
illustrates this process on two-dimensions for clarity

(each point essentially represents one object).

After the tree is constructed and a query is posed,

one only has to examine the proper subset based on the

position of the query. Only if the query lies close

to the median distance, both subsets need to be exam-

ined, otherwise one of them is discarded from

examination.

Cross-references
▶Curse of Dimensionality

▶Data Partitioning

▶Dimensionality Reduction

▶Multimedia Data Indexing

Recommended Reading
1. Agrawal R., Faloutsos C., and Swami A. Efficient Similarity

Search in Sequence Databases. In Proc. 4th Int. Conf. on

Foundations of Data Organization and Algorithms, 1993,

pp. 69–84.

2. Beckmann N., Kriegel H.-P., Schneider R., and Seeger B. The

r*-tree: An efficient and robust access method for points and

rectangles. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1990, pp. 322–331.

3. Bentley J. Multidimensional divide and conquer. Commun.

ACM, 23(4):214–219, 1980.

4. Bozkaya T. and Özsoyoglu M. Distance-based indexing for high-

dimensional metric spaces. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1997, pp. 357–368.

5. Chee Fu A.W., Chan P.M., Cheung Y.L., and Moon Y. Dynamic

VP-tree indexing for N-nearest neighbor search given pair-wise

distances. VLDB J., 9(2): 154–173, 2000.

6. Ciaccia P., Patella M., and Zezula P. M-tree: An efficient access

method for similarity search in metric spaces. In Proc. 23th Int.

Conf. on Very Large Data Bases, 1997, pp. 426–435.

7. Guttman A. R-trees: A dynamic index structure for spatial

searching. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1984, pp. 47–57.

8. Keogh E., Chakrabarti K., Pazzani M., and Mehrotra S. Locally

adaptive dimensionality reduction for indexing large time series

databases. In Proc. ACM SIGMOD Int. Conf. onManagement of

Data, 2001, pp. 151–162.

9. Nievergelt J., Hinterberger H., and Sevcik K.C. The grid file: An

adaptable, symmetric multikey file structure. ACM Trans. Data-

base Syst., 9(1):38–71, 1984.

10. Roussopoulos N., Kelley S., and Vincent F. Nearest neighbor

queries. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1995, pp. 71–79.

11. Seidl T. and Kriegel H.-P. Optimal multi-step k-nearest neighbor

search. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp. 154–165.

12. Yianilos P. Data structures and algorithms for nearest neighbor

search in general metric spaces. In Proc. 4th Annual ACM -

SIAM Symp. on Discrete Algorithms, 1993, pp. 311–321

Indexing Compressed Text

PAOLO FERRAGINA, ROSSANO VENTURINI

University of Pisa, Pisa, Italy

Synonyms
Compressed full-text indexing; Compressed suffix

array; Compressed suffix tree; Compressed and search-

able data format

Definition
Given a text T[1,n], the Compressed Text Indexing

problem requires to building an indexing data struc-

ture over T that takes space close to the empirical

entropy of the input text and answers queries on

the occurrences of an arbitrary pattern P[1,p] in T

without any significant slowdown with respect to

uncompressed indexes. There are three main queries:

count(P), that returns the number of pattern occur-

rences in T, locate(P), that returns the starting

positions of all pattern occurrences in T, and

extract(i, j), that retrieves the substring T[i, j].

Historical Background
String processing and searching tasks are at the core of

modern web search, information retrieval (IR), data

base and data mining applications. Most of text

manipulations required by these applications involve,

sooner or later, searching those (long) texts for (short)

patterns or accessing portions of those texts for

subsequent processing/mining tasks. Despite the in-

crease in processing speed of current CPUs and mem-

ories/disks, sequential text searching long ago ceased

to be a viable approach, and indexed text searching

has become mandatory.

A (full-)text index is a data structure built over a

text T[1,n], drawn from an alphabet S of size s, which
significantly speeds up sequential searches for arbitrary

pattern strings, at the cost of some additional space.

