BYZANTINE
ALGORITHMS

DIEGO PUPPIN




WHY BYZANTINE
ALGORITHMS?

In a distributed systems, messages can
be lost, sent incorrectly

Some agents may behave maliciously
Agents may coordinate to attack

The system must agree on a choice
anyway!




EXAMPLES

e Replicated archives
e File systems

e Replicated web services




TWO GENERALS PROBLEM

e Two generals, on two sides of a hill,
have to agree on a common plan

e They have messengers, running forth
and back

* Messengers can be intercepted ...

o [t’s impossible to be sure of acknowledgment
from the other side!




Gen.1 Gen.2

<— — — - ack of attack — — — — —

—————— ack of ack — — — —




WHY?

Suppose N messages (forth and back)
are enough

The N-1 th messages is acknowledged
by the N-th message

The last sender does not know if
acknowledgment was received

He wouldn’t attack




BYZANTINE ALGORITHMS

e Any agent in the system can send
wrong or not send at all

e We want that loyal (non-faulty, non-
malicious) agents agree on a value

e On a GOOD value

e A traitor must not bring the system to
a wrong choice




CONDITIONS

e A: All loyal generals agree

* B: A small number of traitors cannot
cause the loyal generals to adopt a bad
plan




A SIMPLE PLAN

The only we know of [Lamport, 1982]

[f the generals communicate their
opinion to each other, they go for the
majority, so...

1. Every loyal general must obtain the
same information v(1)...v(n)

2. Every loyal general i send same v(i)
to all other generals

1’. Two loyal generals use the same v(i)




RESTRICTED PROBLEM

e IC1. All loyal lieutenants obey the same
order

e [C2. If the general is loyal, every loyal
lieutenant obeys the order




)
ﬁ
s

BYZANTINE ALGORITHMS

i

ALGORITHMS WHICH ALLOW FOR A (FINITE) NUMBER OF
ARBITRARY FAULTS, INCLUDING FALSE MESSAGES.

® BASIC IDEA: Use redundant messages and majority voting.

® NOTE: If arbitrary faults can occur, messages which in principle
should be identical may Iin fact differ!

® BASIC PROBLEM: To exchange sufficient information between
sufficiently many participants, so that all CORRECTLY
OPERATING systems build up the SAME picture of which
message(s) have been sent.

Course 02222, DTU, Spring 2006. — p. 2/1



)
ﬁ
s

THE BYZANTINE GENERALS

i

® A typical example of a Byzantine problem: to achieve so-called
INTERACTIVE CONSISTENCY.

® Usually formulated as a “military” problem with n “generals”
(One Commander and (n-1) Lieutenants):

A Commander must send a value to all his (n-1) Lieu-
tenants, such that:

IC1: All loyal Lieutenants agree on the SAME value.

IC2: If the Commander is loyal, then all loyal Lieu-
tenants agree on the COMMANDER'’S value.

® NOTE. In a computer system:

LOYAL generals are computers which work correctly, and
ILLOYAL generals are those which may fail in an arbitrary way.
(This includes sending arbitrary incorrect messages.)

Course 02222, DTU, Spring 2006. — p. 3/1



)
ﬁ
s

ORAL MESSAGES

i

® DEF.: messages whose content is 100% determined by the
sender.

® This means that sender can give them ARBITRARY CONTENT
without the receiver being able to see this.

® How much redundancy is required to solve the BG problem?
First idea: Majority voting among 3 parties, with 1 illoyal.

Course 02222, DTU, Spring 2006. — p. 4/1



)
ﬁ
s

ORAL MESSAGES

i

® DEF.: messages whose content is 100% determined by the
sender.

® This means that sender can give them ARBITRARY CONTENT
without the receiver being able to see this.

® How much redundancy is required to solve the BG problem?
First idea: Majority voting among 3 parties, with 1 illoyal.
HOWEVER:

attac / >\attac:k

retreat

Course 02222, DTU, Spring 2006. — p. 4/1



)
ﬁ
s

ORAL MESSAGES

i

® DEF.: messages whose content is 100% determined by the
sender.

® This means that sender can give them ARBITRARY CONTENT
without the receiver being able to see this.

