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Abstract. In this paper we present different solutions for the problem
of indexing a dictionary of strings in compressed space. Given a pattern
P , the index has to report all the strings in the dictionary having edit
distance at most one with P . Our first solution is able to solve queries
in (almost optimal) O(|P |+ occ) time where occ is the number of strings
in the dictionary having edit distance at most one with P . The space
complexity of this solution is bounded in terms of the k-th order entropy
of the indexed dictionary. Our second solution further improves this space
complexity at the cost of increasing the query time.

1 Introduction

Modern web search, information retrieval, data base and data mining applica-
tions often require solving string processing and searching tasks. Most of such
tasks boil down to some basic algorithmic primitives which involve a large dic-
tionary of strings with variable length. The interest in approximate searches
over dictionaries of strings is increasing since they appear frequently in many
practical scenarios. In Web search, for example, users query the engine with
possibly misspelled terms that can be corrected by choosing among the closest
terms stored in a trustable dictionary. In data mining and data base applica-
tions, instead, an automatically built dictionary may contain noise in the form
of misspelled strings. Thus, we may need to resort to approximate searches in
order to identify the closest dictionary strings with respect to a (correct) input
string.

The Edit distance (also known as Levenstein distance) is the most commonly
used distance to deal with misspelled strings. The edit distance between two
strings is defined as the minimal number of edit operations required to transform
the first string into the second string. There are three possible edit operations:
deletion of a symbol, insertion of a symbol and substitution of a symbol with
another.
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The problem String Dictionary Look-up with Edit Distance One is defined
as follows. Let D = {S1, S2, . . . , Sd} be a set of d strings of total length n drawn
from an alphabet Σ of size σ. We want to build a (compressed) index that, given
any string P [1, p], reports all the strings in D having edit distance at most 1 with
P . In the following we assume that the strings in D are all distinct and sorted
lexicographically (namely, for any 1 ≤ i < d, Si < Si+1).

In this paper we provide two efficient and compressed solutions for the prob-
lem above. The first solution guarantees (almost) optimal query time while re-
quiring compressed space. Namely, we show how to obtain an index of 2nHk +
n · o(log σ) + 2d log d bits, that is able to report all the occ strings having edit
distance at most 1 with P in time O(p + occ). Here Hk denotes the k-th order
entropy of the strings in the dictionary. Interestingly, the time complexity of
this solution is independent of alphabet size. This is quite an uncommon result
for compressed data structures dealing with texts. The second solution provides
possible space/time tradeoffs by using a completely different approach. Its space
occupancy, indeed, decreases to nHk +n · o(log σ) bits. This better space bound
is obtained at the cost of increasing the query time to O(p log log σ).

Interestingly, our first solution can be extended to support an additional op-
eration which has interesting practical applications. We assume that each string
Si in D has been assigned a score c(Si). For example, the score could establish
the relative importance of any string with respect to the others. It is possible to
extend our solution in order to support the extra operation Top(P [1, p], k) that
reports the k highest scored strings in D having edit distance at most 1 with P .
This operation is solved in O(p+ k log k) time.

2 Related work

The literature presents several solutions to the problem of indexing string dic-
tionaries to efficiently search strings with error distance one. In the following we
restrict our attention only on results that currently have the best time/space
complexities.

The work in [3] proposes two solutions to solve the string dictionary lookup
with Hamming distance one3. The first solution has O(p+ occ) query time and
uses O(σ · n log n) bits of space. The main data structure is a trie that indexes
strings in D plus extra strings. An extra string is a string that does not belong to
D but has Hamming distance one with at least a string in the set. Clearly, each
root to a leaf path in the trie represents either a string in D or an extra string. In
every leaf representing a string S there is stored the list of indices of strings in D
that have Hamming distance one with S. The query for P is solved by navigating
the trie. If a leaf is reached, it reports all the indices stored in the leaf. The major
drawback of this solution is represented by its space occupancy for non-constant
size alphabet and by its construction time. Indeed, it is unknown how to build
this data structure in O(nσ) time.