Suffix trees and suffix arrays are the most well-known

full-text indexes [5]. The suffix tree of a text T is a trie

(or digital tree) built on all the n text suffixes T[i, n],

where unary paths are compacted to ensure O(n) over-

all size. The suffix tree has n leaves, one per text suffix,

and each internal node corresponds to a unique sub-

string of T that occurs more than once. The suffix tree

can count the occ occurrences of any pattern P[1,p] in

1442 I Indexing Compressed Text

Rossano Venturini

time O(p) by descending in the suffix tree according to

the symbols of P, and it can locate these occurrences in

optimal O(occ) time by traversing the subtree of the

node reached by counting. The suffix tree, however,

uses much more space than the text itself because

it requires Y(n log n) bits, whereas the text needs

ndlog se bits (logarithms are in base 2). In practice,

a suffix tree requires from 10 to 20 times the text size,

if carefully engineered [5].

The suffix array is a compact version of the suffix

tree, obtained by storing in SA[1,n] the starting posi-

tions of the suffixes of T listed in lexicographical order.

This data structure still requires Y(n log n) bits in the

worst case, but the constant hidden in the big-Oh

notation is small in practice, namely it is no more

than 4. SA can be obtained by traversing the leaves of

the suffix tree, or it can be built directly in optimal

linear time via ad-hoc sorting methods [5]. Since any

substring of T is the prefix of a text suffix, finding all

pattern occurrences boils down to finding all text suf-

fixes that start with P. These suffixes form a lexico-

graphic interval in SA that can be binary searched in

O(p log n) time, as each comparison in the binary

search requires examining up to p symbols of the

pattern and of a text suffix. The time complexity can

be improved to O(p þ log n) by using an auxiliary data

structure that doubles the space requirement of the suffix

array, or it can be further reduced to O(p þ log s) by a
proper sampling of the indexed suffixes (cfr. Suffix

Trays). Once the interval SA[sp,ep] containing all text

suffixes starting with P has been identified, count(P)

is answered by returning the value occ = ep " sp þ 1,

and locate(P) is answered by retrieving the entries

SA[sp], SA[sp þ 1],...,SA[ep].

The use of full-text indexes is not limited to (full-)

text searching over one single text. It can be easily

extended to multiple texts, and can also be used to

support (prefix, suffix, or substring) queries over a

dictionary D of strings having variable length.

This problem is called Dictionary Indexing and occurs

frequently in the implementation of IR and data

mining applications. It can be solved via a (com-

pressed) index built on a string SD which is obtained

by concatenating all dictionary strings, separated with

a special symbol #. A prefix search for P in D can

be implemented by counting/locating the query pat-

tern #P in SD; a suffix search can be implemented by

searching for P# in SD; substring searches are directly

executed on SD.

Foundations
The large space occupancy of full-text indexes has

driven programmers to resort to inverted indexes to

solve their searching operations on large textual data-

sets, and some researchers have actually concluded

that the increased query power of full-text indexes

has to be paid by additional storage space. Fortuna-

tely, a recent body of research showed that compressed

full-text indexes can be designed by deploying algo-

rithmic techniques and mathematical tools which lie

at the crossing point of three distinct fields – data

compression, algorithmics and databases (see e.g.,

[9,13,14]). Most of these indexes can be classified

into two families – FM-indexes (FMI) and Compressed

Suffix Arrays (CSA) – and achieve efficient query times

and space close to the one achievable by the best

known compressors, like gzip or bzip2. In theory,

these indexes require O(nHk(T)) þ o(n log s) bits of

space, where Hk(T) is the kth order empirical entropy

of T (see Table 1). This bound is appealing because it

can be sublinear in n, for highly compressible texts,

and nHk(T) is the classic Information-Theoretic lower

bound to the storage complexity of T by means of any

kth order compressor, like gzip and bzip2 (recall that

extract(1,n) = T).

