
Byzantine Agreement:
Applications

• Diego Puppin

Real-world applications

• Software errors and attacks are more and
more common

• Byzantine Agreement can bring reliability in
case of faults, attacks etc.

• Faulty/malicious nodes can exhibit byzantine
behavior (wrong, missing, late messages)

• We have seen an exponential algorithm, let’s
try something better

Assumptions

• Network can delay, lose, duplicate, re-order
messages freely

• Faulty nodes may behave arbitrarily

• Independent failures

• Diversified code!!

• Cryptographic protection to messages

Safety

• A replicated service is SAFE if is satisfies
linearizability:

• It behaves like a centralized system that
executes operations atomically, one at a time

• Safety is not enough: bad clients can destroy
data on FS

• Access control is needed

Liveness

• Clients eventually receive replies, if at most
are faulty, and delay(t) does not grow

• Synchrony is needed to guarantee liveness

Fault tolerance

• 3f+1 copies are needed to survive f faults

• Privacy is not guaranteed:

• A faulty process could share data

• Some solutions available using secret sharing
schemes

Secret sharing

Algorithm

• Let’s have a set R of replicas, |R| = 3f+1

• The replicas go through views

• In view v, replica v mod |R| is considered
primary (the other backups)

• View is changed when the primary replica
fails (appears to fail)

Algorithm

• A client send a request to invoke an operation
to the primary

• The primary multicasts the req to backups

• Replicas execute and reply to client

• The client waits for f+1 identical results

• Replicas are deterministic

• They start from the same state

• All non-faulty replicas agree on a total order
of requests

Client (1)

• C sends a request <REQ, op, time, c>c to
primary

• Primary broadcasts

• A replica i replies <REPLY, view, time, c, i,
res>i

• Clients wait for f+1 results with the same time
and res

Client (2)

• If no results (before timeout), REQ is
broadcast to all replicas

• Replicas elaborates (or re-send) REPLY and
then relies the message to primary

• If primary doesn’t broadcast, it may be faulty

Primary’s role

• When p receives REQ, there is an atomic
three-phase broadcast

• pre-prepare, prepare, commit

pre-prepare

• p gives an ID n to REQ

• m = <REQ, op, time, c>c - dm is the digest

• p multicasts <<PRE-PREPARE, v, n, dm>p, m>

• Backups accept if:

• signature is ok

• v number is ok

• <v, n> is new

prepare

• If backup accepts, it multicasts

• <PREPARE, v, n, dm, i>i

• PREPREPARE and PREPARE msgs are logged

• If not, NOP

prepared()

• prepared(m, v, n, i) TRUE if replica i has
logged: one pre-prepare msg and 2f prepare
msgs

• Non faulty replicas agree on an order (given
by n)

• There cannot be prepared(m1, v, n, i) and
prepared(m2, v, n, i)

commit

• When prepared(m, v, n, i) replica i broadcasts
<COMMIT, v, n, dm, i>i to replicas

• Replicas accept COMMIT and log it if v,n and
signatures are ok

committed()

• committed(m, v, n) TRUE if prepared(m, v, n,
i) is valid for f+1 non faulty replicas

• committed-local(m, v, n, i) TRUE if prepared
(m, v, n, i) and i accepted 2f+1 COMMIT

• ∃i non faulty.committed-local i => committed

• Replicas agree on n even if they are in
different views v

• Also, if there is one committed-local, at least f
+1 non faulty will also commit-local

Last round
• Those i committed-local will reply to client

• Client will accept results when f+1 replies
agree

View change

• View can change to ensure liveness if primary
fails

• A timeout starts when pre-prepare is received

• If commit is NOT executed within timeout,
replica i sends <VIEW, v+1, n, C, P, i>i

• C and P are checkpoints and outstanding
messages (see papers)

New primary

• When the new primary p1 = v+1 mod |R|
receives 2f valid view changes

• It broadcasts <NEW, v+1, V, O>p1

• V is the set of view-change requests

• O is again related to checkpoint

• Backup verifies NEW

Byzantine NFS

Implementation

• Unmodified NFS server and clients

• At user level, the application uses a
replication library to manage the protocol

• File system is implemented in memory in
replicas

• Optimization: R/O requests are broadcast
directly to all replicas