® How much redundancy is required to solve the BG problem?
First idea: Majority voting among 3 parties, with 1 illoyal.
HOWEVER:

attac / attack attac / retrea

retreat retreat

o These situations look identical, seen from L1.

o Butif Commander is loyal, L1 must attack
and if Commander is illoyal, L1 should (maybe) retreat.

Course 02222, DTU, Spring 2006. — p. 4/1



)
ﬁ
s

ORAL MESSAGES

i

® DEF.: messages whose content is 100% determined by the
sender.

® This means that sender can give them ARBITRARY CONTENT
without the receiver being able to see this.

® How much redundancy is required to solve the BG problem?
First idea: Majority voting among 3 parties, with 1 illoyal.

No solution with ORAL MESSAGES for t illoyal
participants, if there are fewer than (3t+1) par-
ticipants in total.

NOTE: This is not because we require exact agreement! It is also
true for approximate agreement.

Course 02222, DTU, Spring 2006. — p. 4/1



)
ﬁ
s

SOLUTION for ORAL MESSAGES

ASSUMPTIONS:
Al. FAULT-TOLERANCE: At most t unreliable/illoyal participants.

AZ2. NETWORK: Every message sent arrives; receiver knows who sent it.
A3. TIMING: The absence of a message can be detected.

ALGORITHM OM(n,t): ¢ >0

1. Commander sends his value to all (n-1) Lieutenants.

i

2. For Lieutenant ¢, let v; be the value received from his Commander (or
v4e s If NO value was received).

Lieutenant : then acts as Commander in algorithm OM(n-1,t-1), in which
he sends v; to the (n-2) other participants.

3. For each i and each j # i, let v; be the value which Lieutenant «
received from j in step 2 during OM(n-1,t-1).
Then : chooses the value majority(vy, ..., v,,—1).

ALGORITHM OM(n,0):
1. Commander sends his value to all (n-1) Lieutenants.

2. Each Lieutenant uses the value received from his Commander (or v ¢ If
no value was received).

Course 02222, DTU, Spring 2006. — p. 5/1



ALGORITHM OM IN ACTION

)
ﬁ
s

i

CASE 1: LOYAL COMMANDER.

OM(4,1)
VvV VvV V

W W



ALGORITHM OM IN ACTION

)
ﬁ
s

i

CASE 1: LOYAL COMMANDER.

OM(4,1)

OM(3,0)

L1, L2 use majority(v,v,*)



)
ﬁ
s

ALGORITHM OM IN ACTION

i

CASE 1: LOYAL COMMANDER. CASE 2: ILLOYAL COMMANDER.

OM(4,1)

L1, L2 use majority(v,v,*)

Course 02222, DTU, Spring 2006. — p. 6/1



)
ﬁ
s

ALGORITHM OM IN ACTION

i

CASE 1: LOYAL COMMANDER. CASE 2: ILLOYAL COMMANDER.

OM(4,1)

OM(3,0)

L1, L2 use majority(v,v,*) L1, L2, L3 all use majority(x,y,z)

Course 02222, DTU, Spring 2006. — p. 6/1



)
ﬁ
s

PROOF of ALGORITHM OM

i

LEMMA: For arbitrary m, k, OM(n,m) fulfils IC2 if there are:
> 2k + m participants, and < £ illoyal ones.

Course 02222, DTU, Spring 2006. — p. 7/1



)
ﬁ
s

PROOF of ALGORITHM OM

i

LEMMA: For arbitrary m, k, OM(n,m) fulfils IC2 if there are:
> 2k + m participants, and < k£ illoyal ones.

PROOF BY INDUCTION:
1. Trivially true for OM(n,0).

2. true for (m — 1), m > 0. Then:

In step 1, loyal C sends v to all Ls.

In step 2, each loyal L uses OM(n-1,m-1) with (n-1) generals.
Now (n — 1) > 2k + (m — 1).

It then follows from that each loyal general
receives v; = v from each loyal general ;.

But (n — 1) > 2k 4 (m — 1) > 2k.
So the majority of the (n-1) are loyal!

Thus all loyal generals use majority(v, v, v, ...), where > 50%
of the values are v’s.