The FM-Index Family

These compressed indexes were introduced by

Ferragina and Manzini in [9], who devised a way to

orchestrate in efficient time and space the relation

that exists between the suffix array data structure and

the Burrows-Wheeler Transform (shortly, BWT [4]). The

BWT is a reversible transformation that permutes the

symbols of the input string T into a new string bwt(T)

which is easier to compress, and can be computed in

three steps (see Fig.1):

1. Append at the end of T a special symbol $ smaller

than any other symbol of S;
2. Form a conceptual matrix MðTÞ whose rows are

the cyclic rotations of string T$ in lexicographic

order;

3. Set string bwt(T) to the last column L of the sorted

matrixMðTÞ.

Every column of MðTÞ, hence also the transformed

string L, is a permutation of T$. In particular the first

column ofMðTÞ, call it F, is obtained by lexicograph-

ically sorting the symbols of T$ (or, equivalently, the

symbols of L). Note that the sorting of the rows of

Indexing Compressed Text I 1443

I

MðTÞ is essentially equal to the sorting of the suffixes

of T, because of the presence of the special symbol $.

This shows that: (i) symbols preceding the same sub-

string (context) in T are grouped together in L, and

thus give raise to clusters of nearly identical symbols;

(ii) there is an obvious relation betweenMðTÞ and SA.
Property (1) is the key for devising modern data com-

pressors, Property (2) is crucial for designing com-

pressed indexes and, additionally, suggests a way to

compute the BWT through the construction of the

suffix array of T: L[0] = T[n] and, for any 1 % i % n,

set L[i] = T[SA[i] " 1].

Burrows and Wheeler [4] devised two properties

for the invertibility of the BWT:

1. Since the rows inMðTÞ are cyclically rotated, L[i]
precedes F[i] in the original string T.

2. For any c 2 S, the ‘th occurrence of c in F and the

‘th occurrence of c in L correspond to the same

symbol of the string T.

As a result, the original text T can be obtained back-

wards from L by resorting to a function LF that maps

row indexes to row indexes, and is defined as follows: if

the BWT maps T[j " 1] to L[i 0] and T[j] to L[i], then

LF(i) = i 0 (so LF implements a sort of backward step

over T) [9]. Now, since the first row ofMðTÞ is $T, it
can be stated that T[n] = L[0] and, in general, T[n" i]

= L[LFi(0)], for i = 1,...,n " 1.

Starting from these basic properties, Ferragina and

Manzini [9] proposed a way to combine the compress-

ibility of the BWTwith the indexing power of the suffix

array. In particular, they have shown that searching

operations on T can be reduced to counting queries

of single symbols in L, now called rank operations. For

any symbol c 2 S and position i in L, the query

rankc(L, i) returns how many times the symbol c

appears in L[1,i]. An FM-index then consists of three

key tools: a compressed representation of bwt(T) that

supports efficient rank queries, a small array C[c]

which tells how many symbols smaller than c appear

in T (this takes O(s log n) bits), and the so called

backward search algorithm which carefully orchestrates

the former two data structures in order to implement

efficiently the count query. More precisely, FMI

searches the pattern P[1,p] backwards in p steps,

which eventually identify the interval of text suffixes

that are prefixed by P or, equivalently, the interval of

rows ofMðTÞ that are prefixed by P. This is done by

maintaining, inductively for i = p, p " 1,...,1, the

interval SA[spi, epi] that stores all text suffixes that

are prefixed by the pattern suffix P[i, p]. At the begin-

ning it is i = p, and so SA[spp, epp] corresponds to all

Indexing Compressed Text. Figure 1. Example of

Burrows-Wheeler transform for T = mississippi.

The matrix on the right has the rows sorted in

lexicographic order. The output of the BWT is the column

L = ipssm$pissii.