3 However, they can be easily extended to deal with the more general Edit distance.



The second solution in [3] is slower than the previous one by an additive
term O(log n) (namely, query time is O(p + log n + occ)). The advantage is
represented by its space occupancy which is O(n log n) and, thus, it is better for
non-constant size alphabets. The solution resorts to two tries and a balanced
search tree. The first trie contains the set of strings D while the second trie
indexes the strings in D reversed. The query algorithm exploits the following
property: if there exists a string S in D having distance one with P [1, p], it can
be factorized as S = P [1, i]·c·P [i+2, p], for some index i and symbol c ∈ Σ. This
is a key property that has been exploited by almost all the subsequent solutions,
including ours. These solutions differ from each other in data structures and
algorithms they use to discover all these factorizations. For each string S[1, s]
in D, we consider all triplets (npi(S), S[i + 1], nsi+2(S)) where npi(S) is the
identifier of the node corresponding to prefix S[1, i] in the first trie and nsi+2(S)
is the identifier of the node corresponding to S[i + 2, s] reversed in the second
trie. These triples are inserted in a search tree that is able to report, given a pair
of node identifiers u and v, all the triples with u in the first component and v in
the third component. The query algorithm works as follows. For any index i, it
identifies the nodes npi(P ) and nsi+2(P ) and uses the search tree by querying for
these two nodes. If the triple (npi(P ), c, nsi+2(P )) is returned, then the string
S = P [1, i] · c ·P [i+ 2, p] is in D and has distance one from P . Remarkably, this
solution can be easily made dynamic: inserting or deleting a string P [1, p] from
D costs O(p+ log n).

The current best solution is the one presented in [1]. This solution follows
a similar approach but obtains significantly better time and space complexi-
ties. Indeed, this solution achieves O(p + occ) query time by requiring optimal
O(n log σ) bits of space. This is obtained by carefully combining compact tries,
(minimal) perfect hash functions and Rabin-Karp fingerprinting.

The solution presented in [4] solves the problem for Hamming distance and
it deals with binary strings having a fixed length L. The strong limitation on
the length of strings allows to achieve optimal O(L/w) query time, where w
is the size of a memory word. However, the space usage grows to O(n · L lgL)
bits. Moreover, this solution can only report a single matching string from the
dictionary.

Finally, we observe that currently known solutions to solve the more general
problem of approximate full-text indexing are not competitive with solutions
presented in this paper. Indeed, all known solutions for approximate full-text
indexing for edit distance one incur at least a factor Ω(log n) in space usage
and/or an additive Ω(log n) term in query time.

3 Background

In this section we collect a set of algorithmic tools that will be used by our
solutions. We report each result together with a brief description. More details
can be obtained by consulting the corresponding references.



Compressed strings with fast random access. We will require the avail-
ability of a storage scheme for a text T which uses compressed space and is able
to decode in O(1) time any symbol of T . To this aim, we use the following result
in [9].

Lemma 1. Given a text T [1, n] drawn from an alphabet of size σ, there ex-
ists a compressed data structure that supports the access in constant time of
any substring of T of length O(log n) bits requiring nHk(T ) + extra bits, where
Hk(T ) denotes the kth empirical entropy of T and k = o(logσ n). The extra
space depends on the alphabet size σ: extra = o(n) if log σ = o(log n/ log log n),
extra = n · o(log σ) otherwise.

The scheme can be also used in cases in which T is the concatenation of a set
of strings (namely, T = S1 ·S2 · . . . ·Sd). The starting positions of strings in T are
stored by resorting to Elias-Fano’s representation [7, 8] within d log(nd ) + O(d)
bits. This additional structure allows us to access an arbitrary portion of any
string in optimal time.

Rabin-Karp signature. Given a string S[1, s], the Rabin-Karp signature [13]
rk(S) is equal to

∑s
i=1 S[i] · ti (mod M), where M is a prime number and t is a

randomly chosen integer in [1,M−1]. Given a set of strings D of d strings of total
length n, it can be obtained an instance rk() of the Rabin-Karp signature that
maps strings in D to the first O(M) integers without collisions, with M chosen
among the first O(n · d2) integers. It is known that a value of t that guarantees
no collisions can be found in expected O(1) attempts (e.g., see the analysis in
[6]). The representation of the suitable function requires O(log n) bits of space.

