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ABSTRACT
Encoding lists of integers efficiently is important for many
applications in different fields. Adjacency lists of large graphs
are usually encoded to save space and to improve decoding
speed. Inverted indexes of Information Retrieval systems
keep the lists of postings compressed in order to exploit the
memory hierarchy. Secondary indexes of DBMSs are stored
similarly to inverted indexes in IR systems. In this paper
we propose Vector of Splits Encoding (VSEncoding), a novel
class of encoders that work by optimally partitioning a list of
integers into blocks which are efficiently compressed by using
simple encoders. In previous works heuristics were applied
during the partitioning step. Instead, we find the optimal
solution by using a dynamic programming approach. Ex-
periments show that our class of encoders outperform all
the existing methods in literature by more than 10% (with
the exception of Binary Interpolative Coding with which
they, roughly, tie) still retaining a very fast decompression
algorithm.

Categories and Subject Descriptors
H.3.4 [INFORMATION STORAGE AND RETRIEVAL]:
Systems and Software—Performance evaluation (efficiency
and effectiveness); E.4 [DATA]: CODING AND INFOR-
MATION THEORY—Data compaction and compression

General Terms
Algorithms,Performance,Experimentation

Keywords
d-gap encoding, inverted index encoding, adaptive encoding,
index compression
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1. INTRODUCTION
Data management systems such as: DBMSs, Information

Retrieval Systems, Search Engines and the alike, are contin-
uously facing the problem of the so called data deluge1. At
the petabyte scale we cannot think of data as something to
be viewed but, instead, something that need to be first ab-
stracted and then use this abstraction to extract knowledge
from new (possibly fresher) data. To compute any result
from (real) data it is necessary to store them on some sort
of storage and this does not come for free, especially at the
petabyte scale. Encoding data to save space is, therefore,
of utmost importance to enable the effective exploitation of
the very large datasets managed by today’s systems. Con-
sider that, even by changing scale, storage might be an is-
sue. Personal devices size is constantly shrinking. Increas-
ing data density in storage devices it is just not enough. We
need to design technique enabling the efficient store of (rel-
atively) large datasets in these devices. In these scenarios,
data compression seems mandatory because it may induce a
twofold advantage. On one hand, the obvious reduction in
space occupancy allows more data to be stuffed within a sin-
gle store unit. On the other hand, by fitting more data into
faster memory levels, compression reduces the size of data
to be transferred from the slower levels. This is a classic ex-
ample of trading CPU cycles for decreased I/O latency and
bandwidth. For example, given the amount of computing
power on a modern multi-core CPUs, transferring a com-
pressed payload from the disk and decompress its content
into memory is still far cheaper than just transferring the
uncompressed data. Not only data transfers from disk to
memory benefit from compression, also data transfers from
memory to CPU is also positively affected by compression
as it is shown by IBM Memory Expansion Technology [1].
This is a very well know fact also in IR where many scientific
results show hot to exploit this trade-off [19, 18, 20, 13].

In this paper we present Vector of Split Encoding, here-
inafter VSEncoding, a novel class of encoders designed to
efficiently represent lists of integers. Our encoders work by
splitting the list in blocks and by encoding any integer in
each block by using a fixed number of bits (namely, the
number of bits required to represent the largest integer of
the block). Obviously, we could have chosen to represent in-
tegers in a block by using codewords of variable length, this
would have, perhaps, increased the compression efficiency
but also the decoding time. The simpler choice is adopted
to allow a very fast decoding algorithm. Thus, VSEncoding

1http://glinden.blogspot.com/2006/10/
advantages-of-big-data-and-big.html
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are, basically, block-based compression schemes where the
critical difference with respect to previous block-based meth-
ods, e.g., P4D [21] and Simple9 [2], is the strategy used to
choose the blocks. Differently from previous works, where
heuristics were applied during the partitioning step [2, 21,
3], we optimally partition the lists in blocks via dynamic
programming. The main contribution of our paper is the
use of a global optimization technique that is able to dis-
cover the best possible block allocation given the encoding
method. Our encoders are able to achieve very good com-
pression performance and outperform all the existing meth-
ods in literature by more than 10% (with the exception of
Binary Interpolative Coding with which they, roughly, tie).
In particular, we report that our encoders are able to “beat
the entropy” of the distribution of values in the lists. We
observe that this is possible due to the fact that our en-
coders are able to exploit regularities in the lists that are
not captured by the entropy. Regarding decoding speed,
our encoders are faster than the state-of-the-art PForDelta-
like encoders [21, 20], VBytes [19], Simple9 [2] and Simple16
[20].

The paper is organized as follows. Section 2 is used to
fix useful notation. In Section 3 we describe some of the
most popular encoding methods proposed in the literature.
We present known techniques that are either suitable for en-
coding single integers, or specifically designed to compress
lists of integers. In Section 4 we present our new class of
integer list encoders. We also propose two of its instan-
tiations that better exploit the skewness of the list to be
encoded. Moreover, we show how to organize in memory
the compressed representation of a list in order to achieve a
very fast decompression algorithm. Section 5 show empiri-
cal comparison among our solutions and the most popular
ones on three real datasets representing the posting lists of
inverted indexes of three different document collections. We
conclude the paper in Section 6 by presenting our plans for
future work.