Indexing Compressed Text. Table 1. Best known complexities for the time (in big-Oh) and space (in bits) required by

the main families of compressed full-text indexes

Index Count Locate Extract Space References

FMI p occ&polylog(n) ‘ þ polylog(n) nHk(T) þ o(n) [8]

CSA p/logs n þ polylog(n) occ&polylog(n) ‘∕ logs n þ polylog(n) g"1nHk(T) þ o(n) [11]

LZ-INDEX p2 log p þ p log n þ occ occ&log n ‘(1 þ E"1∕ logs‘) (2 þ E)nHk(T) þ o(n log s) [1]

Here E > 0 and 0 < g < 1
3 are constants fixed in advance before the data structures are built; ‘ is the number of text symbols to

be retrieved by extract; Hk(T) is the k-th order empirical entropy of text T [14]. The reported complexities are worst-case and hold for

s = O(polylog(n)) assuming that k % alogs n with 0 < a < 1 except for LZ-INDEX in which k = o(logsn). For more precise bounds (e.g.,

coefficients in polylog(n) terms and the case s = O(polylog(n)) and for a thoughtful comparison of these indexes and their

numerous variants, the reader is referred to [14].

1444 I Indexing Compressed Text

suffixes which are prefixed by the last symbol P[p]:

hence, it is enough to set spp = C[P[p]] þ 1 and epp
= C[P[p] þ 1]. At any other step, the algorithm has

inductively computed SA[spiþ1, epiþ1], and thus it can

derive the next interval of suffixes prefixed by P[i, m]

by setting spi = C[P[i]] þ rankP[i](L, spiþ1 " 1) þ 1

and epi = C[P[i]] þ rankP[i](L, epiþ1). These two

computations are actually mapping (via LF) the first

and last occurrences (if any) of symbol P[i] in the

substring L[spiþ1, epiþ1] to their corresponding occur-

rences in F. (Indeed, [9] showed that any LF computa-

tion boils down to a rank query on L.) As a result, the

backward-search algorithm requires to solve 2p rank

queries on L = bwt(T) in order to find out the (possi-

bly empty) range SA[sp, ep] of text suffixes prefixed

by P. count(P) can be then solved by returning the

value occ = ep1 " sp1 þ 1.

Conversely, locate and extract need some

extra information about the underlying suffix array,

this impacts onto the space occupancy of the FMI.

Recall that locate(P) requires to return, for any i 2
[sp, ep], the position pos(i) = SA[i]. For space reasons

SA cannot be stored explicitly so that, for a fixed

parameter m = dlog1þ2ne, FMI samples the rows of

MðTÞ which correspond to text suffixes that start at

positions of the form 1 þ j & m. Each such pair hrow,
positioni is stored explicitly in a data structure S that

supports membership queries in constant time (on the

row-component). Now, given a row index i, the value

pos(i) can be derived immediately from S, if i is a

sampled row; otherwise, the algorithm computes j =

LFt(i), for t = 1,2,..., until j is a sampled row. In this

case, pos(i) = pos(j) þ t. The sampling strategy ensures

that a row in S is found in at most m iterations, and

thus the occ occurrences of the pattern P can be located

via O(m & occ) rank queries. The algorithm for ex-

tract(i,i 0) requires a similar approach and takes no

more than (i 0" i þ m þ 1) rank queries.

The net result is that the space and time complex-

ities of FMI depend on the value m and on the perfor-

mance guaranteed by the data structure used to

compute rank queries on the BWT-string. The extra

space required by the data structures added to support

locate and extract is bounded by O((n log n) ∕m)
bits, which is o(n) whenever 2 > 0. The real challenge

thus consists of representing bwt(T) in a compressed

form and answering efficiently rank queries over it.

Actually, all implementations of FMI differentiate

themselves by the strategy used to solve this problem,

as the alphabet size grows. Today, the literature offers

many solutions, the most efficient ones are summar-

ized below.

Lemma 1 Let T[1,n] be a string over an alphabet of

size s, and let L = bwt(T).