Interestingly, Rabin-Karp signature guarantees that, after a preprocessing
phase over a string S, signatures of strings close enough to S can be computed
in constant time. This property is formally stated by the following lemma.

Lemma 2. Given a string S[1, s], for every prefix P of S, rk(P ) can be computed
in constant time. Moreover, for every string Q at distance 1 from S, rk(Q) can
be computed in constant time. It is required a preprocessing phase that takes time
O(s).

Minimal Perfect Hash Function. Result in [12] shows how to build a spa-
ce/time optimal minimal perfect hash function. This result is summarized in the
following lemma.

Lemma 3. Given a subset of S ⊆ U = 2w of size n, there exists a minimal
perfect hash function for S that can be evaluated in O(1) time and requires
n log e+ o(n) bits of space.

Compressed static function. Often we have to represent satellite data associ-
ated with the keys in S. Repetitions in these associated values can be exploited
in order to reduce space requirements. The following result can be proven by
using standard techniques.



Theorem 1. A function F that assigns values from [σ] (with σ = ω(1)) to keys
in S = {x1, x2, . . . , xn} ⊂ U ⊆ 2w can be represented in nH0 + n · o(log σ)
bits such that the evaluation of F requires constant time, where H0 denotes the
empirical entropy of the assigned values {F (x1), F (x2), · · · , F (xn)}.

Proof. We use a minimal perfect hash function m() to map keys to the first n
integers by paying log e+ o(1) bits per key (Lemma 3). We construct a sequence
A that has the value associated with key xj in position m(xj). Sequence A is
represented in compressed form by using schema of Lemma 1.

4 A compressed and fast solution

Our first solution can be seen as a compressed variant of the solution presented
in [1]. However, we need to apply significant and non-trivial changes to that
solution in order to achieve compressed space and to retain exactly the same
(almost optimal) query time. More formally, in this section we prove the following
theorem.

Theorem 2. Given a set of strings D = {S1, S2, . . . , Sd} of d strings of total
length n drawn from an alphabet Σ of size σ, there exists an index that, given
any pattern P [1, p], reports in O(p + occ) time all the occ strings in D having
edit distance at most one with P . It requires:

1. nHk + o(n) + 2d log d bits of space for any k = o(log n), if σ = O(1);
2. 2nHk+n ·o(log σ)+2d log d bits of space for a fixed k = o(logσ n), otherwise.

At a high level our solution works as follows. Firstly, it identifies a set of
O(p+occ) candidate strings being a superset of the strings that have edit distance
at most one with P . Then, it discards all candidate strings that actually do not
belong to D. For the moment, let us assume that establishing whether or not a
candidate string belongs to D costs constant time. Later, we will discuss how to
efficiently perform this non-trivial task4.

Our solution requires identifying strings in D that share prefixes and suffixes
with the query string P . For this aim we resort to two patricia tries PT and
PT r that index respectively the strings in D and the strings in D written in
reversed order. As common, a node in each patricia trie is uniquely identified
by the time of its visit in the preorder visit of the tree. The tree structure of
each patricia trie is represented in O(d) bits with standard succinct solutions
[14]. In order to perform searches on patricia tries, we add data structures to
compute the length of longest common prefix (lcp) and longest common suffix
(lcpr) for any pair of strings in D. A standard constant time solution requiring
O(d(1+log n

d )) bits of space is obtained by writing lcps between lexicographically
consecutive strings (resp. reverse strings) using Elias-Fano’s representation [7,
8] and by resorting to Range Minimum Queries (rmq) (see e.g., [11]) on these

4 Notice that just accessing each symbol of these candidate strings would cost O(p +
p · occ) time which is much higher than our claimed complexity.