® Thus all loyal generals use value v.

| I B N

|

Course 02222, DTU, Spring 2006. — p. 7/1



)
ﬁ
s

PROOF of ALGORITHM OM

i

LEMMA: For arbitrary m, k, OM(n,m) fulfils IC2 if there are:
> 2k + m participants, and < k£ illoyal ones.

Corresponding proof for:

THEOREM: For arbitrary m, OM(n,m) fulfils IC1 and IC2 if there are:
> 3m participants, and < m illoyal ones.

See Lamport, Shostak & Pease’s paper for details!

Course 02222, DTU, Spring 2006. — p. 7/1



)
ﬁ
s

ANALY S Sof ALGORITHM OM

® In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.

i

Course 02222, DTU, Spring 2006. — p. 8/1



)
ﬁ
s

ANALY S Sof ALGORITHM OM

® In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.

2. Each lieutenant acts as commander for OM(n-1,t-1):
Each of the (n — 1) lieutenants sends to (n — 2) generals.
Thus each general receives (n — 2) messages.

i

Course 02222, DTU, Spring 2006. — p. 8/1



)
ﬁ
s

ANALY S Sof ALGORITHM OM

® In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.

2. Each lieutenant acts as commander for OM(n-1,t-1):
Each of the (n — 1) lieutenants sends to (n — 2) generals.
Thus each general receives (n — 2) messages.

3. For each message received in (2), the receiver acts as commander
for OM(n-2,t-2):
Each general sends (n — 3)(n — 2) messages in total.
Thus each general receives (n — 3)(n — 2) messages.

4., etc., etc.

i

Course 02222, DTU, Spring 2006. — p. 8/1



)
ﬁ
s

ANALY S Sof ALGORITHM OM

® In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.

2. Each lieutenant acts as commander for OM(n-1,t-1):
Each of the (n — 1) lieutenants sends to (n — 2) generals.
Thus each general receives (n — 2) messages.

3. For each message received in (2), the receiver acts as commander
for OM(n-2,t-2):
Each general sends (n — 3)(n — 2) messages in total.
Thus each general receives (n — 3)(n — 2) messages.

4., etc., etc.

i

® Thus OM(n,1) is executed once.
OM(n-p,t-p) is exec. (n — 1) ---(n — p) times, for successive p € {1..t}.

Course 02222, DTU, Spring 2006. — p. 8/1



)
ﬁ
s

ANALY S Sof ALGORITHM OM

® In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.

2. Each lieutenant acts as commander for OM(n-1,t-1):
Each of the (n — 1) lieutenants sends to (n — 2) generals.
Thus each general receives (n — 2) messages.

3. For each message received in (2), the receiver acts as commander
for OM(n-2,t-2):
Each general sends (n — 3)(n — 2) messages in total.
Thus each general receives (n — 3)(n — 2) messages.

4., etc., etc.

i

® Thus OM(n,1) is executed once.
OM(n-p,t-p) is exec. (n — 1) ---(n — p) times, for successive p € {1..t}.

$® So total number of messages sent is:
s=n—-1+n-1)n-2)+...4n—-1)(n—-2)---(n—1t—1)
Thus s is O(n'), i.e. it is exponential in .

Course 02222, DTU, Spring 2006. — p. 8/1



)
ﬁ
s

ANALY S Sof ALGORITHM OM

® In a system with up to t illoyal generals, OM proceeds in (t+1) rounds:
1. Algorithm OM(n,t) is executed once: C sends to (n-1) lieutenants.

2. Each lieutenant acts as commander for OM(n-1,t-1):
Each of the (n — 1) lieutenants sends to (n — 2) generals.
Thus each general receives (n — 2) messages.

3. For each message received in (2), the receiver acts as commander
for OM(n-2,t-2):
Each general sends (n — 3)(n — 2) messages in total.
Thus each general receives (n — 3)(n — 2) messages.

4., etc., etc.

i

® Thus OM(n,1) is executed once.
OM(n-p,t-p) is exec. (n — 1) ---(n — p) times, for successive p € {1..t}.
$® So total number of messages sent is:
s=n—-1)+n—-1)n-2)+...4+n—1)(n—2)---(n—1t—1)
Thus s is O(n'), i.e. it is exponential in .

An expensive algorithm, but resistant to (up to) t faults.

