” (Safety)

© C. Karamanolis 12 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

Lemma 3: 2PC satisfies Weak Termination (liveness) in the
absence of failures.

Lemma 3: 2PC satisfies Weak Termination (liveness) in the
absence of failures.

� Let that coordinator (i=0) does not decide. There is only one point in
the algorithm where it may not decide (block): Round-1, line #2, where
it waits to receive msgs from participants. If no failures occurs
(“weak”), then all Round-1 msgs are received -- blocking impossible.

� Let that participant i (i≠0) does not decide. There is only one point in
the algorithm where it may not decide (block): Round-2, line #2, where
it waits for the coordinator’s decision. If the coordinator does not fail
and there are no communication failures, the decision is received --
blocking impossible.

From Lemma 3 and the definition of Weak Termination...

2PC satisfies “Weak Termination” (Liveness)

© C. Karamanolis 9 Distributed Algorithms

recv Round_1 msgs from all participants;
// if not from all, then cannot decide!
if received “1” from all participants and vote 0=1 then

decision 0 := 1; // commit
else

decision 0 := 0; // abort

∀∀∀∀i, 0 ≤≤≤≤i<n

Initially: vote i ∈{0,1}
decision i = undefined

participant i, 1 ≤≤≤≤i<n

Round 1:

Round 2:

send vote i to coordinator;
if vote i = 0 then decision i := 0; // abort

if decision i = undefined then
recv Round_2 msg D from coordinator;
// if not, cannot decide!
decision i := D;

coordinator 0

Round 1:

Round 2: send decision 0 to all participants;

Two-Phase Commit (2PC) Algorithm

© C. Karamanolis 10 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

� Let ∃votei=0 andi=0 (coordinator), then from the “else” statement of
coordinator Round-1, decisioni=0; this is the value transmitted to
participants in Round-2. Also, the only point that a participant i can
make decisioni:=1 is Round-2, line #4, where it is required that a
decision=1 is received from coordinator -- impossible (coordinator has
decided 0). Thus, the only possible final decision value in this case is 0.

� Let ∃votei=0 andi≠≠≠≠0 (participant); i transmits votei to coordinator. The
coordinator only decides 1 if all votes are 1; thus, it cannot decide 1 in
this case. Also, for a participant to decide 1, a prerequisite is that the
coordinator decides 1 -- impossible in this case. Thus, the only possible
final decision value in this case is also 0.

Lemma 1: 2PC satisfies Validity-1 (safety).Lemma 1: 2PC satisfies Validity-1 (safety).

© C. Karamanolis 11 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

Lemma 2: 2PC satisfies Validity-2 (safety).Lemma 2: 2PC satisfies Validity-2 (safety).

� If all processes (participants and coordinator) vote 1, then Round-1, line
#3 statement of the coordinator algorithm is executed; that is,
decision0=1. For participant i, i≠0, decisioni is set only in Round-2, line
#4 and is always allocated the value sent by coordinator. Thus, decisioni
is set to 1 in this case and this is the only possible decision.

Exercise: proof by contradiction(hint: use Lemma 1&2)...

From Lemma 1&2 2PC satisfies “Validity” (Safety)

2PC satisfies “Agreement” (Safety)

© C. Karamanolis 12 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Correctness arguments

Lemma 3: 2PC satisfies Weak Termination (liveness) in the
absence of failures.

Lemma 3: 2PC satisfies Weak Termination (liveness) in the
absence of failures.

� Let that coordinator (i=0) does not decide. There is only one point in
the algorithm where it may not decide (block): Round-1, line #2, where
it waits to receive msgs from participants. If no failures occurs
(“weak”), then all Round-1 msgs are received -- blocking impossible.

� Let that participant i (i≠0) does not decide. There is only one point in
the algorithm where it may not decide (block): Round-2, line #2, where
it waits for the coordinator’s decision. If the coordinator does not fail
and there are no communication failures, the decision is received --
blocking impossible.

From Lemma 3 and the definition of Weak Termination...

2PC satisfies “Weak Termination” (Liveness)

© C. Karamanolis 13 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Blocking conditions

� 2PC is ablocking algorithm: if failures occur (even if only
of one type), 2PC may not terminate (blocks) -- no decision
reached by some correct process(es), Termination Violated!

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• i=0 (coordinator):∃j:0<j ≤≤≤≤n-1 , such thati does

not receive Round-1 msg (vote j) from j . *
• i ≠≠≠≠0 (participant): processi does not receive Round-2

msg from coordinator. **

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• i=0 (coordinator):∃j:0<j ≤≤≤≤n-1 , such thati does

not receive Round-1 msg (vote j) from j . *
• i ≠≠≠≠0 (participant): processi does not receive Round-2

msg from coordinator. **

* either due to failure of processj or failure of communication link withj .

** either due to failure of coordinator or failure of communication link
with it or because coordinator cannot decide itself.

© C. Karamanolis 14 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Blocking conditions

� If failures (process or link) occur, 2PC never violates any
of the Safety properties (Agreement, Validity)!
Proof by contradiction…

� What can thecoordinatordo in practice, if it cannot decide in
round 1?

� Try a little harder… increase timeouts for expected
communication (change synchronous model assumptions).

� If expected votes still not received,abort current transaction!

� What can aparticipantdo in practice, if it cannot decide after
round 2?

� Try a little harder…retransmit Round-1 msg (vote), increase
timeouts for communication.

� If still no decision from coordinator, thenblock(keep trying)!

© C. Karamanolis 15 Distributed Algorithms

Complexity Analysis of 2PC:

� Time: 2 rounds

� # msgs: 2(n-1) = 2n-2 = O(n)

Complexity Analysis of 2PC:

� Time: 2 rounds

� # msgs: 2(n-1) = 2n-2 = O(n)

Can improve time complexity of 2PC at the price of # messages
using the “decentralised 2PC” algorithm...

Two-Phase Commit (2PC) Algorithm

© C. Karamanolis 16 Distributed Algorithms

Decentralised 2PC Algorithm

∀∀∀∀i, 0 ≤≤≤≤i<n

Initially: vote i ∈{0,1}
decision i = undefined

process i, 0 ≤≤≤≤i<n

Round 1: send vote i to all others;
recv Round-1 msgs from all others;
if vote i =0 or any vote received = 0 then

decision i := 0;
else if vote i =1 and received vote j =1 from all j ≠i then

decision i := 1;
// if not votes from all then cannot decide;

2

n-11
vote1

vote2

voten-1

0
vote0

Round 1

© C. Karamanolis 13 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Blocking conditions

� 2PC is ablocking algorithm: if failures occur (even if only
of one type), 2PC may not terminate (blocks) -- no decision
reached by some correct process(es), Termination Violated!

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• i=0 (coordinator):∃j:0<j ≤≤≤≤n-1 , such thati does

not receive Round-1 msg (vote j) from j . *
• i ≠≠≠≠0 (participant): processi does not receive Round-2

msg from coordinator. **

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• i=0 (coordinator):∃j:0<j ≤≤≤≤n-1 , such thati does

not receive Round-1 msg (vote j) from j . *
• i ≠≠≠≠0 (participant): processi does not receive Round-2

msg from coordinator. **

* either due to failure of processj or failure of communication link withj .