2. NOTATION
Let L denote a list of n strictly positive integers. For

any list L, L [i] denotes the i-th element, and L [i : j] is the
contiguous sublist of L ranging from position i to j, 0 <
i ≤ j ≤ n. Therefore, L[1 : n] denotes the entire list L.
We say that L is sorted iff L[i] < L[i + 1], for any 0 <
i < n. Given an integer L [i] we denote with bin(L [i]) its
binary representation, and with | bin(L [i])| its length in bits
(namely, |bin(L [i])| = blog2(L [i])c+ 1).

Even if our encoders are able to compress any list of in-
tegers, in the experimental part of this paper we apply our
solutions to lists of d-gaps [19] coming from inverted indexes.
Given a sorted list of integers L, a list of d-gaps D is defined
as follows: D[1] = L[1], D[i] = L[i] − L[i − 1], i > 1. As
an example, consider the list L = 〈1, 2, 12, 30, 32〉 we have
the corresponding d-gap list D = 〈1, 1, 10, 18, 2〉. D-gap lists
are be made up of smaller values than the original list2.
Therefore, codes that represent small values with shorter
codewords will result in more compact encodings for L.

For our purposes we are particularly interested in the dis-
tribution of the integers in the (d-gap) lists. The skewness
of a list can be (informally) defined as the measure of the

2Obviously, to recover L from D requires a second pass to
“prefix-sum” up the values to have the original list back.

asymmetry of the distribution of its elements. In particular,
a “positively skewed” distribution is a distribution where the
mass of the distribution is concentrated on the left, i.e., an
element of the list is rarely a large integer. It is worth notic-
ing that the list distributions in which we are interested in
practice are highly skewed. In particular, it has been shown
that the distribution of d-gaps follows a power-law [19, 15,
20], which is an extremely positively skewed distribution,
i.e., a large fraction of values are equal to ’1’.

3. RELATED WORKS
The aim of section is that of introducing the most pop-

ular encoders that are going to be compared in the exper-
iments section (Section 5). We divide known methods in
two classes: Integer encoders and Integer List encoders. The
former codes assign a distinct codeword to each possible in-
teger. Thus, a list is compressed by replacing each integer
with its corresponding codeword. Encoders in the second
class, instead, are specifically designed to compress lists of
integers and may encode any of them considering also its
neighbors in the list. These methods are much more power-
ful than integer encoders since they can exploit regularities
(e.g., clusters of almost equal integers) on the underlying
list either to achieve higher compression or to provide faster
decompression. As a consequence of this, methods in the
second class may potentially be able to beat the entropy of
the distribution of values in the underlying lists. Indeed, it
is well-known that the compress size achievable by any of the
former methods is lower bounded by entropy. Our methods
belong to the class of Integer List encoders and are able to
beat the entropy on the three tested datasets. Thus, we are
sure that they achieve better compression than any integer
encoder even without the need of an explicit experimental
comparison.

3.1 Integer Encoders
In modern computer architectures, integers are usually

represented (uncompressed) using 32 bits per integer. How-
ever, whenever the largest possible integer to be encoded, say
m = max

i∈[1,n]
L [i], is known, we can store each L [i] as L [i]− 1

using only dlog2me bits3. This representation may result in
a net saving of 32 − dlog2me bits per integer with respect
to the plain representation. This is the best compression we
can hope to achieve whenever the underlying distribution of
integers is uniform and m is an exact power of two. If m is
not a power of two we can resort to minimal binary codes.
Notice that, by assigning codewords of dlog2me bits, the

fixed representation above wastes 2dlog2me −m codewords.
This implies that 2dlog2me −m codewords can be shortened
by one bit without loss of unique “decodability”. This is
done by using in the code all the prefixes of numbers in a
given interval. If we use the regular binary numbers to en-
code the first six integers as (000, 001, 010, 011, 100, 101), we
miss ‘11’ as a prefix. On the other hand the first six integers
can be coded using a code (00, 01, 100, 101, 110, 111). Note
all possible prefixes of one bit (0, 1) and all possible prefixes
of two bits (00, 01, 10, 11) appear in the code allowing the
saving of one bit when encoding 0 and 1.

Fixed representation and minimal binary codes could be
very inefficient for skewed distributions. This is the main