arrays. Fast percolation of the tries is obtained by augmenting the branching
nodes with monotone minimal perfect hash functions as described in [2]. In this
way choosing the correct edge to follow from the current node can be done in
constant time regardless of the alphabet size. The extra cost in term of space
is bounded by O(d log log σ) bits. The correctness of the steps performed during
the search is established by comparing the searched string and labels on the
followed edges. This is done by accessing directly to the appropriate portion of
strings in D from their compressed representations. For this aim D is represented
by resorting to the compressed scheme of Lemma 1 that allows constant time
access to any symbol of any string in D. The space required by this is bounded
by kth order entropy accordingly to Lemma 1. Since the strings do not keep
their original order in the trie PT r, we store a permutation π of {1, 2, . . . , d}
that keeps track of the original order in D of each leaf of PT r. Namely, π(i) is
the index in D of the ith lexicographically smaller string in PT r. Clearly, storing
π requires d log d+O(d) bits.

Candidate strings obtained by deleting a symbol. The identification of
candidate strings for deletion is an easy task. Indeed, we observe that there are
just p possible candidate strings obtainable from P [1, p] by deleting one of its
symbol. Thus, we simply consider any string P [1, i] · P [i + 2, p] as a candidate
string. However, any of these strings is reported only after having checked that
it actually belongs to D. As said above, for the moment we assume that this
non-trivial task can be done in O(1) (amortized) time.

Candidate strings obtained by inserting or substituting a symbol. Iden-
tifying candidate strings for insertion or substitution of a symbol is an easy
task whenever the alphabet has constant size. In this case there are, indeed,
O(σ · p) = O(p) candidate strings obtained by inserting or substituting any
possible symbol of Σ in any position of P . This implies that data structures
above suffice for Point 1 in Theorem 25. Identifying insertions and substitutions
with a larger alphabet is a much harder task, which requires an additional data
structure. Our additional data structure follows the idea presented in [1] which
allows us to reduce the number of candidate strings from O(σ · p) to O(p+ occ).
However, our solution is forced to use more sophisticated arguments in order to
achieve space bounded in term of kth order entropy. In the following we consider
only insertions since substitutions are solved similarly.

Given the set of strings D and the two patricia tries PT and PT r, our first
step consists in building a set T of tuples. For each string S in D of length s,
we consider each of its factorizations of the form S = S[1, i] · c · S[i + 2, s]. For
each of them, we add to T the tuple 〈np, i, c = S[i+ 1], s− (i+ 2), ns〉 where np
(resp. ns) is the index of the highest node in PT (resp. PT r) prefixed by S[1, i]
(resp. S[i+ 2, s] reversed). Observe that the cardinality of T is at most n, since
we add at most s tuples for a string S of length s.

5 Recall that we are still assuming that we can check in O(1) whether a candidate
string belongs to D.



The set T contains enough information to allow the identification of all the
candidate strings. For insertion we consider all the factorizations of P having
the form P = P [1, i] · P [i + 1, p]. For each of them, we identify the (highest)
nodes npi and nsi+1 in PT and PT r that are prefixed respectively by P [1, i] and
P [i+ 1, p] reversed. Clearly, identifying all these nodes for all the factorizations
of P requires O(p) time by resorting to the patricia tries.

The key observation to identify candidate strings is the following: If there
exists a tuple 〈npi, i, c, p−i−1, nsi+1〉 in T , then the string S = P [1, i]·c·P [i+1, p]
belongs to D and, obviously, has distance one from P 6.