** either due to failure of coordinator or failure of communication link
with it or because coordinator cannot decide itself.

© C. Karamanolis 14 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Blocking conditions

� If failures (process or link) occur, 2PC never violates any
of the Safety properties (Agreement, Validity)!
Proof by contradiction…

� What can thecoordinatordo in practice, if it cannot decide in
round 1?

� Try a little harder… increase timeouts for expected
communication (change synchronous model assumptions).

� If expected votes still not received,abort current transaction!

� What can aparticipantdo in practice, if it cannot decide after
round 2?

� Try a little harder…retransmit Round-1 msg (vote), increase
timeouts for communication.

� If still no decision from coordinator, thenblock(keep trying)!

© C. Karamanolis 15 Distributed Algorithms

Complexity Analysis of 2PC:

� Time: 2 rounds

� # msgs: 2(n-1) = 2n-2 = O(n)

Complexity Analysis of 2PC:

� Time: 2 rounds

� # msgs: 2(n-1) = 2n-2 = O(n)

Can improve time complexity of 2PC at the price of # messages
using the “decentralised 2PC” algorithm...

Two-Phase Commit (2PC) Algorithm

© C. Karamanolis 16 Distributed Algorithms

Decentralised 2PC Algorithm

∀∀∀∀i, 0 ≤≤≤≤i<n

Initially: vote i ∈{0,1}
decision i = undefined

process i, 0 ≤≤≤≤i<n

Round 1: send vote i to all others;
recv Round-1 msgs from all others;
if vote i =0 or any vote received = 0 then

decision i := 0;
else if vote i =1 and received vote j =1 from all j ≠i then

decision i := 1;
// if not votes from all then cannot decide;

2

n-11
vote1

vote2

voten-1

0
vote0

Round 1

© C. Karamanolis 13 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Blocking conditions

� 2PC is ablocking algorithm: if failures occur (even if only
of one type), 2PC may not terminate (blocks) -- no decision
reached by some correct process(es), Termination Violated!

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• i=0 (coordinator):∃j:0<j ≤≤≤≤n-1 , such thati does

not receive Round-1 msg (vote j) from j . *
• i ≠≠≠≠0 (participant): processi does not receive Round-2

msg from coordinator. **

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• i=0 (coordinator):∃j:0<j ≤≤≤≤n-1 , such thati does

not receive Round-1 msg (vote j) from j . *
• i ≠≠≠≠0 (participant): processi does not receive Round-2

msg from coordinator. **

* either due to failure of processj or failure of communication link withj .

** either due to failure of coordinator or failure of communication link
with it or because coordinator cannot decide itself.

© C. Karamanolis 14 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Blocking conditions

� If failures (process or link) occur, 2PC never violates any
of the Safety properties (Agreement, Validity)!
Proof by contradiction…

� What can thecoordinatordo in practice, if it cannot decide in
round 1?

� Try a little harder… increase timeouts for expected
communication (change synchronous model assumptions).

� If expected votes still not received,abort current transaction!

� What can aparticipantdo in practice, if it cannot decide after
round 2?

� Try a little harder…retransmit Round-1 msg (vote), increase
timeouts for communication.

� If still no decision from coordinator, thenblock(keep trying)!

© C. Karamanolis 15 Distributed Algorithms

Complexity Analysis of 2PC:

� Time: 2 rounds

� # msgs: 2(n-1) = 2n-2 = O(n)

Complexity Analysis of 2PC:

� Time: 2 rounds

� # msgs: 2(n-1) = 2n-2 = O(n)

Can improve time complexity of 2PC at the price of # messages
using the “decentralised 2PC” algorithm...

Two-Phase Commit (2PC) Algorithm

© C. Karamanolis 16 Distributed Algorithms

Decentralised 2PC Algorithm

∀∀∀∀i, 0 ≤≤≤≤i<n

Initially: vote i ∈{0,1}
decision i = undefined

process i, 0 ≤≤≤≤i<n

Round 1: send vote i to all others;
recv Round-1 msgs from all others;
if vote i =0 or any vote received = 0 then

decision i := 0;
else if vote i =1 and received vote j =1 from all j ≠i then

decision i := 1;
// if not votes from all then cannot decide;

2

n-11
vote1

vote2

voten-1

0
vote0

Round 1

© C. Karamanolis 13 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Blocking conditions

� 2PC is ablocking algorithm: if failures occur (even if only
of one type), 2PC may not terminate (blocks) -- no decision
reached by some correct process(es), Termination Violated!

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• i=0 (coordinator):∃j:0<j ≤≤≤≤n-1 , such thati does

not receive Round-1 msg (vote j) from j . *
• i ≠≠≠≠0 (participant): processi does not receive Round-2

msg from coordinator. **

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• i=0 (coordinator):∃j:0<j ≤≤≤≤n-1 , such thati does

not receive Round-1 msg (vote j) from j . *
• i ≠≠≠≠0 (participant): processi does not receive Round-2

msg from coordinator. **

* either due to failure of processj or failure of communication link withj .

** either due to failure of coordinator or failure of communication link
with it or because coordinator cannot decide itself.

© C. Karamanolis 14 Distributed Algorithms

Two-Phase Commit (2PC) Algorithm
Blocking conditions

� If failures (process or link) occur, 2PC never violates any
of the Safety properties (Agreement, Validity)!
Proof by contradiction…

� What can thecoordinatordo in practice, if it cannot decide in
round 1?

� Try a little harder… increase timeouts for expected
communication (change synchronous model assumptions).

� If expected votes still not received,abort current transaction!

� What can aparticipantdo in practice, if it cannot decide after
round 2?

� Try a little harder…retransmit Round-1 msg (vote), increase
timeouts for communication.

� If still no decision from coordinator, thenblock(keep trying)!

© C. Karamanolis 15 Distributed Algorithms

Complexity Analysis of 2PC:

� Time: 2 rounds

� # msgs: 2(n-1) = 2n-2 = O(n)

Complexity Analysis of 2PC:

� Time: 2 rounds

� # msgs: 2(n-1) = 2n-2 = O(n)

Can improve time complexity of 2PC at the price of # messages
using the “decentralised 2PC” algorithm...

Two-Phase Commit (2PC) Algorithm

© C. Karamanolis 16 Distributed Algorithms

Decentralised 2PC Algorithm

∀∀∀∀i, 0 ≤≤≤≤i<n

Initially: vote i ∈{0,1}
decision i = undefined

process i, 0 ≤≤≤≤i<n

Round 1: send vote i to all others;
recv Round-1 msgs from all others;
if vote i =0 or any vote received = 0 then

decision i := 0;
else if vote i =1 and received vote j =1 from all j ≠i then

decision i := 1;
// if not votes from all then cannot decide;

2

n-11
vote1

vote2

voten-1

0
vote0

Round 1

© C. Karamanolis 17 Distributed Algorithms

Decentralised 2PC Algorithm
Blocking conditions

� Decentralised 2PC is also ablockingalgorithm.