1. For s = O(polylog(n)), there exists a data struc-

ture which supports rank queries on L in O(1) time

using nHk(T) þ o(n) bits of space, for any k % a
logsn and 0 < a < 1, and retrieves any symbol of L

in the same time bound [10, Theorem 5].

2. For general S, there exists a data structure which

supports rank queries on L in O(log log s) time,

using nHk(T) þ n o(log s) bits of space, for any

k% a logsn and 0< a< 1, and retrieves any symbol

of L in the same time bound [2, Theorem 4.2].

By plugging this Lemma into the FMI data structure,

one derives a compressed full-text index that sup-

ports efficiently the three full-text queries – namely,

count, locate, extract– and occupies space

approaching the kth order empirical entropy of T

(see Table 1).

In practice, there are various implementations of

FMI, whose engineering choices mainly refer to the way

the rank-data structure built on bwt(T) is compressed

and scales with the alphabet size of the indexed text.

The site Pizza&Chili (see below) reports several imple-

mentations for FMI that mainly boil down to the fol-

lowing trick: bwt(T) is split into blocks (of equal or

variable length) and values of rankc are precomputed

for all block beginnings and all symbols c 2 S. A query

rankc(L, i) is answered by summing up the answer

available for the beginning of the block that contains

L[i] plus the rest of the occurrences of c in that block –

they are obtained either by sequentially decompressing

the block or by using a proper compressed data struc-

ture built on it (e.g., the Wavelet Tree of [12]). The

former approach favors compression, the latter favors

query speed.

The CSA family. These compressed indexes were

introduced by Grossi and Vitter [13], who showed

how to compactly represent the suffix array SA in

O(n log s) bits and still be able to access any of its

entries in efficient time. Their solution is based on a

function C, which is the inverse of the function LF

introduced for BWT:

CðiÞ ¼
i 0such that SA½i 0) ¼ SA½i) þ 1 ðif SA½i) > nÞ
i 0such that SA½i 0) ¼ 1 ðif SA½i) ¼ nÞ

!

Indexing Compressed Text I 1445

I

In other words, C(i) refers to the position in the suffix

array of the text suffix that follows SA[i] in T, namely,

the text suffix which is one-symbol shorter. The com-

pact storage of SA proposed by Grossi and Vitter is

based on a hierarchical decomposition that deploysC.

To represent SA0 = SA they use three vectors: B0,

C0 and SA1. The binary vector B0[1,n] marks the

entries of SA0 which are even (suffixes). The vector

C0[1,dn ∕2e] stores the values C(i) for which SA[i] is

odd (hence B0[i] = 0). The vector SA1[1,dn ∕ 2c] is a

‘‘halved’’ version of SA0, in that it contains the even

elements of SA0 divided by 2. Surprisingly enough,

these three vectors suffice to retrieve any entry SA[i].

Of course, it is easy to determine whether SA[i] is even

or odd by simply looking at B0[i]. If SA[i] is odd, the

following suffix SA[i] þ 1 = SA[C(i)] is even, and its

suffix-array position can be determined as C(i) =

C0(rank0(B0,i)). If SA[i] is even, it is enough to look

at its halved value stored at SA1[rank1(B0,i)]. The

three vectors C0, B0 and SA1 form the first level of

the hierarchical decomposition of SA. This idea is

applied recursively on SA1 which is replaced by three

other vectors: C1, B1 and SA2. This goes on until SAh

can be represented within O(n) bits, namely when

h = dlog log ne. Accessing SA[i] takes h time. By storing

the text T, in additional ndlog se bits, one can search

for a pattern P via the classic binary-search, now on the

compacted SA. Grossi and Vitter proposed to store

vectors B in compressed form via proper rank-data

structures (see [14] and references therein), and

deployed the piecewise increasing property for C –

namely, if T[SA[i]] = T[SA[i þ 1]], then C(i) <
C(i þ 1) – to store each level of C within 1

2 n log s
bits, still preserving constant time lookup to any level

of C. Other time/space tradeoffs are possible by using

different numbers of levels. Essentially, not all the levels

are represented and the function C is used to jump

from one represented level to the next represented one.

