
Byzantine
Algorithms

Diego Puppin

Why Byzantine
Algorithms?

• In a distributed systems, messages can
be lost, sent incorrectly

• Some agents may behave maliciously

• Agents may coordinate to attack

• The system must agree on a choice
anyway!

Examples

• Replicated archives

• File systems

• Replicated web services

Two Generals Problem

• Two generals, on two sides of a hill,
have to agree on a common plan

• They have messengers, running forth
and back

• Messengers can be intercepted ...

• It’s impossible to be sure of acknowledgment
from the other side!

Gen.1 Gen.2

attack

ack of ack

ack of attack

Why?

• Suppose N messages (forth and back)
are enough

• The N-1 th messages is acknowledged
by the N-th message

• The last sender does not know if
acknowledgment was received

• He wouldn’t attack

• Any agent in the system can send
wrong or not send at all

• We want that loyal (non-faulty, non-
malicious) agents agree on a value

• On a GOOD value

• A traitor must not bring the system to
a wrong choice

Byzantine Algorithms

Conditions

• A: All loyal generals agree

• B: A small number of traitors cannot
cause the loyal generals to adopt a bad
plan

A Simple Plan

• The only we know of [Lamport, 1982]

• If the generals communicate their
opinion to each other, they go for the
majority, so...

• 1. Every loyal general must obtain the
same information v(1)...v(n)

• 2. Every loyal general i send same v(i)
to all other generals

• 1’. Two loyal generals use the same v(i)

Restricted Problem

• IC1. All loyal lieutenants obey the same
order

• IC2. If the general is loyal, every loyal
lieutenant obeys the order

BYZANTINE ALGORITHMS

ALGORITHMS WHICH ALLOW FOR A (FINITE) NUMBER OF
ARBITRARY FAULTS, INCLUDING FALSE MESSAGES.

BASIC IDEA: Use redundant messages and majority voting.

NOTE: If arbitrary faults can occur, messages which in principle
should be identical may in fact differ!

BASIC PROBLEM: To exchange sufficient information between
sufficiently many participants, so that all CORRECTLY
OPERATING systems build up the SAME picture of which
message(s) have been sent.

Course 02222, DTU, Spring 2006. – p. 2/1

THE BYZANTINE GENERALS

A typical example of a Byzantine problem: to achieve so-called
INTERACTIVE CONSISTENCY.

Usually formulated as a “military” problem with n “generals”
(One Commander and (n-1) Lieutenants):

A Commander must send a value to all his (n-1) Lieu-
tenants, such that:

IC1: All loyal Lieutenants agree on the SAME value.

IC2: If the Commander is loyal, then all loyal Lieu-
tenants agree on the COMMANDER’S value.

NOTE. In a computer system:

LOYAL generals are computers which work correctly, and
ILLOYAL generals are those which may fail in an arbitrary way.

(This includes sending arbitrary incorrect messages.)

Course 02222, DTU, Spring 2006. – p. 3/1

ORAL MESSAGES

DEF.: messages whose content is 100% determined by the
sender.

This means that sender can give them ARBITRARY CONTENT
without the receiver being able to see this.

How much redundancy is required to solve the BG problem?
First idea: Majority voting among 3 parties, with 1 illoyal.

Course 02222, DTU, Spring 2006. – p. 4/1

ORAL MESSAGES

DEF.: messages whose content is 100% determined by the
sender.

This means that sender can give them ARBITRARY CONTENT
without the receiver being able to see this.

How much redundancy is required to solve the BG problem?
First idea: Majority voting among 3 parties, with 1 illoyal.
HOWEVER:

C

L1 L2retreat

attackattack

.

Course 02222, DTU, Spring 2006. – p. 4/1

ORAL MESSAGES

DEF.: messages whose content is 100% determined by the
sender.

This means that sender can give them ARBITRARY CONTENT
without the receiver being able to see this.