Course 02222, DTU, Spring 2006. — p. 8/1




)
ﬁ
s

SIGNED MESSAGES

i

REVISED ASSUMPTIONS:
Al. FAULT-TOLERANCE: At most t unreliable/illoyal participants.

A2. NETWORK: Every message sent is delivered, and receiver
knows who sent it.

A3. TIMING: The absence of a message can be detected.

A4. SIGNATURES: A signature cannot be forged, and any changes
to a signed message can be seen. Anybody can verify a
signature.

Assumption A4 implies that only possible misbehaviour is to OMIT TO
PASS ON a message.

With these assumptions, IC1 and IC2 can be fulfilled for arbitrary
number of faults, i.e. n > (1 + 1).

Course 02222, DTU, Spring 2006. — p. 9/1



Algorithm SM(m).
]_I].itlﬂ]]}" Vt' =2,
(1) The commander signs and sends his value to every lieutenant.
(2) For each i:

(A) If Lieutenant i receives a message of the form v:0 from the commander and he
has not yet received any order, then
(1) he lets V; equal {v});
(i1} he sends the message v:0:{ to every other lieutenant.

(B) If Lieutenant i receives a message of the form v:0:j: - - - : jy and v is not in the set
Vi, then
(i) he adds v to V;; _ _
(ii) if k& < m, then he sends the message v:0:ji:---:js:l to every lieutenant other
th.ﬂ[l_,l'.l, ---.jh
(3) For each i: When Lieutenant i will receive no more messages, he obeys the order
choice(V;).




PROOF of ALGORITHM SM(n,t) AL

A and
oo
o

THEOREM 2: For arbitrary ¢ > 0, algorithm SM(n,t) solves BG problem
for at most t illoyal generals.

Course 02222, DTU, Spring 2006. — p. 11/1



)
ﬁ
s

PROOF of ALGORITHM SM(n,t)

THEOREM 2: For arbitrary ¢ > 0, algorithm SM(n,t) solves BG problem
for at most t illoyal generals.

i

PROOF FOR IC2: (Assuming loyal Commander)
® | oyal Commander = all generals get (v, {0}) in first round.

#® In second round, all loyal PJi,...] send (v, {0,7}) to everyone
except 0, 1.
Thus everyone gets two copies of v.
Thus everyone terminates with V' = {v}

Course 02222, DTU, Spring 2006. — p. 11/1



PROOF of ALGORITHM SM(n,t) AL

o
oo
o

THEOREM 2: For arbitrary ¢t > 0, algorithm SM(n,t) solves BG problem
for at most t illoyal generals.

PROOF FOR IC1: (Only relevant for illoyal Commander)

#® Loyal generals must terminate with same V.

® Assume PJi,...| receives (v, ss) in round k, where v € V.
Afterwards, v € Vinl. There are then two cases:

1. 5 € ss: Thenj's V must already contain v.
2. ] & ss:

(@) cardss < (t+1) = isendsvto].

(b) cardss = (t + 1) = no more rounds.

BUT at least 1 of the (¢ + 1) must be loyal, and so must
have sent v to | when it first received wv.

CONCLUSION: If v e Vin i, then v € V In j. So both terminate
with the same V.

Course 02222, DTU, Spring 2006. — p. 11/1



ATOMIC TRANSACTIONS

e Atomic agreement: either ALL or
NONE should happen

e Storageis R/W

e Processes can change status, send/rcv
messages, r/ w storage




FAULTS (ALL DETECTABLE)

e Storage write may fail / corrupt/decay
* Processes may lose state

e Messages may be delayed /corrupted/
lost




COMMIT PROBLEM

e Given N stable processes, find an
algorithm which forces all processes to

COMMIT or ABORT
= =
o~

ABORTED




SIMPLE SOLUTION

Store a record of intentions
When abort is no more possible...

keep sending a “please, commit”
message until it is acknowledged

No guarantee on the worst case




BYZANTINE VS. COMMIT

Accept N/ 3 faults e Accept N faults
Some agree o All agree
Unknown answer it e Fail-fast

too many faults :
e Unbounded time

Bounded time
 No redundancy

Redundant proc.
and messages




EXAMPLE

e A Byzantine ATM system could have an
incoherent status, but it responds in
bounded time

e A Commit ATM can be delayed, but it is
always coherent

e Commit is good if failure is rare