Our data structure is built on top of T and allows us to easily identify
the required tuples. We notice that there may exist several tuples of the form
〈np, i, ?, ns, i′〉. These groups of tuples share the same four components np, i,
ns and i′, and differ just for the symbol c. In order to distinguish them, we
arbitrarily rank tuples in the same group and we assign to each of them its
position in the ranking. We build a data structure that, given the indexes np
and ns of two nodes, two lengths i and i′ and rank r, returns the symbol c
of the rth tuple of the form 〈np, i, ?, ns, i′〉 in T . The data structure is allowed
to return an arbitrary symbol whenever such a tuple does not exist. The use
of such a data structure to solve our problem is simple. For each factorization
P [1, i]·P [i+1, p] of P , we query the data structure above several times by passing
the parameters npi, i, p− i− 1, nsi+1 and r. The value of r is initially set to 0
and increased by 1 for the subsequent query. After every query, we check if the
string S = P [1, i] · c · P [i + 1, p] belongs to D, where c is the symbol returned
by the data structure. We pass to the next factorization as soon as we discover
that either the string S does not belong to D or symbol c has been already seen
for the same factorization. Both these conditions provide the evidence that no
tuple 〈npi, i, ?, p− i− 1, nsi+1〉 with rank r or larger can belong to T . It is easy
to see that the overall number of queries is O(p+ occ).

We are now ready to present a data structure to index T as described
above that requires O(1) time per query and uses entropy bounded space.7 The
first possible compressed solution consists in appropriately defining a function
F () which is then represented by using solution in Theorem 1. For any tuple
〈np, i, c, ns, i′〉 having rank r in T , we set F (np, i, ns, i′, r) equal to c. Queries
above are solved by appropriately evaluating function F (). Accordingly to The-
orem 1, each query is solved in constant time. As far as space occupancy is
concerned, we observe that F () is defined for at most n values and that any
symbol of any string in D is assigned at most once. Thus, by combining these
considerations with Theorem 1, it follows that the representation of F () requires
at most nH0 + n · o(log σ) bits. A boost of this space complexity to nHk is ob-
tained by defining several functions F , one for each possible context of length
k. Here k = o(logσ n) is an arbitrary but fixed parameter. The function Fcntxt()
is defined only for tuples 〈np, i, c, ns, i′〉 where the symbol c is preceded by the

6 Observe that similar considerations hold also for substitutions with the difference
that we skip ith symbol in factorizations of the form P = P [1, i−1] ·P [i] ·P [i+1, p].

7 We remark that the set of tuples T is just conceptual and not explicitly stored.



context cntxt in the string that induced the tuple. By summing up the cost of
storing the representations of these functions, we have that the space occupancy
is bounded by nHk + n · o(log σ) bits for the fixed k = o(logσ n). Notice that
splitting F in several functions is not an issue for our aim. In the algorithm
above, indeed, we can query the correct function since we are always aware of
the correct context.

Checking candidate strings. It is left to explain how to establish, in constant
time, whether a candidate string belongs to D. Observe that any candidate string
has the form S = P [1, i] ·P [i+ 2, p] in case of deletion, S = P [1, i] · c ·P [i+ 1, p]
in case of insertion, or S = P [1, i] · c ·P [i+ 2, p] in case of substitution, for some
symbol c and index i. The main issue behind this task is given by the fact that
strings may not fit in a constant number of memory words. Thus, we cannot
manage them directly in constant time. For this aim Rabin-Karp function rk() is
used to create small sketches of the strings in D that fit in O(1) memory words
and that uniquely identify each string. Observe that the signatures assigned by
function rk() are values smaller than M and, thus, each of them fits in O(1)
words of memory.

Once we have these perfect signatures, we use a minimal perfect hash function
to connect each signature to the corresponding string in D. Let Drk be the set
of signatures assigned by rk() to strings in D (i.e., Drk = {rk(S) | S ∈ D}). We
construct a minimal perfect hash function mph that maps signatures in Drk to
the first n integers. Lemma 3 guarantees O(1) evaluation time by requiring O(d)
bits of space. As satellite data, the entry for the string S stores in log d+ O(1)
bits the index of the leaf in PT r that corresponds to S reversed. Clearly, if S
belongs to D, mph(rk(S)) gives us in constant time the index of S reversed in
PT r while π(mph(rk(S))) reports the index of S in PT . It is worth noticing that
the result of these operations are meaningless whenever S does not belong to D.