3We recall that L values are strictly positive and, thus,
dlog2me bits suffices to represent a value from 0 to m− 1.
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motivation for integer encoders which assign to each integer
a variable length codeword. The strategy adopted to assign
codewords is crucial. Usually, each method is tuned to work
(almost) perfectly on its “ideal” distribution of values. How-
ever, whenever the real distribution differs from the ideal
one, the codewords lengths of various integers could be not
suitable and the encoder could waste space. It is impor-
tant to notice that each encoding is a prefix code: no valid
codeword is prefix of another codeword and thus can be in-
stantly decoded as it is read [14]. As a consequence, none of
these kind of codes can beat the entropy of the underlying
distribution of integers.
Unary (Unary). In the unary representation each integer
value x is represented using x − 1 bits equal to ‘1’ followed
by a ‘0’ that acts as a terminator [19]. Therefore, the length
of the encoding of an integer x is |Unary(x)| = x. As an
example, if x = 5 we have UN(5) = 11110.
Elias’ Gamma (γ). In γ, an integer x > 0 is encoded by
representing | bin(x)| (i.e. blog2 (x)c + 1) in unary followed
by bin (x) without its most significant bit [9]. Therefore,
|γ (x)| is equal to 2blog2 (x)c + 1. As an example, if x = 5
we have bin (x) = 101 and thus γ (5) is equal to 11001.
Elias’ Delta (δ). In δ, an integer x is encoded by rep-
resenting | bin(x)| by using γ followed by bin(x) without
its most significant bit [9]. The length of δ(x) is |δ(x)| =
blog2 xc+ 2blog2 log2(x)c+ 1. For instance, δ (5) = 10101.
Boldi&Vigna’s Zeta (ζk). In a recent paper, Boldi and Vi-
gna [4] propose a class of integer encoders that are suitable
for lists of numbers drawn from a power-law distribution4.
Given an positive integer parameter k, ζk encodes a posi-

tive integer x in the interval
[
2hk, 2(h+1)k − 1

]
by writing

UN (h+ 1) followed by a minimal binary code of x− 2hk in

the interval
[
0, 2(h+1)k − 2hk − 1

]
. Note that ζ1 is equiva-

lent to γ. As an example ζ2 (5) = 10001, ζ3 (5) = 0101, and
ζ4 (5) = 00101.
Others. In literature are known many other integer en-
coders [13]. Among them we recall Golomb [11] and its vari-
ation Rice. We do not enter into details of these two methods
since it is well known that they are slower [20] than the pre-
vious encoders and. Also, since their space occupancy is
bounded by the entropy, they cannot beat our encoders in
compression.

The previous encoders are said to be bit-oriented encod-
ings since their codewords may cross the boundary of a com-
puter word. During decoding, this requires additional bit-
wise OR, mask, and shift operations that slows down the
decoding phase. Other encoders are said to be byte/word-
aligned codings since they try to find a workaround to this by
aligning each codeword to byte (or word) boundary. Thus,
usually they are faster but much less space efficient with
respect to bit-oriented encodings.
Variable-Bytes (VBytes). A non negative integer x is
represented in VBytes as a list of 7-bit entries. Each ele-
ment of the list is prefixed with 0 except for the last one,
which is prefixed with a 1 [13, 19]. The length in bits of
VBytes(x) is given by |VBytes(x)| = 8d(blog2 xc+ 1)/7e bits
(or alternatively d(blog2 xc + 1)/7e bytes). As examples,
VBytes(5) = 10000101, VBytes(129) = 00000001 10000001.

4Recall that a discrete random variable Z is distributed as
a power-law with parameter α whenever the probability of
the event Z = x is P ({Z = x}) = 1

ζ(α)xα
.

3.2 Integer List Encoders
The main limitation of integer encoders is that they en-

code each integer in the list separately, without taking into
consideration its neighbors. Instead, Integers list encoders
may improve compression by, for example, exploiting clus-
ters of almost equal integers in the underlying list.
Binary Interpolative Coding (Interpolative). A more so-
phisticated way of encoding a list of sorted integers is using
the Binary Interpolative Coding of Moffat and Stuiver [12].
Starting from the assumption that in highly-skewed distri-
butions integers usually appear clustered [5] within a list,
Interpolative works by recursively splitting the interval of
integers contained within a list and encoding the central el-
ement via minimal binary code. By doing this, whenever a
(sub)list of consecutive numbers is found it is encoded us-
ing “zero” bits. Experiments performed throughout these
years have shown that Interpolative is still the best encod-
ing method for highly skewed lists of integers [19, 15, 20].
The major drawback of Interpolative is the poor performance
exhibited at decoding time.
Simple9 (Simple9). It encodes groups of integers within
a single 32-bit word. Basically, in Simple9 there are nine
possible ways of encoding a list of positive integers: 28 1-bit
integers, 14 2-bit integers, 9 3-bit integers (one bit unused),
7 4-bit integers, 5 5-bit integers (three bits unused), 4 7-bit
integers, 3 9-bit integers (one bit unused), 2 14-bit integers,
or 1 28-bit integer. The remaining four bits to complete
the 32-bit word are used as status bits to represent which
of the nine cases is used. Decompression is done by reading
the status bits and, depending on their value, by applying
a specific function that efficiently extracts all the integers
in the word [2]. Simple9 wastes bits when encoding some
combinations of integers. For instance, in encoding 5 5-
bit integers we have three unused bits. To overcome this
issue, Yan et al. have designed Simple16 [20], a different
encoding schema for fitting sixteen different combinations of
integers within a word. Experiments showed that Simple16
is more compact than Simple9 (from which it is inspired).
Another variant of Simple9 , that reduces the wastage of bits
of Simple9 is slide [3]. Since it incurs in a higher decoding
complexity, we do not include slide in our experiments.
PForDelta (P4D). P4D encodes blocks of k consecutive in-
tegers (e.g. k = 128 integers). The method firstly finds the
smallest b such that most (e.g. 90%) of the integers in the
block are non greater than 2b. Then, it performs the encod-
ing by storing each integer as a b-bit entry. Each entry is
then packed within a list of dk · be bits. The parameter k is
usually chosen to be a multiple of 32. This implies that the
k · b bits list is always word aligned regardless of the value of
b. Those integers that do not fit within b bits are treated as
exceptions and stored differently [21]. We actually refer to
a different representation of P4D by Yan et al. [20] (called
OPT-P4D). In this variant the number of exceptions is not
forced to be smaller that 10% of the block length. Instead,
it is chosen to minimize the space occupancy. Moreover, ex-
ceptions are stored in a separate array that is merged to the
original sequence of codewords during the decoding phase.
According to Yan et al. [20], this representation is more
compact and not significantly slower than the original P4D.
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4. VSENCODING: A CLASS OF INTEGER
LIST ENCODERS