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• ∃j:0<j ≤≤≤≤n-1 , such thati does not receive

Round-1 msg (vote j) from j . *

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• ∃j:0<j ≤≤≤≤n-1 , such thati does not receive

Round-1 msg (vote j) from j . *

* either due to failure of processj or failure of communication link withj .

© C. Karamanolis 18 Distributed Algorithms

Complexity Analysis of Decentralised 2PC:

� Time: 1 round (a little better than before)

� # msgs: n(n-1) = n2-n = O(n2) (much worse than before)

Complexity Analysis of Decentralised 2PC:

� Time: 1 round (a little better than before)

� # msgs: n(n-1) = n2-n = O(n2) (much worse than before)

Exercise:
Prove that the decentralised 2PC algorithm solves Weak AC
in synchronous systems subject to process + link failures.

Decentralised 2PC Algorithm

© C. Karamanolis 19 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm

� 2PC solvesWeak AC in synchronous systems subject
to bothprocess + link failures. It may block in the
presence of any type of failures.

� 3PC solvesStrong AC in synchronous systems subject
to process failuresonly! It always terminates (does not
block) in the presence of process failures.

Note:If link failures occur, 3PC may violate Agreement
(safety property)!

© C. Karamanolis 20 Distributed Algorithms

Why a correct process may be unable to decide in 2PC (blocks)?

� A participant that votes 1 is uncertain between the time it sends its
vote in Round 1 and the time it receives the decision in Round 2.

� A process may decide 1 (commit) while some process is still
uncertain.

If the only surviving processes have voted 1 and are uncertain,
they cannot decide without risking disagreement with crashed
processes! They cannot even decide 0 (abort)!Why bother?

The key idea to 3PC:
A process does not decide 1 unless every correctprocess
is “ready” to decide 1.

The key idea to 3PC:
A process does not decide 1 unless every correctprocess
is “ready” to decide 1.

Three-Phase Commit (3PC) Algorithm

© C. Karamanolis 17 Distributed Algorithms

Decentralised 2PC Algorithm
Blocking conditions

� Decentralised 2PC is also ablockingalgorithm.

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• ∃j:0<j ≤≤≤≤n-1 , such thati does not receive

Round-1 msg (vote j) from j . *

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• ∃j:0<j ≤≤≤≤n-1 , such thati does not receive

Round-1 msg (vote j) from j . *

* either due to failure of processj or failure of communication link withj .

© C. Karamanolis 18 Distributed Algorithms

Complexity Analysis of Decentralised 2PC:

� Time: 1 round (a little better than before)

� # msgs: n(n-1) = n2-n = O(n2) (much worse than before)

Complexity Analysis of Decentralised 2PC:

� Time: 1 round (a little better than before)

� # msgs: n(n-1) = n2-n = O(n2) (much worse than before)

Exercise:
Prove that the decentralised 2PC algorithm solves Weak AC
in synchronous systems subject to process + link failures.

Decentralised 2PC Algorithm

© C. Karamanolis 19 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm

� 2PC solvesWeak AC in synchronous systems subject
to bothprocess + link failures. It may block in the
presence of any type of failures.

� 3PC solvesStrong AC in synchronous systems subject
to process failuresonly! It always terminates (does not
block) in the presence of process failures.

Note:If link failures occur, 3PC may violate Agreement
(safety property)!

© C. Karamanolis 20 Distributed Algorithms

Why a correct process may be unable to decide in 2PC (blocks)?

� A participant that votes 1 is uncertain between the time it sends its
vote in Round 1 and the time it receives the decision in Round 2.

� A process may decide 1 (commit) while some process is still
uncertain.

If the only surviving processes have voted 1 and are uncertain,
they cannot decide without risking disagreement with crashed
processes! They cannot even decide 0 (abort)!Why bother?

The key idea to 3PC:
A process does not decide 1 unless every correctprocess
is “ready” to decide 1.

The key idea to 3PC:
A process does not decide 1 unless every correctprocess
is “ready” to decide 1.

Three-Phase Commit (3PC) Algorithm

© C. Karamanolis 17 Distributed Algorithms

Decentralised 2PC Algorithm
Blocking conditions

� Decentralised 2PC is also ablockingalgorithm.

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• ∃j:0<j ≤≤≤≤n-1 , such thati does not receive

Round-1 msg (vote j) from j . *

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• ∃j:0<j ≤≤≤≤n-1 , such thati does not receive

Round-1 msg (vote j) from j . *

* either due to failure of processj or failure of communication link withj .

© C. Karamanolis 18 Distributed Algorithms

Complexity Analysis of Decentralised 2PC:

� Time: 1 round (a little better than before)

� # msgs: n(n-1) = n2-n = O(n2) (much worse than before)

Complexity Analysis of Decentralised 2PC:

� Time: 1 round (a little better than before)

� # msgs: n(n-1) = n2-n = O(n2) (much worse than before)

Exercise:
Prove that the decentralised 2PC algorithm solves Weak AC
in synchronous systems subject to process + link failures.

Decentralised 2PC Algorithm

© C. Karamanolis 19 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm

� 2PC solvesWeak AC in synchronous systems subject
to bothprocess + link failures. It may block in the
presence of any type of failures.

� 3PC solvesStrong AC in synchronous systems subject
to process failuresonly! It always terminates (does not
block) in the presence of process failures.

Note:If link failures occur, 3PC may violate Agreement
(safety property)!

© C. Karamanolis 20 Distributed Algorithms

Why a correct process may be unable to decide in 2PC (blocks)?

� A participant that votes 1 is uncertain between the time it sends its
vote in Round 1 and the time it receives the decision in Round 2.

� A process may decide 1 (commit) while some process is still
uncertain.

If the only surviving processes have voted 1 and are uncertain,
they cannot decide without risking disagreement with crashed
processes! They cannot even decide 0 (abort)!Why bother?

The key idea to 3PC:
A process does not decide 1 unless every correctprocess
is “ready” to decide 1.

The key idea to 3PC:
A process does not decide 1 unless every correctprocess
is “ready” to decide 1.

Three-Phase Commit (3PC) Algorithm

© C. Karamanolis 17 Distributed Algorithms

Decentralised 2PC Algorithm
Blocking conditions

� Decentralised 2PC is also ablockingalgorithm.

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• ∃j:0<j ≤≤≤≤n-1 , such thati does not receive

Round-1 msg (vote j) from j . *

Blocking conditions in processi: 0 ≤≤≤≤i ≤≤≤≤n-1 :
• ∃j:0<j ≤≤≤≤n-1 , such thati does not receive

Round-1 msg (vote j) from j . *

* either due to failure of processj or failure of communication link withj .