The check of candidate strings requires a preprocessing phase shared among
all the candidate strings. Firstly, we compute in O(p) the Rabin-Karp signatures
of all prefixes and suffixes of P . In this way, the signature of any candidate string
S can be computed in constant time by appropriately combining two of those
signatures (Lemma 2). Then, we identify a leaf pleaf in PT that shares the
longest common prefix with P . Similarly, we identify a leaf sleaf in PT r having
the longest common prefix with P reversed. Given the properties of patricia tries
and our succinct representation, identifying these two leaves cost O(p) time.

The check for the single candidate string S = P [1, i] · c · P [i+ 1, p] obtained
by inserting symbol c in (i + 1)th position is done as follows 8. We compute
in constant time the values k = π(mph(rk(S))) and k′ = mph(rk(S)). Then, we
have to check that the candidate string S is equal to the string Sk in D. Instead
of comparing S and Sk symbol by symbol, we exploit the fact that S and Sk
coincide if and only if the following three conditions are satisfied:

– lcp(k, pleaf) is at least i;

8 Checks for other types of errors are done in a similar way.



– lcpr(k
′, sleaf) is at least p− i;

– (i+ 1)th symbol of Sk is equal to c.

Clearly, these three conditions are checkable in constant time. The O(p) prepro-
cessing time is amortized over the O(p+ occ) candidate strings.

Finding Top-k strings. As we mentioned in the Introduction, our solution
could be extended to support an additional operation which has interesting prac-
tical applications. Assume that each string Si in D has assigned a score c(Si).
For example, the score could establish the relative importance of any string with
respect to the others. It is possible to extend our solution in order to support
the extra operation Top(P [1, p], k) that reports the k highest scored strings in D
having edit distance at most 1 with P . This operation is solved in O(p+ k log k)
time. We assume that values c() are available for free. Notice that we can easily
avoid this assumption by storing in d log d+O(d) bits the ranking of strings in
D induced by c().

We first present a simpler O((p + k) log k) time algorithm which is, then,
modified in order to achieve the claimed time complexity. We said above that
an arbitrary rank is assigned to tuples in T belonging the same group (namely,
tuples of the form 〈np, i, ?, ns, i′〉 that differ just for the symbol ?). Instead, this
algorithm requires that the assigned ranks respecting the order induced by c().
Namely, lower ranks are assigned to tuples corresponding to strings with higher
values of c(). The searching algorithm is similar to the previous one. The main
difference is in the order in which the factorizations of P [1, p] are processed.
The algorithm works in steps and keeps a heap. The role of the heap is that
of keeping track of the top-k candidate strings seen so far. Each factorization
is initially considered active and becomes inactive later in the execution. Once
a factorization becomes inactive, it is no longer taken into consideration. Each
factorization has also associated a score which is initially set to +∞. At each
step, we process the active factorization with the largest score. We query func-
tion F () with the correct value of r for the current factorization. Let S be the
candidate string identified by resorting to F (). If S does not belong to D, the
current factorization becomes inactive and we continue with the next factoriza-
tion. Otherwise, we insert S into the heap with its score c(S) and we decrease
the score associated to the current factorization to c(S). At each step we also
check the number of string into the heap. If they are k+ 1, we remove the string
with the lowest score and we declare inactive the factorization that introduced
that string.

Notice that, apart from the first k steps, in each step a factorization becomes
inactive. Since there are O(p) factorizations, our algorithm performs at most
O(p+ k) insertions into a heap containing at most k strings. Thus, the claimed
time complexity easily follows. The improvement is obtained by observing that
most of the time (i.e., O(p log k)) is spent in inserting the first string of each
factorization into the heap. This is no longer necessary if we use the following
strategy. We first collect the first string of each factorization together with its



score and we apply the classical linear time selection algorithm to identify the k-
th smallest score. This step costs O(p) time. We immediately declare inactive the
p−k factorizations whose strings have a smaller score. We insert the remaining k
strings into the heap and we use the previous algorithm to complete the task. The
latter step costs now O(k log k) time, since we have just k active factorizations.

5 A more compressed solution

The factor 2 multiplying the Hk term in space bound of Theorem 2 may be
annoying in some scenario. In this section we provide a solution which is able
to overcome this limitation at the cost of (slightly) increasing the query time.
Formally, we prove the following theorem.