State-of-the-art integer list encoders use predefined schemes
for partitioning a list into blocks and encoding each block
separately. For example, P4D and its variations divide the
list in to blocks of fixed length, and, then encode each block
with b-bit codewords possibly generating exceptions for in-
tegers greater than 2b. Instead, Simple9 and its variations
greedily partition the list into blocks of variable length and
encode each of them accordingly to predefined possibilities.
Finally, Interpolative represents the the middle value of the
list encodes the remaining part recursively by dividing the
list in two almost equal parts. These methods have inef-
ficiencies either in achieved compression or decompression
speed. By fixing the block length, P4D-based encoders are
not allowed to adapt themselves to regularities present in
the lists. For example, the block length should be smaller
for some portion of the list and larger for the others. Ex-
ceptions serve to attenuate the effect of misplacing integers
of different magnitude in the same block. However, we pay
their effort at a cost of introducing significant complications
in the decompression algorithm that affect decompression
speed. Simple9, instead, is too limited in possible choices
which inevitably led itself to miss some regularities in the
list. For example, grouping a run of 1s into a single block
and encoding each of them with one bit, is possible only
if the run has length at least 28. Finally, the Interpolative
strategy is very effective in term of compression but slow
due to its recursive compression/decompression algorithms.

In what follows we present our class of integer list en-
coders that overcome the above limitations. Our class of
encoders is similar in the spirit to P4D and Simple9 but par-
titioning and encoding steps are done in a more principled
way in order to maximize the achieved compression still re-
taining very simple and fast decompression algorithm. Our
encoders (called, VSEncoding) are parametric with respect
to two given integer encoders M1 and M2. Informally, the
general scheme works as follow. We partition each list into
blocks of variable length, and we encode the integers inside
of each block with the number of bits, say b, required to en-
code the largest one. Finally, we encode the above value of
b withM1 and the length of the block withM2. Obviously,
the partition step is crucial for achieving high compression.
On one hand, if a block is too large, we may waste a lot of
space by encoding all its elements with b bits. On the other
hand, if the block is too small, we may waste too much space
in writing the value of b and the block length. Our solution
uses a Dynamic Programming approach to find the optimal
partition (i.e., the one that maximizes compression) with
respect to M1 and M2. The partition step is discussed in
Subsection 4.1, for the moment, let us define more formally
our class of encoders assuming that any partition is given.

Let L be the list of n positive integers to compress and let
S be the list of m < n integers (called Vector of Splits), with
S[1] = 1, and S[m] = n+ 1, that induces the given partition
of L: each two consecutive elements S[i] and S[i+1] induce a
block, namely si = L[S[i] : S[i+1]−1]. For any block si, let
bi be the minimum number of bits required to represent any
integer in the block si, namely d(log2 max(a ∈ si)e), and let
ki be the number of elements in si, i.e. ki = S[i+ 1]− S[i].

Given the two integer encoders M1 and M2, VSEncoding5

encodes each block si by encoding
1. value bi + 1 with M1;

2. value ki with M2;

3. the ki elements of si using bi bits each.
Let us make an example to show how VSEncoding works.

Let L = 〈8, 1, 1, 8, 1, 1〉 be the list to encode, S = 〈1, 3, 5, 7〉
be the given vectors of splits,M1 be γ,M2 be Unary. From
S we can devise the following partition: s1 = L [1 : 2] =
〈8, 1〉, s2 = L [3 : 4] = 〈1, 8〉, and s3 = L [5 : 7] = 〈1, 1〉. The
three blocks are encoded as:

1. γ(b1 + 1 = 4) = 11000, Unary(k1 = 2) = 10, 101 000;

2. γ(b2 + 1 = 4) = 11000, Unary(k2 = 2) = 10, 000 101;

3. γ(b3 + 1 = 1) = 1, Unary(k3 = 2) = 10.
Notice that the encoding of elements of third block re-

quires no bits, since we can infer that they are all 1s by
knowing the value of b3.

Given a list L and a vector of splits S, we can easily com-
pute the number of bits required by VSEncoding to encode
L using the partition induced by S (which is denoted by
|VSEncoding (L, S)|). This quantity can be computed by
summing up the costs of encoding all the blocks as follows:

|VSEncoding (L, S)| =
m−1∑
i=1

c(S[i], S[i+ 1]− 1) (1)

where c(S[i], S[i+ 1]−1) = |M1(bi+ 1)|+ |M2(ki)|+kibi
is the cost (in bits) required to encode the i-th block6.