How much redundancy is required to solve the BG problem?
First idea: Majority voting among 3 parties, with 1 illoyal.
HOWEVER:

C

L1 L2retreat

attackattack

.

L1

C

L2retreat

attack retreat

These situations look identical, seen from L1.
But if Commander is loyal, L1 must attack
and if Commander is illoyal, L1 should (maybe) retreat.

Course 02222, DTU, Spring 2006. – p. 4/1

ORAL MESSAGES

DEF.: messages whose content is 100% determined by the
sender.

This means that sender can give them ARBITRARY CONTENT
without the receiver being able to see this.

How much redundancy is required to solve the BG problem?
First idea: Majority voting among 3 parties, with 1 illoyal.

GENERAL RESULT:

No solution with ORAL MESSAGES for t illoyal
participants, if there are fewer than (3t+1) par-
ticipants in total.

NOTE: This is not because we require exact agreement! It is also
true for approximate agreement.

Course 02222, DTU, Spring 2006. – p. 4/1

SOLUTION for ORAL MESSAGES
ASSUMPTIONS:
A1. FAULT-TOLERANCE: At most t unreliable/illoyal participants.
A2. NETWORK: Every message sent arrives; receiver knows who sent it.
A3. TIMING: The absence of a message can be detected.

ALGORITHM OM(n,t): t > 0

1. Commander sends his value to all (n-1) Lieutenants.

2. For Lieutenant i, let vi be the value received from his Commander (or
vdef if no value was received).
Lieutenant i then acts as Commander in algorithm OM(n-1,t-1), in which
he sends vi to the (n-2) other participants.

3. For each i and each j �= i, let vj be the value which Lieutenant i

received from j in step 2 during OM(n-1,t-1).
Then i chooses the value majority(v1, . . . , vn−1).

ALGORITHM OM(n,0):

1. Commander sends his value to all (n-1) Lieutenants.

2. Each Lieutenant uses the value received from his Commander (or vdef if
no value was received). Course 02222, DTU, Spring 2006. – p. 5/1

ALGORITHM OM IN ACTION

CASE 1: LOYAL COMMANDER.

C

L1 L2 L3

vv v
OM(4,1)

Course 02222, DTU, Spring 2006. – p. 6/1

ALGORITHM OM IN ACTION

CASE 1: LOYAL COMMANDER.

C

L1 L2

vv v
OM(4,1)

L3
x

y

v
v

v v

L1, L2 use majority(v,v,*)

OM(3,0)

Course 02222, DTU, Spring 2006. – p. 6/1

ALGORITHM OM IN ACTION

CASE 1: LOYAL COMMANDER.

C

L1 L2

vv v
OM(4,1)

L3
x

y

v
v

v v

L1, L2 use majority(v,v,*)

OM(3,0)

CASE 2: ILLOYAL COMMANDER.

L1 L2 L3

C

x y z
"OM(4,1)"

Course 02222, DTU, Spring 2006. – p. 6/1

ALGORITHM OM IN ACTION

CASE 1: LOYAL COMMANDER.

C

L1 L2

vv v
OM(4,1)

L3
x

y

v
v

v v

L1, L2 use majority(v,v,*)

OM(3,0)

CASE 2: ILLOYAL COMMANDER.

L1 L2
x

y y

x z

z
L3

C
"OM(4,1)"

x y

OM(3,0)

L1, L2, L3 all use majority(x,y,z)

z

Course 02222, DTU, Spring 2006. – p. 6/1

PROOF of ALGORITHM OM

LEMMA: For arbitrary m, k, OM(n,m) fulfils IC2 if there are:
> 2k + m participants, and ≤ k illoyal ones.

Course 02222, DTU, Spring 2006. – p. 7/1

PROOF of ALGORITHM OM

LEMMA: For arbitrary m, k, OM(n,m) fulfils IC2 if there are:
> 2k + m participants, and ≤ k illoyal ones.