Theorem 3. Given a set of strings D = {S1, S2, . . . , Sd} of d strings of total
length n drawn from an alphabet Σ of size σ, there exists an index requiring
nHk + n · o(log σ) bits of space for a fixed k = o(logσ n) that, given any pattern
P [1, p] reports all the occ strings in D having edit distance at most one with P
in:

1. O(p(min(p, logσ n log log n))+occ) worst-case time when σ = logc n for some
constant c.

2. O(p log log σ + occ) worst-case time when σ = ω(logc n) for any constant c.

This solution uses a completely different approach with respect to our pre-
vious one. Indeed, it resorts to a collection of compressed permuterm indexes
[10] built on the dictionary D. More precisely, we divide strings in D based on
their length. Let D` denote the set of strings in D of length `. A compressed
permuterm index R` is built for each set D`.9

In [10] it is shown how design a Burrows-Wheeler Transform [5] (BWT) based
index for a dictionary of strings. Among the other types of queries, the index
solves efficiently the so-called PrefixSuffix query that, given a prefix P and a
suffix S, identifies all the strings in the dictionary having P as prefix and S as
suffix. In our solution we are interested in this type of query which is solved
by using a slightly different variant of the compressed permuterm index. The
main difference is the sorting strategy used to obtain the underlying Burrows-
Wheeler Transform (BWT) [5]. In [10] a text is obtained by concatenating the
strings of the dictionary by using, as separator, a special symbol # not appearing
in Σ. Then, all the suffixes of this text are sorted lexicographically to obtain the
rows of the Burrows-Wheeler matrix. In our variant we first append the symbol
# at the end of each string, then we construct the BWT matrix by sorting
lexicographically all the cyclic rotations of the strings in the set. This different
way to proceed guarantees us that symbols in any row belong to the same string.

9 We notice that the number of distinct lengths and, thus, compressed permuterm
indexes is O(

√
n).



This fact turns out to be useful below when we will define parent and depth
operations. The searching algorithm presented in [10] does not change10.

Given a pattern P [1, p], we query only three compressed permuterm indexes:
Rp−1 for deletions, Rp for substitutions and Rp+1 for insertions. In the following
we will only describe the solution for insertion. Deletion and substitution are
solved in a similar way. The basic idea behind our searching algorithm is the
following. For each cyclic rotation Pi = P [i, p]#P [1, i− 1] of P , we use the com-
pressed permuterm index Rp+1 in order to identify the range of rows of Burrows-
Wheeler Transform [5] which are prefixed by Pi, if any (see [10] and references
therein for more details). We observe that having that range [r, l] suffices for
identifying the strings in D obtained by inserting a symbol in ith position on P .
These symbols are, indeed, the ones contained in BWTp+1[l, r], where BWTp+1

is the Burrows-Wheeler Transform of set Dp+1. However, we cannot compute all
these ranges in a näıve way (i.e., searching each Pi separately), since it would
cost at least p2 time.

A faster solution requires to augment the compressed permuterm index with
a data structure that supports the two operations: parent and depth. Consider
the conceptual compact trie build on top of rows of BWTp+1. Given a range
[l, r], let u be the node of the above trie corresponding to range [l, r]. The two
operations are defined as follows:

1. parent(u) returns the range [l′, r′] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [15], we are able to support both these op-
erations in O(logσ n̂ log log n̂) time by requiring O(n̂ log σ

log log n̂ ) bits of additional
space, where n̂ is the total size of the indexed dictionary.

Our solution works in two phases. In the first phase, it identifies the range of
rows of BWTp+1 sharing the longest common prefix with P0 = #P [1, p]. This is
done by using the following strategy. We search P0 backwards. At any step i, we
keep the following invariant: [li, ri] is the largest range of rows of BWTp+1 which
are prefixed by the longest prefix of P0[p− i, p+1]. We also keep a counter ` that
tells us the length of this prefix. Notice that it may happen that a backwards
step from [li, ri] with the next symbol P [p − i − 1] returns an empty range.
In this case, we repeatedly enlarge the range [li, ri] via parent operations until
the subsequent backwards step is successful. The value of ` is kept updated by
increasing it by one after every successful backwards step or by setting it equal
to the value returned by depth after every call to parent.