Recently, CSA has been the subject of two main

improvements. The first one, due to Sadakane [16],

showed that the original text T can be replaced with a

binary vector F such that F[i] = 1 iff the first symbol of

the suffixes SA[i " 1] and SA[i] differs. Since the

suffixes in SA are lexicographically sorted, one can

determine the first symbol of any suffix in constant

time by just executing a rank1 query on F. This fact,

combined with the retrieval of C ’s values in constant

time, allows comparing any suffix with the searched

pattern P[1,p] in timeO(p). Sadakane also provided an

improved representation for C achieving nH0(T) bits.

Theoretically, the best variant of CSA is due to Grossi,

Gupta and Vitter [12] who devised some further struc-

tural properties of C that allow to come close to

nHk(T) bits, still preserving the previous time com-

plexities for all full-text queries (see Table 1). Practi-

cally, the best implementation of the CSA is the one

proposed by Sadakane that actually does not use the

hierarchical decomposition above, but orchestrates a

compact representation of the function C together

with the backward search and the sampling strategy

of the FMI family. This hybrid index is among the fastest

compressed indexes to count and locate pattern occur-

rences over highly-compressible data.

Other Compressed Indexes

Previous families of compressed indexes based their

search on the implicit or explicit availability of the

suffix array data structure. Recent years have seen the

design of several other approaches, the two most nota-

ble ones are the LZ-index, proposed by Navarro, and

the Compressed Suffix Tree, devised by Sadakane and

then improved by many other authors. The former

index bases its design on the parsing of the text T via

the LZ78-compression scheme, and then enriches its

output by additional data structures that support effi-

cient searches over the parsed phrases. By properly

orchestrating LZ78-parsing with compressed dictio-

nary data structures, [1] achieved interesting search

and entropy-based space bounds which are not com-

petitive theoretically with the ones obtained by FMI and

CSA indexes (see Table 1) but are, nonetheless, fast in

practice. As far as the compressed suffix-tree is

concerned, it is worth noticing that the compression

of this data structure is obtained by properly orches-

trating succinct tree and succinct array encodings [15].

The total space is the one required by the CSA built

on T plus no more than 6n þ o(n) bits; all known

suffix-tree operations are supported with a maxi-

mum slowdown of O(log n) time with respect to the

uncompressed suffix tree.

Key Applications
Compressed full-text indexes might be used at the core

of modern web search, IR, data base and data mining

applications because, as Knuth observed in the Art of

Computer Programming (vol. 3): ‘‘space optimization

is closely related to time optimization in a disk memory’’.

Data compression can not only squeeze the space

1446 I Indexing Compressed Text

overhead of an index, but also improve its speed, as

remarked earlier. Several authors [3,5,11,17,18] have

recently addressed these issues in various settings but,

nonetheless, there is much more room for theoretical

and practical improvements.

Future Directions
An open challenge concerning compressed indexes is to

fasten their locate queries in order to achieve the

optimal O(occ) time bound. The best known result is

due to Ferragina and Manzini [9]: each occurrence is

located in constant time, and the index takes O(nHk(S)

log2n) þ o(n log s log2n) bits, where 2 is any positive

constant. This bound has the extra log-factor in front

of the entropy term! Therefore, it is natural to ask: Is

there a full-text index achieving O(p þ occ) query time

and O(nHk(S))þ o(n log s) bits of space occupancy in
the worst case? This result would be provably better

than any known uncompressed full-text index.

