Entity Linking with Dexter

2nd HPC Lab. Workshop

Salvatore Trani
Diego Ceccarelli, Claudio Lucchese,
Salvatore Orlando, Raffaele Perego
The goal is to identify relevant **entities** mentioned by **fragments** of text.

- Entities are taken from a given catalogue, e.g. Wikipedia.
Entity Linking

- State-of-the-art approaches run three steps:

1. **Spotting**
 - Given a document, *find fragments of text* potentially referring to entities, a.k.a. *spots*
 - Common approach is to match anchors in Wikipedia
 - Some spots are ambiguous, e.g. “Michael Collins”

2. **Disambiguation**
 - Given a set of spots in a document, *find the correct entity* for each spot.
 - Steps 1 and 2 are sometimes referred to as *Word Sense Disambiguation*

3. **Filtering**
 - Given a document, its spots and their entities, decide *which links to use*:
 - E.g., “…[Bank of London]…” vs “…[the] [Bank of London] …”

- The main *research questions* is:
 - How to improve the *disambiguation* step
Disambiguation

- Disambiguation is achieved by looking at the relatedness among candidate senses in the whole document.

- Relatedness is measured with:

\[\rho_{MW}^{MW}(a,b) = 1 - \frac{\log(\max(|in(a)|,|in(b)|)) - \log(|in(a) \cap in(b)|)}{\log(|W|) - \log(\min(|in(a)|,|in(b)|))} \]

- inspired to the so-called Normalized Google Distance between words
- nice, it may be applied to any pair of Wikipedia entities

- It is adopted as a building block in all state-of-the-art algorithms
Entity Relatedness

- But it does not always work
 - Example: a) Andronicus of Rhodes b) Chondrichthyes c) Aristotle
 - $\rho^{MW}(a,c) = 0.56$
 (Andronicus of Rhodes is credited with the production of the first reliable edition of Aristotle's works)
 - $\rho^{MW}(a,b) = 0.54$
 (‘[…] He separated the aquatic mammals from fish, and knew that sharks and rays were part of the group he called Selachē (selachians)’)
 - Andronicus and Aristotle are related as much as Andronicus and a fish!

- Our research question is:
 - What is the best relatedness function?

- We cast it into a learning to rank problem..
Relatedness as a Ranking Function

The documents are being ranked by their relatedness.

Apollo 11

Michael Collins

The query
Relatedness as a Ranking Function

from good relatedness ρ function we expect this

Apollo 11

The query ε_h

Spot1 Spot2 Spot3 Spot4

1 2 3 4

5 6 7 8

9 10 11 12 13

$\pi^h\rho$
 Entity Relatedness Learning

- The **quality** of a ranked list is measured as:

\[
\text{DCG}(\pi^h) = \sum_{j=1}^{\left|\pi^h\right|} \frac{l_j}{\log(j + 1)}
\]

 where \(l_j\) is a binary label of the \(j\)-th ranked entity identifying the correct entities.

- The **Entity Relatedness Learning Problem** requires to find the **ranking function** \(\rho\) that **maximizes the ranking quality**:

\[
\frac{1}{|D|} \sum_{D \in \mathcal{D}} \frac{1}{|S_D|} \sum_{s_h \in S_D} \text{NDCG}(\pi^h)
\]

\text{Documents in the collection} \quad \text{Spots in document} D

\text{Normalized DCG}
Learning to Rank is not easy

- **Warning!**
 Optimizing NDCG is not easy.

- One simple reason is that NDCG implies sorting, which is not a nicely derivable function
- Therefore we cannot apply gradient descent or similar…

- State-of-the-art approaches:
 - Optimize number of correctly ordered pairs
 - Optimize RMSE on labels (in our case binary labels)
 - See Gradient-Boosted Regression Trees
 - Approach to NDCG with some heuristic
 - See λ-MART
Benchmark Dataset

• Required for the evaluation and for the learning
 • we minimize the empirical risk on the training set.