In the previous example we have that |VSEncoding (L, S)| =
c(S[1], S[2]−1)+c(S[2], S[3]−1)+c(S[3], S[4]−1) = 2(|γ(3)|+
|Unary(2)|+ 2 · 3) + |γ(1)|+ |Unary(2)|+ 2 · 0 = 29 bits.

As we said before, the choice of correct partition is crucial
to achieve high compression. To make a concrete example
consider the partition induced by S′ = 〈1, 2, 4, 5, 7〉 on the
same list. The compress obtained with the same choices of
M1 and M2 has size |VSEncoding (L, S′)| = 22 bits, which
is more than 30% better than the previous one. In the next
subsection we show how to efficiently compute the optimal
vector of splits for a list L fixedM1 andM2, that is, among
all the possible vector of splits, we select one that achieves
the best compression.

4.1 Finding an Optimal Vector of Splits
The problem of finding the optimal encoding for a list L

is formulated as the problem of finding the vector of splits
S∗ that minimizes |VSEncoding (L, S) | defined in Equation 1
among all the possible 2n vectors of splits S. More formally,
S∗ is such that

S∗ = arg min
S∈S

|VSEncoding (L, S)|

Since it is useful for the choices ofM2s used in the exper-
iments, we consider the case in which one can also fix the
maximum length of the blocks by specifying a value maxK.
Notice that this is actually a generalization of the problem

5Actually, since VSEncoding is a class of encoders parametric
in M1 and M2, it should be denoted as VSEncodingM1,M2

to make more explicit this dependence. Since in the follow-
ing the role of M1 and M2 is unambiguous, we decide to
drop this more precise notation in favor of legibility.
6Notice that the cost depends on the choices ofM1 andM2.
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Algorithm Optimizer(L[1, n],M1,M2,maxK)
1. E[1] = 0; P [1] = 1;

2. for(i = 2; i <= n+ 1; i = i+ 1)

3. b = 0; E[i] = +∞;

4. for(j = i− 1; j >= max(0, i−maxK); j = j − 1)

5. if(b < dlog2(L[j])e b = dlog2 L[j]e;
6. c(j, i) = (i− j)b+ |M1(b+ 1)|+ |M2(i− j)|
7. if(E[j] + c(j, i) < E[i])

8. E[i] = E[j] + c(j, i);

9. P [i] = j;

Figure 1: The algorithm to find the optimal parti-
tion of a list L[1, n] using encoders M1 and M2 to
encode values of b and block length respectively and
allowing only blocks of length at most maxK.

above: to have no limits on blocks lengths, it is enough to
set maxK equal to the length of the list.

It is easy to prove that this problem can be solved via
Dynamic Programming paradigm using the following recur-
rence:

E[i] = min
max(0,j−maxK)<=j<i

(E[j] + c(j, i)) (2)

where

• E[j] is the already computed optimal cost for encoding
list up to its j − 1-th element;

• c(j, i) is called cost function and, as we said before, ac-
counts for the cost of encoding the sublist L[j : i−1] as
a single block (recall that c(j, i) = |M1(dlog2max(L[j :
i− 1])e+ 1)|)|+ |M2(i− j)|+ (i− j) · dlog2(max(L[j :
i− 1]))e) as defined in the previous section).

To start the recurrence we set E[1] = 0, since it corre-
sponds to the cost of encoding an empty list. Once we have
solved Recurrence 2, the value of E[n + 1] tells us the cost
of the optimal partition of L.

The above recurrence can be solved in O(n ·maxK) by re-
sorting to the classic algorithm for this type of recurrences
[7] (see Algorithm 1). In this algorithm we start by setting
E[1] = 1, then we compute entries of E from left to right
(Steps 2–9 in Algorithm 1). At the generic step, we compute
E[i] by identifying an index j∗ < i among the ones having
the minimum value of E[j∗]+ c(j∗, i). This index j∗ is iden-
tified by simply trying all indexes j between i − maxK and
i − 1 (Steps 4–9) with the only wariness of doing this from
the largest index to the smallest one. In this way, we are
able to compute the value b of sublist L[j : i−1] knowing the
value of b of sublist L[j − 1 : i − 1] in constant time (Step
5). During the execution of the algorithm, we also keep
track of above index j∗ in the array P (Step 9), so that, at
the end of the computation, we are able to reconstruct the
vector of splits inducing the optimal partitioning by jump-
ing back from n+ 1 through values of P (namely, P [n+ 1],
P [P [n + 1]], P [P [P [n + 1]]], and so on). In our tools we
implemented this simple algorithm mainly due to the fact
that experimental evidences show that good values of maxK
are small constants between 16 and 64 for our choices of en-
coders M1 and M2. For completeness, we point out that
faster algorithms are possible by adapting known solutions

(see [10] and references therein). For example, by resorting
to the result in [10], we can compute an (1 + ε) approximate
solution of Recurrence 2 in time O(n log1+ε n), where ε is
an arbitrary positive value. Moreover, we are able to extend
this result to compute the exact solution of Recurrence 2 in
time O(n log2 maxK) whenever the encodersM1 andM2 are
chosen among most of integer encoders described in Section
3. As a final remark, we point out that in terms of encod-
ing time VSEncoding is not less efficient than OPT-P4D [20].
OPT-P4D computes, for all the possible values of b, both
space and time taken to encode/decode each list of integers.
Therefore, encoding using OPT-P4D costs O(bn) where b
is 20, whereas VSEncoding costs O(n log2 maxK), where in
practical implementation maxK ranges between 16 and 64.
Moreover, since OPT-P4D does two passes over data (one
pass to encode and verify the occupied space, the second
pass to verify the decoding speed), the two methods have
comparable performances.