Another interesting open problem consists of de-

signing a compressed full-text index which is disk-

aware or, better, memory-oblivious in that it scales

optimally over all memory levels available in a modern

PC. The above data structures are compressed, but

their overall size may span many memory levels so

that issues pertaining to proper arrangement of data

and properly structured algorithmic computations come

into play. The most attractive disk-aware index is the

String B-tree [7]; whereas the best cache-oblivious

index is the COSB-tree [3,8]. Unfortunately the

former is uncompressed, whereas the latter uses a

compression heuristic which does not guarantee

entropy-bounds in the worst case. It would be there-

fore valuable, also in practice, to devise a compressed

index that combines the I/O-efficiency of the (cache

oblivious) String B-tree with the space efficiency of the

compressed full-text indexes discussed in this entry.

Some preliminary results have been devised in [8],

but the ultimate goal has yet to be achieved.

Experimental Results
Site PIZZA&CHILI [6] provides a full experimental com-

parison among the major implementations of com-

pressed indexes. The experiments mainly show that

these indexes can compress a text within 40–80% of

its original size, and support searches for 20,000–

50,000 patterns of 20 chars each within a second, locate

about 100,000 pattern occurrences per second, and

decompress text symbols at a rate of about 1MB/s.

The compressed indexes are from one (count) to

three (locate) orders of magnitudes slower than

what one can achieve with a plain suffix array, at the

benefit of using up to 18 times less space. This slow-

down is due to the fact that search operations in

compressed indexes access the memory in a non-local

way thus eliciting many cache/IO misses, with a conse-

quent degradation of the overall time performance.

Nonetheless compressed indexes achieve a (search/

extract) throughput which is significant and may

match the efficiency specifications of most software

tools running on commodity PCs. Recently, Ferragina

and Venturini [11] provided a comparison among

classic and compressed indexes for the Dictionary

Indexing Problem showing that, in this case,

compressed indexes may be faster than classic IR

approaches.

Data Sets
Calgary Corpus (http://links.uwaterloo.ca/calgary.

corpus.html)

CanterburyCorpus (http://corpus.canterbury.ac.nz)

Pizza&Chili Corpus (http://pizzachili.di.unipi.it or

http://pizzachili.dcc.uchile.cl) see also[18]

URL to Code
Site Pizza&Chili (http://pizzachili.di.unipi.it or http://

pizzachili.dcc.uchile.cl) collects implementations of

the major compressed text indexes, and various tools

and datasets to test them.

Cross-references
▶Managing Compressed Structured Text

▶ Suffix Trees

▶Text Compression

▶Text Index Compression

▶Text Indexing & Retrieval

▶Text Indexing Techniques

▶Text Representation

▶XML Compression

Recommended Reading
1. Arroyuelo D., Navarro G., and Sadakane K. Reducing the space

requirement of LZ-index. In Proc. 17th Annual Symposium on

Combinatorial Pattern Matching, 2006, pp. 319–330.

2. Barbay J., He M., Munro J.I., and Srinivasa Rao S. Succinct

indexes for string, binary relations and multi-labeled trees. In

Indexing Compressed Text I 1447

I

Proc. 18th Annual ACM -SIAM Symp. on Discrete Algorithms,

2007, pp. 680–689.

3. Bender M.A., Farach-ColtonM., and Kuszmaul B.C. Cache-obliv-

ious string B-trees. In Proc. 25th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2006,

pp. 233–242.

4. Burrows M. and Wheeler D. A block sorting lossless data com-

pression algorithm. Technical Report 124, Digital Equipment

Corporation, 1994.

5. Ferragina P. String Search in External Memory: Data Structures

and Algorithms, In Handbook of Computational Molecular

Biology, Chapman & Hall, London, 2005.

6. Ferragina P., González R., Navarro G., and Venturini R. Com-

pressed Text Indexes: From Theory to Practice, J. Exp. Algorith-

mics, 13:1.12–1.31, 2009.

7. Ferragina P. and Grossi R. The String B-tree: A new data struc-

ture for string search in external memory and its applications.