© C. Karamanolis 18 Distributed Algorithms

Complexity Analysis of Decentralised 2PC:

� Time: 1 round (a little better than before)

� # msgs: n(n-1) = n2-n = O(n2) (much worse than before)

Complexity Analysis of Decentralised 2PC:

� Time: 1 round (a little better than before)

� # msgs: n(n-1) = n2-n = O(n2) (much worse than before)

Exercise:
Prove that the decentralised 2PC algorithm solves Weak AC
in synchronous systems subject to process + link failures.

Decentralised 2PC Algorithm

© C. Karamanolis 19 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm

� 2PC solvesWeak AC in synchronous systems subject
to bothprocess + link failures. It may block in the
presence of any type of failures.

� 3PC solvesStrong AC in synchronous systems subject
to process failuresonly! It always terminates (does not
block) in the presence of process failures.

Note:If link failures occur, 3PC may violate Agreement
(safety property)!

© C. Karamanolis 20 Distributed Algorithms

Why a correct process may be unable to decide in 2PC (blocks)?

� A participant that votes 1 is uncertain between the time it sends its
vote in Round 1 and the time it receives the decision in Round 2.

� A process may decide 1 (commit) while some process is still
uncertain.

If the only surviving processes have voted 1 and are uncertain,
they cannot decide without risking disagreement with crashed
processes! They cannot even decide 0 (abort)!Why bother?

The key idea to 3PC:
A process does not decide 1 unless every correctprocess
is “ready” to decide 1.

The key idea to 3PC:
A process does not decide 1 unless every correctprocess
is “ready” to decide 1.

Three-Phase Commit (3PC) Algorithm

© C. Karamanolis 21 Distributed Algorithms

… Making sure they are “ready” requires an extra round.
If all votes = 1, then the coordinator, as long as itdoes not fail:
� first informs processes that the decision will be 1 by sending

“ready” messages (round 2),
� then instructs them to decide 1 (round 3).

2 n-11

0

votes

Round 1

2 n-11

0

“ready”

Round 2

2 n-11

0

“1”

Round 3

2 n-11

0

“0”

if all votes = 1

if some vote = 0 (or not received)

Three-Phase Commit (3PC) Algorithm

© C. Karamanolis 22 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm

Initially: vote i ∈{0,1}, decision i = uncertain ∀∀∀∀i, 0 ≤≤≤≤i<n

process i:1,…,n-1
(participants)

process 0
(coordinator)

R
ou

nd
1

R
ou

nd
2

R
ou

nd
3

send vote i to 0;
if vote i =0 then

decision i :=0; //abort
recv Round_1 msgs;
if vote 0=1 and received 1

from all i:1..n-1 then
decision 0:=ready;

else decision 0:=0; //abort

if decision i ≠ 0 then //uncertain
recv round-2 msg;
if recvd D then decision i :=D;

send decision 0 to i:1..n-1;

if decision i ≠ 0 then
recv Round_3 msg;
if recvd 1 then decision i :=1;

if decision 0=ready then
decision 0:=1; //commit
send 1 to i:1..n-1;

epoch 0 : rounds 1,2,3

© C. Karamanolis 23 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (no coordinator failure)

Lemma 1: After the three roundsof 3PC, the following conditions are true:

� If ∃i such that decisioni ∈{ready,1}, then initially votei=1 ∀i, 0≤i ≤n-1.

� If ∃i such that decisioni =0, then there is no process j such that
decisionj =1 and no non-faulty process k with decisionk =ready.

� If ∃i such that decisioni =1, then there is no process j such that
decisionj =0 and no non-faulty process k with decisionk =uncertain.

Lemma 1: After the three roundsof 3PC, the following conditions are true:

� If ∃i such that decisioni ∈{ready,1}, then initially votei=1 ∀i, 0≤i ≤n-1.

� If ∃i such that decisioni =0, then there is no process j such that
decisionj =1 and no non-faulty process k with decisionk =ready.

� If ∃i such that decisioni =1, then there is no process j such that
decisionj =0 and no non-faulty process k with decisionk =uncertain.

Proof sketch: Let decisioni =D, show scenario that led to this decision…

Important: Thesynchronyof the model - processes can reach
conclusions about the state of other processes at the end of rounds of
computation.

© C. Karamanolis 24 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (no coordinator failure)

3PC satisfies the following properties:

• Agreement (even for faulty processes)

• Validity-1 and Validity-2

• If process 0 (coordinator) does not fail and
there are no link failures, then all non-failed
processes decide.

Lemma 1

© C. Karamanolis 21 Distributed Algorithms

… Making sure they are “ready” requires an extra round.
If all votes = 1, then the coordinator, as long as itdoes not fail:
� first informs processes that the decision will be 1 by sending

“ready” messages (round 2),
� then instructs them to decide 1 (round 3).

2 n-11

0

votes

Round 1

2 n-11

0

“ready”

Round 2

2 n-11

0

“1”

Round 3

2 n-11

0

“0”

if all votes = 1

if some vote = 0 (or not received)

Three-Phase Commit (3PC) Algorithm

© C. Karamanolis 22 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm

Initially: vote i ∈{0,1}, decision i = uncertain ∀∀∀∀i, 0 ≤≤≤≤i<n

process i:1,…,n-1
(participants)

process 0
(coordinator)

R
ou

nd
1

R
ou

nd
2

R
ou

nd
3

send vote i to 0;
if vote i =0 then

decision i :=0; //abort
recv Round_1 msgs;
if vote 0=1 and received 1

from all i:1..n-1 then
decision 0:=ready;

else decision 0:=0; //abort

if decision i ≠ 0 then //uncertain
recv round-2 msg;
if recvd D then decision i :=D;

send decision 0 to i:1..n-1;

if decision i ≠ 0 then
recv Round_3 msg;
if recvd 1 then decision i :=1;

if decision 0=ready then
decision 0:=1; //commit
send 1 to i:1..n-1;

epoch 0 : rounds 1,2,3

© C. Karamanolis 23 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (no coordinator failure)

Lemma 1: After the three roundsof 3PC, the following conditions are true:

� If ∃i such that decisioni ∈{ready,1}, then initially votei=1 ∀i, 0≤i ≤n-1.

� If ∃i such that decisioni =0, then there is no process j such that
decisionj =1 and no non-faulty process k with decisionk =ready.

� If ∃i such that decisioni =1, then there is no process j such that
decisionj =0 and no non-faulty process k with decisionk =uncertain.

Lemma 1: After the three roundsof 3PC, the following conditions are true:

� If ∃i such that decisioni ∈{ready,1}, then initially votei=1 ∀i, 0≤i ≤n-1.

� If ∃i such that decisioni =0, then there is no process j such that
decisionj =1 and no non-faulty process k with decisionk =ready.

� If ∃i such that decisioni =1, then there is no process j such that
decisionj =0 and no non-faulty process k with decisionk =uncertain.

Proof sketch: Let decisioni =D, show scenario that led to this decision…

Important: Thesynchronyof the model - processes can reach
conclusions about the state of other processes at the end of rounds of
computation.