4.2 Experimented Instantiations
We can obtain a valid instantiation of our encoders by

choosing any possible combination of integer encoders among
the ones described in Section 3.1 or the myriad introduced in
literature [13]. We tried many of them in our experimental
investigation but we report here only the two most promis-
ing in terms of space achieve and decompression speed. It
should not surprise that, since we particularly care about
decompression speed, they are quite simple.

In the first instantiation (referred to as VSE in the ex-
periments) we use two simple encoders. Given the list L to
be encoded, we firstly compute the maximum value M of
its elements, then M1 simply encodes possible values of b
using fixed codewords of length blog2dlog2Mec+ 1 bits. As
far as M2 is concerned, we still use a fixed representation
which encodes values among {1, 2, 4, 6, 8, 12, 16, 32} using 3
bits each. Any other value is considered non valid for the
length of a block.

The second instantiation (referred as VSE-R in the exper-
iments) uses similar encoders forM1 andM2 but performs
a further, recursive, step. Firstly, from the original list L we
produce a new list L′ such that L′[i] = blog2 L[i]c + 1 (i.e.,
L′[i] is equal to the number of bits needed to represent value
L[i]). Then, we encode each value L[i] by writing bin(L[i])
without its most significant bit. Notice that if L[i] = 1, no
bit is emitted. Finally, we apply a variant of VSE to encode
the list L′7. Clearly, the value of L[i] can be reconstructed
once we know the value of L′[i]. VSE-R is designed to re-
duce the space wasted by encoding a sub-block of integers
using a fixed amount of bits. In fact, of the kb bits used to
encode k integers within b bits, a certain number of bits are
left unused (in particular those wasted in encoding numbers
smaller than 2b).

For a running example consider again the list in the ex-
ample above (i.e., L = 〈8, 1, 1, 8, 1, 1〉). The list L′ is then
L′ = 〈4, 1, 1, 4, 1, 1〉. We use VSEncoding on L′ using the
same S as before obtaining the following8

1. γ(b1 + 1 = 3) = 101, Unary(k1 = 2) = 10, 11 00;

2. γ(b2 + 1 = 3) = 101, Unary(k2 = 2) = 10, 00 11;

3. γ(b3 + 1 = 1) = 1, Unary(k3 = 2) = 10;

7We change M2 so that it encodes using 3 bits only values
among {1, 2, 4, 8, 12, 16, 32, 64}
8Here we use again γ and Unary
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Figure 2: The Figure shows a running example of
our layout. Assume that the list L has been parti-
tioned in three blocks. First of all, we group inte-
gers of L into two groups G1 and G2 that contains,
respectively, integers whose corresponding b are 1
and 2. Integers in the same group are written con-
secutively in the compress. The arrows show how to
permute the integers in the groups to obtain back
the original list L. Notice that this permutation can
be easily derived since values of b and k are written
in the correct order.

Finally, we emit bits corresponding to L’s elements as
000 000, notice that 1s in L are not encoded at all in this
final step. The final compress of the method on this list has
size 26 bits.

As we shall see in Section 5, VSE is faster in decompres-
sion than VSE-R since it does not require the two steps of
decoding while it is worse in compression. The better com-
pression achieved by VSE-R is intuitively given by the fact
that we encode a list of logarithmic values instead of plain
values as in VSE. It is easy to show that in the case of highly
skewed integer distributions, e.g. a power-law distributions
with parameters α > 1, with high probability the number of
bits wasted by VSE-R is less than those wasted by VSE on
the same vector of splits S. Roughly, it suffices to compute
the number of bits wasted by the two methods with respect
to the ideal case where each integer x requires blog2 (x)c+ 1
bits.

Finally, since we compute the optimal partitioning, we
do not compare neither VSE nor VSE-R with any simpler
heuristics for data splitting (e.g., taking simple fixed-length
blocks of k elements at a time): either the simpler heuris-
tics or the most sophisticated ones cannot outperform our
optimal partitioning.