• CoNLL 2003
 • 1,494 annotated news stories of the Reuters Corpus V1.
 • For each spot in a news we extract a tuple containing
 • A *reference entity* ε_h (the query)
 • The *other relevant entities* in the document
 • *Candidate but not relevant entities* in the document
 • With a maximum distance constraint of 50 words

• We extracted a benchmark dataset with
 • 17,040 tuples/queries each with ~97 results
 • a total of 1,649,841 query-result pairs
• Machine-learning approaches allow to easily test a wide set of features

Singleton Features

| P(a) | probability of a mention to entity a: $P(a) = \frac{\|\text{in}(a)\|}{|W|}$. |
|------|---|
| H(a) | entropy of a: $H(a) = -P(a) \log(P(a)) - (1-P(a)) \log(1-P(a))$. |

Asymmetric Features

| P(a|b) | conditional probability of the entity a given b: $P(a|b) = \frac{|\text{in}(a) \cap \text{in}(b)|}{|\text{in}(b)|}$. |
|------|---|
| Link(a→b) | equals 1 if a links to b, and 0 otherwise. |
| P(a→b) | probability that a links to b: equals $1/|\text{out}(a)|$ if a links to b, and 0 otherwise. |
| Friend(a, b) | equals 1 if a links to b, and $|\text{out}(a) \cap \text{in}(b)|/|\text{out}(a)|$ otherwise. |
| KL(a||b) | Kullback-Leibler divergence: $KL(a||b) = \log \frac{P(a)}{P(b)} P(a) + \log \frac{1-P(a)}{1-P(b)} (1 - P(a))$.
Symmetric Features

<table>
<thead>
<tr>
<th>$\rho^{MW}_{out}(a,b)$</th>
<th>$\rho^{MW}_{in-out}(a,b)$</th>
<th>$J_{out}(a,b)$</th>
<th>$J_{in-out}(a,b)$</th>
<th>$\chi^2(a,b)$</th>
<th>$\chi^2_{out}(a,b)$</th>
<th>$\chi^2_{in-out}(a,b)$</th>
<th>PMI(a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J(a,b)$</td>
<td>Jaccard similarity: $J(a,b) = \frac{\text{in}(a) \cap \text{in}(b)}{\text{in}(a) \cup \text{in}(b)}$.</td>
<td>ρ^{MW} considering outgoing links.</td>
<td>ρ^{MW} considering the union of the incoming and outgoing links.</td>
<td>χ^2 statistic: $\chi^2(a,b) = (</td>
<td>\text{in}(b) \cap \text{in}(a)</td>
<td>\cdot (</td>
<td>W</td>
</tr>
</tbody>
</table>
Performance of the Relatedness function

<table>
<thead>
<tr>
<th></th>
<th>NDCG@5</th>
<th>NDCG@10</th>
<th>P@1</th>
<th>P@5</th>
<th>P@10</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{MW}</td>
<td>0.59</td>
<td>0.63</td>
<td>0.62</td>
<td>0.42</td>
<td>0.31</td>
<td>0.72</td>
</tr>
<tr>
<td>$\rho_{\lambda\text{MART}}$</td>
<td>0.75</td>
<td>0.79</td>
<td>0.80</td>
<td>0.51</td>
<td>0.36</td>
<td>0.87</td>
</tr>
<tr>
<td>ρ_{GBRT}</td>
<td>0.75</td>
<td>0.78</td>
<td>0.80</td>
<td>0.51</td>
<td>0.35</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Example: a) Andronicus of Rhodes b) Chondrichthyes c) Aristotle

- $\rho_{\lambda\text{MART}}(a,c) = 0.66$ (Andronicus of Rhodes is credited with the production of the first reliable edition of Aristotle's works)
- $\rho_{\lambda\text{MART}}(a,b) = 0.0015$ (‘[…] He separated the aquatic mammals from fish, and knew that sharks and rays were part of the group he called Selachē (selachians)’)

Andronicus very related to Aristotle but not to the fish!
Impact on Entity Linking Algorithms

WIKIMINER
Learning to link with wikipedia,
Milne and Witten, CIKM2008

TAGME
TAGME: on-the-fly annotation of short text
fragments (by wikipedia entities)
Ferragina and Scaiella CIKM2010

REFERENT GRAPH
Collective entity linking in web text:
a graph-based method
X. Han, L. Sun, and J. Zhao. SIGIR2011
Best results were with WIKIMINER