© C. Karamanolis 24 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (no coordinator failure)

3PC satisfies the following properties:

• Agreement (even for faulty processes)

• Validity-1 and Validity-2

• If process 0 (coordinator) does not fail and
there are no link failures, then all non-failed
processes decide.

Lemma 1

© C. Karamanolis 21 Distributed Algorithms

… Making sure they are “ready” requires an extra round.
If all votes = 1, then the coordinator, as long as itdoes not fail:
� first informs processes that the decision will be 1 by sending

“ready” messages (round 2),
� then instructs them to decide 1 (round 3).

2 n-11

0

votes

Round 1

2 n-11

0

“ready”

Round 2

2 n-11

0

“1”

Round 3

2 n-11

0

“0”

if all votes = 1

if some vote = 0 (or not received)

Three-Phase Commit (3PC) Algorithm

© C. Karamanolis 22 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm

Initially: vote i ∈{0,1}, decision i = uncertain ∀∀∀∀i, 0 ≤≤≤≤i<n

process i:1,…,n-1
(participants)

process 0
(coordinator)

R
ou

nd
1

R
ou

nd
2

R
ou

nd
3

send vote i to 0;
if vote i =0 then

decision i :=0; //abort
recv Round_1 msgs;
if vote 0=1 and received 1

from all i:1..n-1 then
decision 0:=ready;

else decision 0:=0; //abort

if decision i ≠ 0 then //uncertain
recv round-2 msg;
if recvd D then decision i :=D;

send decision 0 to i:1..n-1;

if decision i ≠ 0 then
recv Round_3 msg;
if recvd 1 then decision i :=1;

if decision 0=ready then
decision 0:=1; //commit
send 1 to i:1..n-1;

epoch 0 : rounds 1,2,3

© C. Karamanolis 23 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (no coordinator failure)

Lemma 1: After the three roundsof 3PC, the following conditions are true:

� If ∃i such that decisioni ∈{ready,1}, then initially votei=1 ∀i, 0≤i ≤n-1.

� If ∃i such that decisioni =0, then there is no process j such that
decisionj =1 and no non-faulty process k with decisionk =ready.

� If ∃i such that decisioni =1, then there is no process j such that
decisionj =0 and no non-faulty process k with decisionk =uncertain.

Lemma 1: After the three roundsof 3PC, the following conditions are true:

� If ∃i such that decisioni ∈{ready,1}, then initially votei=1 ∀i, 0≤i ≤n-1.

� If ∃i such that decisioni =0, then there is no process j such that
decisionj =1 and no non-faulty process k with decisionk =ready.

� If ∃i such that decisioni =1, then there is no process j such that
decisionj =0 and no non-faulty process k with decisionk =uncertain.

Proof sketch: Let decisioni =D, show scenario that led to this decision…

Important: Thesynchronyof the model - processes can reach
conclusions about the state of other processes at the end of rounds of
computation.

© C. Karamanolis 24 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (no coordinator failure)

3PC satisfies the following properties:

• Agreement (even for faulty processes)

• Validity-1 and Validity-2

• If process 0 (coordinator) does not fail and
there are no link failures, then all non-failed
processes decide.

Lemma 1

© C. Karamanolis 21 Distributed Algorithms

… Making sure they are “ready” requires an extra round.
If all votes = 1, then the coordinator, as long as itdoes not fail:
� first informs processes that the decision will be 1 by sending

“ready” messages (round 2),
� then instructs them to decide 1 (round 3).

2 n-11

0

votes

Round 1

2 n-11

0

“ready”

Round 2

2 n-11

0

“1”

Round 3

2 n-11

0

“0”

if all votes = 1

if some vote = 0 (or not received)

Three-Phase Commit (3PC) Algorithm

© C. Karamanolis 22 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm

Initially: vote i ∈{0,1}, decision i = uncertain ∀∀∀∀i, 0 ≤≤≤≤i<n

process i:1,…,n-1
(participants)

process 0
(coordinator)

R
ou

nd
1

R
ou

nd
2

R
ou

nd
3

send vote i to 0;
if vote i =0 then

decision i :=0; //abort
recv Round_1 msgs;
if vote 0=1 and received 1

from all i:1..n-1 then
decision 0:=ready;

else decision 0:=0; //abort

if decision i ≠ 0 then //uncertain
recv round-2 msg;
if recvd D then decision i :=D;

send decision 0 to i:1..n-1;

if decision i ≠ 0 then
recv Round_3 msg;
if recvd 1 then decision i :=1;

if decision 0=ready then
decision 0:=1; //commit
send 1 to i:1..n-1;

epoch 0 : rounds 1,2,3

© C. Karamanolis 23 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (no coordinator failure)

Lemma 1: After the three roundsof 3PC, the following conditions are true:

� If ∃i such that decisioni ∈{ready,1}, then initially votei=1 ∀i, 0≤i ≤n-1.

� If ∃i such that decisioni =0, then there is no process j such that
decisionj =1 and no non-faulty process k with decisionk =ready.

� If ∃i such that decisioni =1, then there is no process j such that
decisionj =0 and no non-faulty process k with decisionk =uncertain.

Lemma 1: After the three roundsof 3PC, the following conditions are true:

� If ∃i such that decisioni ∈{ready,1}, then initially votei=1 ∀i, 0≤i ≤n-1.

� If ∃i such that decisioni =0, then there is no process j such that
decisionj =1 and no non-faulty process k with decisionk =ready.

� If ∃i such that decisioni =1, then there is no process j such that
decisionj =0 and no non-faulty process k with decisionk =uncertain.

Proof sketch: Let decisioni =D, show scenario that led to this decision…

Important: Thesynchronyof the model - processes can reach
conclusions about the state of other processes at the end of rounds of
computation.

© C. Karamanolis 24 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (no coordinator failure)

3PC satisfies the following properties:

• Agreement (even for faulty processes)

• Validity-1 and Validity-2

• If process 0 (coordinator) does not fail and
there are no link failures, then all non-failed
processes decide.

Lemma 1

© C. Karamanolis 25 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

The three rounds above describe the behaviour of the protocol for the
case of correct coordinator (process 0). What if the coordinator crashes
before completing round 3? How does the algorithm terminate?

� Process 1 becomes coordinatorand collects states of (undecided) processes.

� Depending on the collected states,it acts as process 0in rounds 2 and 3...

If any undecided process had received “ready” from old coordinator

� instruct all processes to become ready[like round 2]

� instruct all processes to decide 1[like round 3]

If none of the undecided was ready

� instruct all processes to decide 0[like round 2, if not all votes = 1]
Note:impossible for a process to have previously decided 1 (Why?)

What if process 1 crashes before it completes round 6? …new epoch...