J. ACM, 46(2):236–280, 1999.

8. Ferragina P., Grossi R., Gupta A., Shah R., and Vitter J.S. On

searching compressed string collections cache-obliviously. In

Proc. 27th ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, 2008, pp. 181–190.

9. Ferragina P. and Manzini G. Indexing compressed text. J. ACM,

52(4):552–581, 2005.

10. Ferragina P., Manzini G., Mäkinen V., and Navarro G. Com-

pressed representations of sequences and full-text indexes. ACM

Trans. Algorithms, 3(2), 2007.

11. Ferragina P. and Venturini R. Compressed permuterm index.

In Proc. 33rd Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2007, pp. 535–542.

12. Grossi R., Gupta A., and Vitter J.S. High-order entropy-

compressed text indexes. In Proc. 14th Annual ACM-SIAM

Symp. on Discrete Algorithms, 2003, pp. 841–850.

13. Grossi R. and Vitter J.S. Compressed suffix arrays and suffix

trees with applications to text indexing and string matching.

SIAM J. Comput., 35(2):378–407, 2005.

14. Navarro G. and Mäkinen V. Compressed full-text indexes. ACM

Comput. Surv., 39(1), 2007.

15. Sadakane K. Compressed suffix trees with full functionality.

Theory Comput. Syst., 41(4):589–607, 2007.

16. Sadakane K. New text indexing functionalities of the compressed

suffix arrays. J. Algorithms, 48(2):294–413, 2007.

17. Sadakane K. Succinct data structures for flexible text retrieval

systems. J. Discrete Algorithms, 5(1):12–22, 2007.

18. Tam S.L., Wong C.K., Lam T.W., Sung W.K., and Yiu S.M.

Compressed indexing and local alignment of DNA. Bioinfor-

matics, 24(6):791–797, 2008.

Indexing for Online Function
Approximation

▶Database Techniques to Improve Scientific

Simulations

Indexing for Similarity Search

▶High Dimensional Indexing

Indexing Granularity

▶ Indexing Units

Indexing Historical Spatio-Temporal
Data

MOHAMED F. MOKBEL
1, WALID G. AREF

2

1University of Minnesota, Minneapolis, MN, USA
2Purdue University, West Lafayette, IN, USA

Synonyms
Indexing the past; Historical spatio-temporal access

methods; Trajectory indexing

Definition
Consider an object O that reports to a database server

two consecutive locations P0 = (x0,y0) and P1 = (x1,y1)

at times t0 and t1, respectively. The database server has

no idea about the exact locations of object O between

t0 and t1. To be able to answer queries regarding the

user location at any time, the database server interpo-

lates the two accurate locations through a trajectory

that connects P0 and P1 through a straight line. While

object O keeps sending location samples, the database

server keeps accumulating set of consecutive trajec-

tory lines that represent the historical movement of

object O. Indexing historical spatio-temporal data

includes dealing with such large numbers of trajec-

tories. The main idea is to organize past trajectories

in a way that supports historical spatial, temporal,

and spatio-temporal queries.

Historical Background
The rapid increase in spatio-temporal applications

calls for new auxiliary indexing structures. A typical

spatio-temporal application is one that tracks the be-

havior of moving objects through location-aware

devices (e.g., GPS). Through the last two decades,

many spatio-temporal access methods were developed.

1448 I Indexing for Online Function Approximation

Rossano Venturini

Rossano Venturini

	D
	Data Warehouse Maintenance, Evolution and Versioning

	I
	Image Database
	Foundations
	Outline placeholder

	Indexing and Similarity Search
	Cross-references
	Recommended Reading

	Indexing Compressed Text
	Synonyms
	Definition
	Historical Background
	Foundations
	The FM-Index Family
	Other Compressed Indexes

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Indexing for Online Function Approximation
	Indexing for Similarity Search
	Indexing Granularity
	Indexing Historical Spatio-Temporal Data
	Synonyms
	Definition
	Historical Background