Similarly, the second phase matches suffixes of P backwards. The main differ-
ence is given by the fact that the starting range [l1, r1] and value of ` are the ones
computed in the previous phase. In each step, we claim that we have identified
the range of rows prefixed by some Pi = P [i, p]#P [1, i− 1], for the appropriate
i, as soon as the value of ` reaches p + 1. The overall time complexity of these

10 Actually, the different construction of the Burrows-Wheeler Transform defined here
was already implicitly in use in [10] and simulated at query time by means of function
jump2end (see [10] for more details).



two phases is O(p logσ n̂ log log n̂), since we have at most 2p calls to parent and
depth.

The discussion above provides a proof of Point 1 of Theorem 3. Observe that
the time complexity of the above solution is dominated by the time spent in
performing parent and depth operations.

Point 2 of Theorem 3 is obtained by showing that, for sufficiently large al-
phabet (i.e., σ = ω(logc n), for some constant c), faster implementations of these
operations (i.e., O(log log σ) time) are possible. We can, indeed, improve the
time complexity of the solution above if we are allowed to use more space. More
precisely, using more space, we can improve the time of parent (for all cases) and
depth (for the case of large depths):

1. The operation parent can be supported in constant time using O(n) addi-
tional bits of space. This is feasible by using the Sadakane’s compressed suffix
tree [16].

2. The operation depth can be supported in constant time using O(n log t) bits
of space when the string depth is at least p − t for some parameter t. For
this aim, we can just store a table ∆ which stores log(t + 1) bits per node.
These bits will store a special value whenever the depth is less than p − t,
otherwise, we store the difference between the depth and p.

Now that we have a constant time parent operation, the depth operation
remains as the only bottleneck for achieving faster query time. Assume that the
compressed suffix tree supports the depth operation in time t. We first notice
that a given range obtained after t′ < t backwards steps can correspond to a Pi
if and only if the depth of the node obtained after the last parent operation was
precisely p− t′. This condition can be checked directly by probing the table ∆.
If this is not the case, we adopt a lazy strategy. Instead of computing a depth
after each parent, we safely wait until we performed t backwards steps after the
last parent operation. The O(t) time required by depth is amortized on the cost
of these (at least) t backwards steps. Point 2 of Theorem 3 is proven by setting
t = O(logσ n log log n) and by observing that the backwards steps become the
dominant cost (i.e., O(p log log σ)).

6 Conclusion

In this paper we described two different compressed solutions for the look-up
with Edit distance one in a dictionary of strings. The first solution requires
2Hk(S) + n · o(log σ) + 2d log d bits of space for a fixed k = o(logσ n). It is able
to solve queries in (almost optimal) O(|P |+ occ) time where occ is the number
of strings in the dictionary having edit distance at most one with the query
pattern P . The second solution further improves this space complexity which
is reduced to nHk + n · o(log σ) bits. However, the time complexity grows to
O(|P | logσ n log log n+ occ) or O(|P | log log σ + occ) depending on the alphabet
size. Interestingly enough, the two solutions solve the problem at hand by resort-
ing to two different approaches: the former is based on (perfect) hashing while
the latter is based on the compressed permuterm index.



An interesting open problem asks to design an index that obtains simultane-
ously the time complexity of the former solution and the space complexity of the
second one. Furthermore, it is still open the question regarding the possibility
of designing a solution that solves the problem in O(|P | · log σ/w + occ) time,
where w is the size of a word machine. At the moment, there does not exist any
solution achieving such a time complexity, even non compressed one.

Finally, building efficient dictionaries for edit distance d larger than 1 is still
an open problem. However, the approaches we used in our two solutions are not
easily extendible to efficiently solve query for higher edit distance. Indeed, we
could just solve a query in O(σd−1|P |d+occ) time for edit distance d by resorting
to the standard dynamic programming approach.
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