<table>
<thead>
<tr>
<th></th>
<th>ρ_{MW}</th>
<th>$\rho_{\lambda\text{MART}}$</th>
<th>ρ_{GBRT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P@1$</td>
<td>0.78</td>
<td>0.86 +10%</td>
<td>0.83 +6%</td>
</tr>
<tr>
<td>$P@5$</td>
<td>0.64</td>
<td>0.68 +6%</td>
<td>0.69 +8%</td>
</tr>
<tr>
<td>$P@10$</td>
<td>0.50</td>
<td>0.51 +2%</td>
<td>0.53 +6%</td>
</tr>
<tr>
<td>$iP_{r=0.10}$</td>
<td>0.88</td>
<td>0.92 +5%</td>
<td>0.91 +3%</td>
</tr>
<tr>
<td>$iP_{r=0.50}$</td>
<td>0.66</td>
<td>0.73 +11%</td>
<td>0.77 +17%</td>
</tr>
<tr>
<td>NDCG</td>
<td>0.66</td>
<td>0.72 +9%</td>
<td>0.75 +14%</td>
</tr>
<tr>
<td>MRR</td>
<td>0.87</td>
<td>0.92 +6%</td>
<td>0.90 +3%</td>
</tr>
<tr>
<td>NDCG@5</td>
<td>0.71</td>
<td>0.76 +7%</td>
<td>0.77 +8%</td>
</tr>
<tr>
<td>NDCG@10</td>
<td>0.69</td>
<td>0.73 +6%</td>
<td>0.75 +9%</td>
</tr>
<tr>
<td>Recall</td>
<td>0.64</td>
<td>0.70 +9%</td>
<td>0.75 +17%</td>
</tr>
<tr>
<td>Rprec</td>
<td>0.56</td>
<td>0.60 +7%</td>
<td>0.64 +14%</td>
</tr>
</tbody>
</table>
Preliminary feature analysis

- Not all the features are necessary

Figure 2: Multidimensional mapping of feature similarity computed using Kendall’s τ coefficient. The size of each circle is proportional to the single-feature model score.
Preliminary feature analysis

- ρ^{MW} has the 4-th best performance, but it is ranked 19-th

<table>
<thead>
<tr>
<th>Features</th>
<th>Rank</th>
<th>NDCG@5</th>
<th>NDCG@10</th>
<th>P@5</th>
<th>P@10</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(c</td>
<td>e)</td>
<td>1</td>
<td>0.68</td>
<td>0.72</td>
<td>0.47</td>
<td>0.33</td>
</tr>
<tr>
<td>J(e, c)</td>
<td>2</td>
<td>0.62</td>
<td>0.66</td>
<td>0.44</td>
<td>0.31</td>
<td>0.75</td>
</tr>
<tr>
<td>Friend(e,c)</td>
<td>24</td>
<td>0.59</td>
<td>0.64</td>
<td>0.42</td>
<td>0.31</td>
<td>0.71</td>
</tr>
<tr>
<td>ρ^{MW} (e,c)</td>
<td>19</td>
<td>0.59</td>
<td>0.63</td>
<td>0.42</td>
<td>0.31</td>
<td>0.72</td>
</tr>
<tr>
<td>$J_{in-out}(e,c)$</td>
<td>26</td>
<td>0.60</td>
<td>0.63</td>
<td>0.42</td>
<td>0.30</td>
<td>0.74</td>
</tr>
<tr>
<td>AvgFr(e,c)</td>
<td>3</td>
<td>0.57</td>
<td>0.62</td>
<td>0.40</td>
<td>0.30</td>
<td>0.69</td>
</tr>
<tr>
<td>P(e,c)</td>
<td>27</td>
<td>0.56</td>
<td>0.60</td>
<td>0.39</td>
<td>0.28</td>
<td>0.70</td>
</tr>
<tr>
<td>$\rho^{MW}_{in-out}(a,b)$</td>
<td>9</td>
<td>0.56</td>
<td>0.60</td>
<td>0.40</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>$J_{in-out}(e,c)$</td>
<td>4</td>
<td>0.54</td>
<td>0.58</td>
<td>0.39</td>
<td>0.28</td>
<td>0.67</td>
</tr>
<tr>
<td>$\rho^{MW}_{out}(a,b)$</td>
<td>17</td>
<td>0.52</td>
<td>0.55</td>
<td>0.37</td>
<td>0.27</td>
<td>0.65</td>
</tr>
<tr>
<td>$\chi^2_{in-out}(e,c)$</td>
<td>25</td>
<td>0.51</td>
<td>0.55</td>
<td>0.37</td>
<td>0.27</td>
<td>0.64</td>
</tr>
<tr>
<td>P(e</td>
<td>c)</td>
<td>22</td>
<td>0.48</td>
<td>0.54</td>
<td>0.36</td>
<td>0.28</td>
</tr>
<tr>
<td>H(c)</td>
<td>5</td>
<td>0.48</td>
<td>0.51</td>
<td>0.30</td>
<td>0.20</td>
<td>0.68</td>
</tr>
<tr>
<td>$\chi^2_{out}(e,c)$</td>
<td>16</td>
<td>0.47</td>
<td>0.50</td>
<td>0.34</td>
<td>0.24</td>
<td>0.61</td>
</tr>
<tr>
<td>AvgFr(c,e)</td>
<td>21</td>
<td>0.44</td>
<td>0.49</td>
<td>0.33</td>
<td>0.25</td>
<td>0.56</td>
</tr>
<tr>
<td>P(c)</td>
<td>13</td>
<td>0.47</td>
<td>0.49</td>
<td>0.29</td>
<td>0.19</td>
<td>0.66</td>
</tr>
<tr>
<td>PMI(e,c)</td>
<td>23</td>
<td>0.42</td>
<td>0.48</td>
<td>0.32</td>
<td>0.25</td>
<td>0.53</td>
</tr>
<tr>
<td>$\chi^2_{in-out}(e,c)$</td>
<td>11</td>
<td>0.44</td>
<td>0.46</td>
<td>0.33</td>
<td>0.23</td>
<td>0.58</td>
</tr>
<tr>
<td>$P(e\rightarrow c)$</td>
<td>18</td>
<td>0.37</td>
<td>0.38</td>
<td>0.24</td>
<td>0.15</td>
<td>0.55</td>
</tr>
<tr>
<td>Link(e→c)</td>
<td>20</td>
<td>0.37</td>
<td>0.38</td>
<td>0.24</td>
<td>0.15</td>
<td>0.55</td>
</tr>
<tr>
<td>$P(c\rightarrow e)$</td>
<td>12</td>
<td>0.35</td>
<td>0.36</td>
<td>0.22</td>
<td>0.14</td>
<td>0.52</td>
</tr>
<tr>
<td>Link(c→e)</td>
<td>15</td>
<td>0.31</td>
<td>0.33</td>
<td>0.21</td>
<td>0.14</td>
<td>0.46</td>
</tr>
<tr>
<td>$KL(c</td>
<td></td>
<td>e)$</td>
<td>10</td>
<td>0.32</td>
<td>0.32</td>
<td>0.19</td>
</tr>
<tr>
<td>Link(c↔e)</td>
<td>14</td>
<td>0.28</td>
<td>0.29</td>
<td>0.17</td>
<td>0.11</td>
<td>0.45</td>
</tr>
<tr>
<td>$KL(e</td>
<td></td>
<td>c)$</td>
<td>8</td>
<td>0.26</td>
<td>0.28</td>
<td>0.17</td>
</tr>
<tr>
<td>P(e)</td>
<td>6</td>
<td>0.08</td>
<td>0.11</td>
<td>0.06</td>
<td>0.06</td>
<td>0.17</td>
</tr>
<tr>
<td>H(e)</td>
<td>7</td>
<td>0.08</td>
<td>0.11</td>
<td>0.06</td>
<td>0.06</td>
<td>0.17</td>
</tr>
</tbody>
</table>
We developed an Entity Linking framework:
- Open source software (github)
- Designed to use commodity hardware
- Modular and easily pluggable
- Provide both REST APIs and webapp