© C. Karamanolis 26 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

process i:r+1,…,n-1
(participants)

process r
(coordinator)

R
ou

nd
3

r+
1

R
.3

r+
2

R
.3

r+
3

if decision i ∉ {0,1} then
send decision i to r; recv Round_3r+1 msgs;

R:={(i,m):r recvd m from i in 3r+1};
if decision r =uncertain then

if ∃i:(i,ready) ∈R then
decision r :=ready;

else
decision r :=0; //abort

if decision i =uncertain then
recv Round_3r+2 msg;
if recvd D then decision i :=D;

send decision r to all i:(i,-) ∈R;

if decision i =ready then
recv Round_3r+3 msg;
if recvd 1 then decision i :=1;

if decision r =ready then
decision r :=1; //commit
send 1 to all i:(i,-) ∈R ;

epochr , 1≤≤≤≤r<n : rounds 3r+1, 3r+2, 3r+3

© C. Karamanolis 27 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

t

n-1

2

1

0
round:
epoch:

1 2 3 4 5 6 7 8 9

0 1 2

Computation divided into “epochs”: 0..n-1
Epoch i begins only if coordinator i-1 fails before termination.
Coordinator of epoch i isprocess i.
Epoch i consists of 3 rounds: 3i+1, 3i+2, 3i+3.
Participants of epoch i are processes i+1..n-1.

Process i has two variables:
• vote i ∈ {0,1}
• decision i ∈ {uncertain, ready, 0, 1}

© C. Karamanolis 28 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (possible coordinator failure)

Terminology:

� “process p is correct through epoch i”: p does not crash before
the end of round 3i+3.

� “process p decides D in epoch i”: p setsdecision p:=D ∈{0,1}

during epoch i.

Lemma 2: If i is correct through epoch i, then each process that is correct
through epoch i decides in epoch i or earlier.

Lemma 2: If i is correct through epoch i, then each process that is correct
through epoch i decides in epoch i or earlier.

3PC with the Termination protocol satisfies
“Strong Termination”

Lemma 2

� If all processes fail, then Strong Termination trivially holds. If there is at least
one correct process, say i, then by Lemma 1, Strong Termination holds.

© C. Karamanolis 25 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

The three rounds above describe the behaviour of the protocol for the
case of correct coordinator (process 0). What if the coordinator crashes
before completing round 3? How does the algorithm terminate?

� Process 1 becomes coordinatorand collects states of (undecided) processes.

� Depending on the collected states,it acts as process 0in rounds 2 and 3...

If any undecided process had received “ready” from old coordinator

� instruct all processes to become ready[like round 2]

� instruct all processes to decide 1[like round 3]

If none of the undecided was ready

� instruct all processes to decide 0[like round 2, if not all votes = 1]
Note:impossible for a process to have previously decided 1 (Why?)

What if process 1 crashes before it completes round 6? …new epoch...

© C. Karamanolis 26 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

process i:r+1,…,n-1
(participants)

process r
(coordinator)

R
ou

nd
3

r+
1

R
.3

r+
2

R
.3

r+
3

if decision i ∉ {0,1} then
send decision i to r; recv Round_3r+1 msgs;

R:={(i,m):r recvd m from i in 3r+1};
if decision r =uncertain then

if ∃i:(i,ready) ∈R then
decision r :=ready;

else
decision r :=0; //abort

if decision i =uncertain then
recv Round_3r+2 msg;
if recvd D then decision i :=D;

send decision r to all i:(i,-) ∈R;

if decision i =ready then
recv Round_3r+3 msg;
if recvd 1 then decision i :=1;

if decision r =ready then
decision r :=1; //commit
send 1 to all i:(i,-) ∈R ;

epochr , 1≤≤≤≤r<n : rounds 3r+1, 3r+2, 3r+3

© C. Karamanolis 27 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

t

n-1

2

1

0
round:
epoch:

1 2 3 4 5 6 7 8 9

0 1 2

Computation divided into “epochs”: 0..n-1
Epoch i begins only if coordinator i-1 fails before termination.
Coordinator of epoch i isprocess i.
Epoch i consists of 3 rounds: 3i+1, 3i+2, 3i+3.
Participants of epoch i are processes i+1..n-1.

Process i has two variables:
• vote i ∈ {0,1}
• decision i ∈ {uncertain, ready, 0, 1}

© C. Karamanolis 28 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (possible coordinator failure)

Terminology:

� “process p is correct through epoch i”: p does not crash before
the end of round 3i+3.

� “process p decides D in epoch i”: p setsdecision p:=D ∈{0,1}

during epoch i.

Lemma 2: If i is correct through epoch i, then each process that is correct
through epoch i decides in epoch i or earlier.

Lemma 2: If i is correct through epoch i, then each process that is correct
through epoch i decides in epoch i or earlier.

3PC with the Termination protocol satisfies
“Strong Termination”

Lemma 2

� If all processes fail, then Strong Termination trivially holds. If there is at least
one correct process, say i, then by Lemma 1, Strong Termination holds.

© C. Karamanolis 25 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

The three rounds above describe the behaviour of the protocol for the
case of correct coordinator (process 0). What if the coordinator crashes
before completing round 3? How does the algorithm terminate?

� Process 1 becomes coordinatorand collects states of (undecided) processes.

� Depending on the collected states,it acts as process 0in rounds 2 and 3...

If any undecided process had received “ready” from old coordinator

� instruct all processes to become ready[like round 2]

� instruct all processes to decide 1[like round 3]

If none of the undecided was ready

� instruct all processes to decide 0[like round 2, if not all votes = 1]
Note:impossible for a process to have previously decided 1 (Why?)

What if process 1 crashes before it completes round 6? …new epoch...

© C. Karamanolis 26 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

process i:r+1,…,n-1
(participants)

process r
(coordinator)

R
ou

nd
3

r+
1

R
.3

r+
2

R
.3

r+
3

if decision i ∉ {0,1} then
send decision i to r; recv Round_3r+1 msgs;

R:={(i,m):r recvd m from i in 3r+1};
if decision r =uncertain then

if ∃i:(i,ready) ∈R then
decision r :=ready;

else
decision r :=0; //abort

if decision i =uncertain then
recv Round_3r+2 msg;
if recvd D then decision i :=D;

send decision r to all i:(i,-) ∈R;

if decision i =ready then
recv Round_3r+3 msg;
if recvd 1 then decision i :=1;

if decision r =ready then
decision r :=1; //commit
send 1 to all i:(i,-) ∈R ;

epochr , 1≤≤≤≤r<n : rounds 3r+1, 3r+2, 3r+3

© C. Karamanolis 27 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

t

n-1

2

1

0
round:
epoch:

1 2 3 4 5 6 7 8 9

0 1 2

Computation divided into “epochs”: 0..n-1
Epoch i begins only if coordinator i-1 fails before termination.
Coordinator of epoch i isprocess i.
Epoch i consists of 3 rounds: 3i+1, 3i+2, 3i+3.
Participants of epoch i are processes i+1..n-1.

Process i has two variables:
• vote i ∈ {0,1}
• decision i ∈ {uncertain, ready, 0, 1}

© C. Karamanolis 28 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (possible coordinator failure)

Terminology:

� “process p is correct through epoch i”: p does not crash before
the end of round 3i+3.