PROOF BY INDUCTION:

1. Trivially true for OM(n,0).

2. Assume true for (m− 1), m > 0. Then:
In step 1, loyal C sends v to all L’s.
In step 2, each loyal L uses OM(n-1,m-1) with (n-1) generals.
Now (n− 1) > 2k + (m− 1).
It then follows from Assumption that each loyal general
receives vj = v from each loyal general j.

But (n− 1) > 2k + (m− 1) ≥ 2k.
So the majority of the (n-1) are loyal!
Thus all loyal generals use majority(v, v, v, . . .), where > 50%
of the values are v’s.
Thus all loyal generals use value v.

Course 02222, DTU, Spring 2006. – p. 7/1

PROOF of ALGORITHM OM

LEMMA: For arbitrary m, k, OM(n,m) fulfils IC2 if there are:
> 2k + m participants, and ≤ k illoyal ones.

Corresponding proof for:

THEOREM: For arbitrary m, OM(n,m) fulfils IC1 and IC2 if there are:
> 3m participants, and ≤ m illoyal ones.

See Lamport, Shostak & Pease’s paper for details!

Course 02222, DTU, Spring 2006. – p. 7/1

ANALYSIS of ALGORITHM OM
In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.

Course 02222, DTU, Spring 2006. – p. 8/1

ANALYSIS of ALGORITHM OM
In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.
2. Each lieutenant acts as commander for OM(n-1,t-1):

Each of the (n− 1) lieutenants sends to (n− 2) generals.
Thus each general receives (n− 2) messages.

Course 02222, DTU, Spring 2006. – p. 8/1

ANALYSIS of ALGORITHM OM
In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.
2. Each lieutenant acts as commander for OM(n-1,t-1):

Each of the (n− 1) lieutenants sends to (n− 2) generals.
Thus each general receives (n− 2) messages.

3. For each message received in (2), the receiver acts as commander
for OM(n-2,t-2):

Each general sends (n− 3)(n− 2) messages in total.
Thus each general receives (n− 3)(n− 2) messages.

4. etc., etc.

Course 02222, DTU, Spring 2006. – p. 8/1

ANALYSIS of ALGORITHM OM
In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.
2. Each lieutenant acts as commander for OM(n-1,t-1):

Each of the (n− 1) lieutenants sends to (n− 2) generals.
Thus each general receives (n− 2) messages.

3. For each message received in (2), the receiver acts as commander
for OM(n-2,t-2):

Each general sends (n− 3)(n− 2) messages in total.
Thus each general receives (n− 3)(n− 2) messages.

4. etc., etc.

Thus OM(n,t) is executed once.
OM(n-p,t-p) is exec. (n− 1) · · · (n− p) times, for successive p ∈ {1..t}.

Course 02222, DTU, Spring 2006. – p. 8/1

ANALYSIS of ALGORITHM OM
In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.
2. Each lieutenant acts as commander for OM(n-1,t-1):

Each of the (n− 1) lieutenants sends to (n− 2) generals.
Thus each general receives (n− 2) messages.

3. For each message received in (2), the receiver acts as commander
for OM(n-2,t-2):

Each general sends (n− 3)(n− 2) messages in total.
Thus each general receives (n− 3)(n− 2) messages.

4. etc., etc.

Thus OM(n,t) is executed once.
OM(n-p,t-p) is exec. (n− 1) · · · (n− p) times, for successive p ∈ {1..t}.
So total number of messages sent is:

s = (n− 1) + (n− 1)(n− 2) + . . . + (n− 1)(n− 2) · · · (n− t− 1)
Thus s is O(nt), i.e. it is exponential in t.

Course 02222, DTU, Spring 2006. – p. 8/1

ANALYSIS of ALGORITHM OM
In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.
2. Each lieutenant acts as commander for OM(n-1,t-1):

Each of the (n− 1) lieutenants sends to (n− 2) generals.
Thus each general receives (n− 2) messages.

3. For each message received in (2), the receiver acts as commander
for OM(n-2,t-2):

Each general sends (n− 3)(n− 2) messages in total.
Thus each general receives (n− 3)(n− 2) messages.