Current Status:
- Spotting based on a dictionary
- Several features available for entities and spots
- Several relatedness measures available
- Wikiminer, TAGME and Referent Graph implemented

Available at: http://dexter.isti.cnr.it/
What’s Next

- Capture the “aboutness” of a document
 - Find the most central topics of a document
 - Assign a centrality score to the entities of a given document
 - Solutions proposed in literature use words/phrases as topics
 - Tips: use the entities provided by an Entity Linking approach

- Endless Applications
 - News stream analysis
 - Summarization
 - Recommendation
 - Identification of news facets
 - Web queries and web documents annotation
Dexter Annotation Framework

Problem: freely available manually annotated datasets are:
- often quite noisy and not very coherent
- they miss of the centrality score
- old datasets

Solution: we developed an Annotation framework:
- Open source (both the source code and the produced dataset)
- Simple and powerful to use
- Smart and elegant UI
- Split the annotation task in two steps:
 - **Step 1:** annotate a document with its relevant entities
 - **Spots:** create new spots, enlarge/restrict spots, delete existing spots
 - **Entities:** select relevant entity for a spot, add a not listed entity
 - **Step 2:** assign to the previously selected entities a centrality score (0 to 3)
Dexter Annotation Framework

• **Idea**: “fuzzy” annotations
 • Takes into account that the task is often quite subjective
 • Could help to improve the disambiguation

• **Current Status**:
 • Opened to the HPC lab only from 3 weeks
 • Documents taken from the same reuters subset of CONLL
 • 90 annotated documents (~30 uniques)
 • ~2500 annotated spots (~27 spots/doc on average)
 • …the dataset is still small to make some kind of statistical analysis but…
 • It seems that the agreement between different users is on average low

• **Available at**: http://bruciato.isti.cnr.it:8888/dexter-annotate/
Thank you

THANKS FOR YOUR ATTENTION

AND

ANY QUESTIONS?