4.3 Compress Layout and Decompression Al-
gorithm

In order to achieve a very fast decompression algorithm
for VSE and VSE-R we have to carefully organize informa-
tion on the compress file. A trivial layout in memory for
VSE and VSE-R has been briefly described in Section 4.2:
We encode each block separately by simply writing its val-
ues of b and k followed by the k integers encoded by using
b bits each. In this way, the decompressor is very simple

but, unfortunately, slower than the fastest known methods
like Simple9, Simple16 and P4D. The reason is mainly given
by the fact that block representations are not word aligned.
This forces us to perform at least a conditional jump for ev-
ery decompressed value9. It is well-known that conditional
jumps are very expensive, and an efficient algorithm should
avoid them as much as possible. For example, in Simple9 or
Simple16 a single conditional jump followed by a call to an
appropriate ad hoc function suffices to decode each encoded
word. The parameter k in P4D is chosen so that the encoded
representation of a block is word aligned. This implies that
the k integers in a block can be decoded by resorting to very
effective ad hoc functions that completely avoid conditional
jumps. To be more precise, we have a function for each pos-
sible value of b that simply perform the correct operations
required to decode k integers encoded with b bits each. For
example, Figure 3 shows the function used in P4D to decode
a block of k = 32 integers encoded by using b = 8 bits each.
The decompression with these kind of functions is very fast.
However, we recall that the decompression of blocks P4D
has also to manage exceptions. This second step, in turn,
significantly reduces its speed.

The layout we use for VSE and VSE-R is more involved
with respect to the trivial one but allows a faster decom-
pression algorithm. The idea is to organize the information
so that the number of conditional jumps is considerably re-
duced. In the explanation we concentrate on VSE, since
the layout for VSE-R is similar. Assume that the list we
have to compress has been partitioned into l blocks by the
partitioning step and that the obtained values of b and k
are b1, b2, . . . , bl and k1, k2, . . . , kl respectively. Firstly, we
group the integers of the list accordingly to the number of
bits that we have to use to represent them. Then, we write
separately the values in each group: first the values that
have to be represented with 1 bit, then with 2 bits, and so
on. If necessary, we pad the representation of each group so
that it becomes word aligned. Finally, we write values of b
and k in their order (i.e., b1k1, b2k2, . . . , blkl). Decompres-
sion is done in the following way. We decompress each group
by resorting to the same fast functions of P4D (e.g., the one
in Figure 3). This is possible since groups representations
are word aligned. At this point we obtained groups of orig-
inal integers that are out of order. In order to reconstruct
the original list we appropriately permute these integers by
exploiting the fact that values of b and k has been stored in
the correct order. See Figure 2 for a simple example.

This algorithm, combined with the fact that we do not
have to perform any conditional branch, allows for fast de-
compression speed as experiments in the next Section show.

5. EXPERIMENTS
In our experiments we use three collections to cover dif-

ferent possible sizes: gov2, wbr and wt10g. gov2 and wt10g
are TREC test collections for use in the Terabyte Track.
The former is a crawl of 25, 205, 170 .gov sites (as they were
in early 2004) with documents truncated to 256 kb. wt10g
is made up of 1, 692, 096 documents crawled in early 2000.
wbr is made up of 5, 939, 061 web pages, representing a snap-
shot of the Brazilian web (domains .br) as spidered by the

9Notice that, in order to read values from a non-word aligned
sequence of bits, we have to keep in memory a buffer of bits
and check if it contains a sufficient number of bits before
any read.
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Decode8(decoded, encoded)
1. decoded[0] = *encoded >> 24 ;

2. decoded[1] = (*encoded >> 16) & 255;

3. decoded[2] = (*encoded >> 8) & 255;

4. decoded[3] = *encoded++ & 255;

5. decoded[4] = *encoded >> 24 ;

6. decoded[5] = (*encoded >> 16) & 255;

7. decoded[6] = (*encoded >> 8) & 255;

8. decoded[7] = *encoded++ & 255;

9. decoded[8] = *encoded >> 24 ;

10. decoded[9] = (*encoded >> 16) & 255;

11. decoded[10 = (*encoded >> 8) & 255;

12. decoded[11] = *encoded++ & 255;

13. decoded[12] = *encoded >> 24 ;

14. decoded[13] = (*encoded >> 16) & 255;

15. decoded[14] = (*encoded >> 8) & 255;

16. decoded[15] = *encoded++ & 255;

17. decoded[16] = *encoded >> 24 ;

18. decoded[17] = (*encoded >> 16) & 255;

19. decoded[18] = (*encoded >> 8) & 255;

20. decoded[19] = *encoded++ & 255;

21. decoded[20] = *encoded >> 24 ;

22. decoded[21] = (*encoded >> 16) & 255;

23. decoded[22] = (*encoded >> 8) & 255;

24. decoded[23] = *encoded++ & 255;

25. decoded[24] = *encoded >> 24 ;

26. decoded[25] = (*encoded >> 16) & 255;

27. decoded[26] = (*encoded >> 8) & 255;

28. decoded[27] = *encoded++ & 255;

29. decoded[28] = *encoded >> 24 ;

30. decoded[29] = (*encoded >> 16) & 255;

31. decoded[30] = (*encoded >> 8) & 255;

32. decoded[31] = *encoded++ & 255;

Figure 3: The ad-hoc C function used in P4D to
decode k = 32 integers represented by using b = 8
bits each.

crawler of the TodoBR search engine in 1999. More infor-
mation about these three collections are shown in Table 1
which reports basic statistics such as the size of plain col-
lection in Mbytes, the number of documents, the number
of terms (i.e., the number of lists), the number of encoded
integers, the length of the longest list, and the average lists
length.