4. etc., etc.

Thus OM(n,t) is executed once.
OM(n-p,t-p) is exec. (n− 1) · · · (n− p) times, for successive p ∈ {1..t}.
So total number of messages sent is:

s = (n− 1) + (n− 1)(n− 2) + . . . + (n− 1)(n− 2) · · · (n− t− 1)
Thus s is O(nt), i.e. it is exponential in t.

An expensive algorithm, but resistant to (up to) t faults.
Course 02222, DTU, Spring 2006. – p. 8/1

SIGNED MESSAGES

REVISED ASSUMPTIONS:
A1. FAULT-TOLERANCE: At most t unreliable/illoyal participants.
A2. NETWORK: Every message sent is delivered, and receiver

knows who sent it.
A3. TIMING: The absence of a message can be detected.
A4. SIGNATURES: A signature cannot be forged, and any changes

to a signed message can be seen. Anybody can verify a
signature.

Assumption A4 implies that only possible misbehaviour is to OMIT TO
PASS ON a message.

With these assumptions, IC1 and IC2 can be fulfilled for arbitrary
number of faults, i.e. n > (t + 1).

Course 02222, DTU, Spring 2006. – p. 9/1

PROOF of ALGORITHM SM(n,t)

THEOREM 2: For arbitrary t ≥ 0, algorithm SM(n,t) solves BG problem
for at most t illoyal generals.

Course 02222, DTU, Spring 2006. – p. 11/1

PROOF of ALGORITHM SM(n,t)

THEOREM 2: For arbitrary t ≥ 0, algorithm SM(n,t) solves BG problem
for at most t illoyal generals.

PROOF FOR IC2: (Assuming loyal Commander)

Loyal Commander ⇒ all generals get (v, {0}) in first round.

In second round, all loyal P [i, ...] send (v, {0, i}) to everyone
except 0, i.
Thus everyone gets two copies of v.
Thus everyone terminates with V = {v}

Course 02222, DTU, Spring 2006. – p. 11/1

PROOF of ALGORITHM SM(n,t)

THEOREM 2: For arbitrary t ≥ 0, algorithm SM(n,t) solves BG problem
for at most t illoyal generals.

PROOF FOR IC1: (Only relevant for illoyal Commander)

Loyal generals must terminate with same V .

Assume P [i, ...] receives (v, ss) in round k, where v �∈ V .
Afterwards, v ∈ V in i. There are then two cases:
1. j ∈ ss: Then j’s V must already contain v.
2. j �∈ ss:

(a) card ss < (t + 1) ⇒ i sends v to j.
(b) card ss = (t + 1) ⇒ no more rounds.

BUT at least 1 of the (t + 1) must be loyal, and so must
have sent v to j when it first received v.

CONCLUSION: If v ∈ V in i, then v ∈ V in j. So both terminate
with the same V .

Course 02222, DTU, Spring 2006. – p. 11/1

Atomic Transactions

• Atomic agreement: either ALL or
NONE should happen

• Storage is R/W

• Processes can change status, send/rcv
messages, r/w storage

Faults (all detectable)

• Storage write may fail/corrupt/decay

• Processes may lose state

• Messages may be delayed/corrupted/
lost

COMMIT Problem

• Given N stable processes, find an
algorithm which forces all processes to
COMMIT or ABORT

•

Simple Solution

• Store a record of intentions

• When abort is no more possible...

• keep sending a “please, commit”
message until it is acknowledged

• No guarantee on the worst case

Byzantine vs. Commit

• Accept N/3 faults

• Some agree

• Unknown answer if
too many faults

• Bounded time

• Redundant proc.
and messages

• Accept N faults

• All agree

• Fail-fast

• Unbounded time

• No redundancy

Example

• A Byzantine ATM system could have an
incoherent status, but it responds in
bounded time

• A Commit ATM can be delayed, but it is
always coherent

• Commit is good if failure is rare