� “process p decides D in epoch i”: p setsdecision p:=D ∈{0,1}

during epoch i.

Lemma 2: If i is correct through epoch i, then each process that is correct
through epoch i decides in epoch i or earlier.

Lemma 2: If i is correct through epoch i, then each process that is correct
through epoch i decides in epoch i or earlier.

3PC with the Termination protocol satisfies
“Strong Termination”

Lemma 2

� If all processes fail, then Strong Termination trivially holds. If there is at least
one correct process, say i, then by Lemma 1, Strong Termination holds.

© C. Karamanolis 25 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

The three rounds above describe the behaviour of the protocol for the
case of correct coordinator (process 0). What if the coordinator crashes
before completing round 3? How does the algorithm terminate?

� Process 1 becomes coordinatorand collects states of (undecided) processes.

� Depending on the collected states,it acts as process 0in rounds 2 and 3...

If any undecided process had received “ready” from old coordinator

� instruct all processes to become ready[like round 2]

� instruct all processes to decide 1[like round 3]

If none of the undecided was ready

� instruct all processes to decide 0[like round 2, if not all votes = 1]
Note:impossible for a process to have previously decided 1 (Why?)

What if process 1 crashes before it completes round 6? …new epoch...

© C. Karamanolis 26 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

process i:r+1,…,n-1
(participants)

process r
(coordinator)

R
ou

nd
3

r+
1

R
.3

r+
2

R
.3

r+
3

if decision i ∉ {0,1} then
send decision i to r; recv Round_3r+1 msgs;

R:={(i,m):r recvd m from i in 3r+1};
if decision r =uncertain then

if ∃i:(i,ready) ∈R then
decision r :=ready;

else
decision r :=0; //abort

if decision i =uncertain then
recv Round_3r+2 msg;
if recvd D then decision i :=D;

send decision r to all i:(i,-) ∈R;

if decision i =ready then
recv Round_3r+3 msg;
if recvd 1 then decision i :=1;

if decision r =ready then
decision r :=1; //commit
send 1 to all i:(i,-) ∈R ;

epochr , 1≤≤≤≤r<n : rounds 3r+1, 3r+2, 3r+3

© C. Karamanolis 27 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Termination protocol

t

n-1

2

1

0
round:
epoch:

1 2 3 4 5 6 7 8 9

0 1 2

Computation divided into “epochs”: 0..n-1
Epoch i begins only if coordinator i-1 fails before termination.
Coordinator of epoch i isprocess i.
Epoch i consists of 3 rounds: 3i+1, 3i+2, 3i+3.
Participants of epoch i are processes i+1..n-1.

Process i has two variables:
• vote i ∈ {0,1}
• decision i ∈ {uncertain, ready, 0, 1}

© C. Karamanolis 28 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments (possible coordinator failure)

Terminology:

� “process p is correct through epoch i”: p does not crash before
the end of round 3i+3.

� “process p decides D in epoch i”: p setsdecision p:=D ∈{0,1}

during epoch i.

Lemma 2: If i is correct through epoch i, then each process that is correct
through epoch i decides in epoch i or earlier.

Lemma 2: If i is correct through epoch i, then each process that is correct
through epoch i decides in epoch i or earlier.

3PC with the Termination protocol satisfies
“Strong Termination”

Lemma 2

� If all processes fail, then Strong Termination trivially holds. If there is at least
one correct process, say i, then by Lemma 1, Strong Termination holds.

© C. Karamanolis 29 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments

Lemma 3: If a process decidesD ∈{0,1} in epoch i, then:
(a) the coordinator of epoch i also decidesD in epoch i, and
(b) no process decidesnot-D in epoch i.

Lemma 3: If a process decidesD ∈{0,1} in epoch i, then:
(a) the coordinator of epoch i also decidesD in epoch i, and
(b) no process decidesnot-D in epoch i.

Lemma 4: If the coordinator of epoch i decides 0 [decides 1] in
epoch i, then for every process p that is correct through epoch i,
decision p∈{uncertain,0} [decision p∈{ready,1}] from the end

of epoch i onwards.

Lemma 4: If the coordinator of epoch i decides 0 [decides 1] in
epoch i, then for every process p that is correct through epoch i,
decision p∈{uncertain,0} [decision p∈{ready,1}] from the end

of epoch i onwards.

Lemma 5: If the coordinator of epoch i decidesD ∈{0,1} in epoch i,
then for all j≥i, if the coordinator of epoch j decides in epoch j, it
must also decideD in epoch j.

Lemma 5: If the coordinator of epoch i decidesD ∈{0,1} in epoch i,
then for all j≥i, if the coordinator of epoch j decides in epoch j, it
must also decideD in epoch j.

“Validity-1”, “Validity-2” and “Agreement” in the presence of multiple
coordinator failures can be shown using the following auxiliary Lemmas...

© C. Karamanolis 30 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments

3PC solves “Strong AC” in synchronous systems
provided there are no link failures.

Note:Link failures can cause 3PC to violate Agreement. (Exercise: How?)

Strong Termination is still satisfied (small consolation, since safety is
violated!)

There is a variant of 3PC that tolerates both process & link failures (by
means of a Majority Termination Rule) but solves “Weak AC” -- 2PC
does this already!

© C. Karamanolis 31 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Complexity Analysis

Complexity Analysis of 3PC:

If t processes crash, algorithm requires:

� Time: ≤ 3(t+1) rounds [by Lemma 2]

� # msgs: O(nt) [by Lemma 2&6]

Complexity Analysis of 3PC:

If t processes crash, algorithm requires:

� Time: ≤ 3(t+1) rounds [by Lemma 2]

� # msgs: O(nt) [by Lemma 2&6]

Each additional process failure costs:
• ≤ 3 more rounds
• ≤ 3(n-1) more msgs

Lemma 6: If all processes that are correct through epoch i have decided
by the end of epoch i, then no message is sent in epochs > i.

Lemma 6: If all processes that are correct through epoch i have decided
by the end of epoch i, then no message is sent in epochs > i.

© C. Karamanolis 29 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments

Lemma 3: If a process decidesD ∈{0,1} in epoch i, then:
(a) the coordinator of epoch i also decidesD in epoch i, and
(b) no process decidesnot-D in epoch i.

Lemma 3: If a process decidesD ∈{0,1} in epoch i, then:
(a) the coordinator of epoch i also decidesD in epoch i, and
(b) no process decidesnot-D in epoch i.

Lemma 4: If the coordinator of epoch i decides 0 [decides 1] in
epoch i, then for every process p that is correct through epoch i,
decision p∈{uncertain,0} [decision p∈{ready,1}] from the end

of epoch i onwards.

Lemma 4: If the coordinator of epoch i decides 0 [decides 1] in
epoch i, then for every process p that is correct through epoch i,
decision p∈{uncertain,0} [decision p∈{ready,1}] from the end

of epoch i onwards.

Lemma 5: If the coordinator of epoch i decidesD ∈{0,1} in epoch i,
then for all j≥i, if the coordinator of epoch j decides in epoch j, it
must also decideD in epoch j.

Lemma 5: If the coordinator of epoch i decidesD ∈{0,1} in epoch i,
then for all j≥i, if the coordinator of epoch j decides in epoch j, it
must also decideD in epoch j.

“Validity-1”, “Validity-2” and “Agreement” in the presence of multiple
coordinator failures can be shown using the following auxiliary Lemmas...

© C. Karamanolis 30 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments

3PC solves “Strong AC” in synchronous systems
provided there are no link failures.

Note:Link failures can cause 3PC to violate Agreement. (Exercise: How?)

Strong Termination is still satisfied (small consolation, since safety is
violated!)

There is a variant of 3PC that tolerates both process & link failures (by
means of a Majority Termination Rule) but solves “Weak AC” -- 2PC
does this already!

© C. Karamanolis 31 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Complexity Analysis

Complexity Analysis of 3PC:

If t processes crash, algorithm requires:

� Time: ≤ 3(t+1) rounds [by Lemma 2]

� # msgs: O(nt) [by Lemma 2&6]

Complexity Analysis of 3PC:

If t processes crash, algorithm requires:

� Time: ≤ 3(t+1) rounds [by Lemma 2]

� # msgs: O(nt) [by Lemma 2&6]

Each additional process failure costs:
• ≤ 3 more rounds
• ≤ 3(n-1) more msgs

Lemma 6: If all processes that are correct through epoch i have decided
by the end of epoch i, then no message is sent in epochs > i.

Lemma 6: If all processes that are correct through epoch i have decided
by the end of epoch i, then no message is sent in epochs > i.

© C. Karamanolis 29 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments

Lemma 3: If a process decidesD ∈{0,1} in epoch i, then:
(a) the coordinator of epoch i also decidesD in epoch i, and
(b) no process decidesnot-D in epoch i.

Lemma 3: If a process decidesD ∈{0,1} in epoch i, then:
(a) the coordinator of epoch i also decidesD in epoch i, and
(b) no process decidesnot-D in epoch i.

Lemma 4: If the coordinator of epoch i decides 0 [decides 1] in
epoch i, then for every process p that is correct through epoch i,
decision p∈{uncertain,0} [decision p∈{ready,1}] from the end

of epoch i onwards.

Lemma 4: If the coordinator of epoch i decides 0 [decides 1] in
epoch i, then for every process p that is correct through epoch i,
decision p∈{uncertain,0} [decision p∈{ready,1}] from the end

of epoch i onwards.

Lemma 5: If the coordinator of epoch i decidesD ∈{0,1} in epoch i,
then for all j≥i, if the coordinator of epoch j decides in epoch j, it
must also decideD in epoch j.

Lemma 5: If the coordinator of epoch i decidesD ∈{0,1} in epoch i,
then for all j≥i, if the coordinator of epoch j decides in epoch j, it
must also decideD in epoch j.

“Validity-1”, “Validity-2” and “Agreement” in the presence of multiple
coordinator failures can be shown using the following auxiliary Lemmas...

© C. Karamanolis 30 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments

3PC solves “Strong AC” in synchronous systems
provided there are no link failures.

Note:Link failures can cause 3PC to violate Agreement. (Exercise: How?)

Strong Termination is still satisfied (small consolation, since safety is
violated!)

There is a variant of 3PC that tolerates both process & link failures (by
means of a Majority Termination Rule) but solves “Weak AC” -- 2PC
does this already!

© C. Karamanolis 31 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Complexity Analysis

Complexity Analysis of 3PC:

If t processes crash, algorithm requires:

� Time: ≤ 3(t+1) rounds [by Lemma 2]

� # msgs: O(nt) [by Lemma 2&6]

Complexity Analysis of 3PC:

If t processes crash, algorithm requires:

� Time: ≤ 3(t+1) rounds [by Lemma 2]

� # msgs: O(nt) [by Lemma 2&6]

Each additional process failure costs:
• ≤ 3 more rounds
• ≤ 3(n-1) more msgs

Lemma 6: If all processes that are correct through epoch i have decided
by the end of epoch i, then no message is sent in epochs > i.

Lemma 6: If all processes that are correct through epoch i have decided
by the end of epoch i, then no message is sent in epochs > i.

© C. Karamanolis 29 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments

Lemma 3: If a process decidesD ∈{0,1} in epoch i, then:
(a) the coordinator of epoch i also decidesD in epoch i, and
(b) no process decidesnot-D in epoch i.

Lemma 3: If a process decidesD ∈{0,1} in epoch i, then:
(a) the coordinator of epoch i also decidesD in epoch i, and
(b) no process decidesnot-D in epoch i.

Lemma 4: If the coordinator of epoch i decides 0 [decides 1] in
epoch i, then for every process p that is correct through epoch i,
decision p∈{uncertain,0} [decision p∈{ready,1}] from the end

of epoch i onwards.

Lemma 4: If the coordinator of epoch i decides 0 [decides 1] in
epoch i, then for every process p that is correct through epoch i,
decision p∈{uncertain,0} [decision p∈{ready,1}] from the end

of epoch i onwards.

Lemma 5: If the coordinator of epoch i decidesD ∈{0,1} in epoch i,
then for all j≥i, if the coordinator of epoch j decides in epoch j, it
must also decideD in epoch j.

Lemma 5: If the coordinator of epoch i decidesD ∈{0,1} in epoch i,
then for all j≥i, if the coordinator of epoch j decides in epoch j, it
must also decideD in epoch j.

“Validity-1”, “Validity-2” and “Agreement” in the presence of multiple
coordinator failures can be shown using the following auxiliary Lemmas...

© C. Karamanolis 30 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Correctness arguments

3PC solves “Strong AC” in synchronous systems
provided there are no link failures.

Note:Link failures can cause 3PC to violate Agreement. (Exercise: How?)

Strong Termination is still satisfied (small consolation, since safety is
violated!)

There is a variant of 3PC that tolerates both process & link failures (by
means of a Majority Termination Rule) but solves “Weak AC” -- 2PC
does this already!

© C. Karamanolis 31 Distributed Algorithms

Three-Phase Commit (3PC) Algorithm
Complexity Analysis

Complexity Analysis of 3PC:

If t processes crash, algorithm requires:

� Time: ≤ 3(t+1) rounds [by Lemma 2]

� # msgs: O(nt) [by Lemma 2&6]

Complexity Analysis of 3PC:

If t processes crash, algorithm requires:

� Time: ≤ 3(t+1) rounds [by Lemma 2]

� # msgs: O(nt) [by Lemma 2&6]

Each additional process failure costs:
• ≤ 3 more rounds
• ≤ 3(n-1) more msgs

Lemma 6: If all processes that are correct through epoch i have decided
by the end of epoch i, then no message is sent in epochs > i.

Lemma 6: If all processes that are correct through epoch i have decided
by the end of epoch i, then no message is sent in epochs > i.