We tested the different methods on a PC with an Intel
Xeon Quad-Core Processor equipped with 8GBytes RAM
and SATA hard disks. The operating system is a 64-bit
version of Linux 2.6.31-20. All our code is written in C and is
available at http://hpc.isti.cnr.it/~integerencoding.

In the experiments we restricted our attention on com-
pressing lists larger than 16 elements. The reason of this
choice is given by the fact that we want to limit the over-
head of function calls when we measure the decompression
speed of the different methods. We experimentally observed
that this choice does not affect the comparison among the
different methods with respect to achieved compression.

We also restrict our attention on lists in which document
Ids are assigned by sorting the corresponding URI lexico-
graphically. In this way we obtain lists that are much more
compressible as well documented in many preceding works

gov2 wbr wt10g

Size plain (Mbytes) 21, 052.89 3, 542.26 1, 507.89
# Documents 25, 205, 170 5, 939, 061 1, 692, 096
# Terms 2, 093, 442 748, 281 392, 956
# Encoded Integers 5, 413, 133, 900 915, 962, 369 371, 589, 409
Max list length 20, 436, 598 3, 683, 860 1, 444, 829
Avg list length 2, 585.76 1, 224.09 945.62

Table 1: The table reports some basic statistics on
the collections we use in our experiments.
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Figure 4: Distribution of the first 10 d-gaps for our
collections before (.orig) and after (.sort) the reassig-
ment of document Ids.

(see for example [17, 15, 20] and references therein). This
phenomenon finds its explanation in the fact that documents
in the same domain are likely to be similar (i.e., they con-
tain almost the same set of terms). Thus, the reassignment
above assigns close Ids to documents that belong to the same
domain, so that it is likely to obtain very small d-gaps in the
lists. By this reason, the resulting collections are much more
compressible. Figure 4 shows the distribution of the first 10
smallest d-gaps in our collections after and before the above
reassignment.

Table 2 shows the gain in compression achievable with
Interpolative and δ on our datasets. The gain is impressive:
the compress is from 21 to 110 more compact than the best
performing method, i.e. P4D . Notice that the gain of the
reordering largely compensates the negligible cost (few Mbs)
of storing in an array the inverse assignments which may
be necessary for some reason. Thus, the reassignment is a
very profitable choice even when a different document Ids
assignment is necessary. In the following, we restrict our
attention to compress our datasets in which document Ids
are sorted in this way.
Compression performance. In our experiment we tried
different compressors as reported in Table 3. In particular,
OPT-P4D refers to the OPT-PforDelta described in [20] with
blocks of size 128 values. We choose this parameter after
experimental evaluations. The smaller the block length, the
better the achieved compression, but slower is the decom-
pression. With blocks larger than 128 we obtain compression
performance which are significantly worse while the decom-
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Method Interpolative δ

gov2.orig 6.689 8.234
gov2.sorted 3.229 3.930
Gain 2.07 2.10

wbr.orig 8.761 10.948
wbr.sorted 6.342 6.973
Gain factor 1.38 1.570

wt10G.orig 6.798 8.115
wt10G.sorted 6.636 6.389
Gain factor 1.21 1.27

Table 2: The table compares the compression
achieved on original and sorted version of our
datasets with Interpolative and δ. The compression
is expressed in bits per integer. The Gain factor
tells the improvement in compression obtainable by
reassigning document Ids.

pression is just slightly faster. With smaller blocks, i.e., 32
or 64, the decompression speed is up to four times slower.
We remark that we tested our implementation of OPT-P4D
whose performance has been validated against the original
implementation kindly provided by the authors of [20].

We point out that only our methods, together with In-
terpolative, are able to beat the entropy of the lists on the
datasets. This quasi-paradoxical effect is, indeed, present
because entropy does not consider context information. En-
tropy, or to use a notation commonly used in text compres-
sion, zeroth-order entropy, does not take into account pat-
terns (i.e. the context) that can be present in lists of blocks
of integers. By grouping together blocks of integers, in fact,
we are able to assign codewords to more than a single value
at a time. Therefore, it appears obvious that we can beat
the entropy in the case of VSE, VSE-R and Interpolative. Es-
sentially, this is possible since we exploit regularities on the
lists on these very skewed d-gaps lists (e.g., small values close
to each other or quite long runs of 1s). We remark that beat
the entropy is not possible with any prefix code (e.g., sta-
tistical compressors like Arithmetic and Huffman or integer
encoders like γ, δ, ζ’s, Golomb, and so on). Therefore, our
methods is certainly better in compression than any of these
kind of methods without the need of any comparison. Any-
way, for the sake of completeness, we report those results as
well in Table 3.

To resume, our experiments show incontrovertibly that
our methods achieve compression performance comparable
(and in the case of wbr better) to those achieved by the
state-of-the-art (in terms of space) compression method, i.e.
Interpolative. As we are going to show, decoding speed is
an issue in the case of Interpolative while our methods are
instead faster than the state-of-the-art P4D .
Decompression speed. Table 4 reports results on the
decoding speed, in terms of millions of integers per second, of
the different methods we tested. We report the performance
computed over different postings lists and we indicate the
average decoding speed along with its standard deviation.
All the values have been rounded to the nearest ten.

As expected, Interpolative is the slowest as opposed to VSE
which tops others with more than 800 millions of integers
per second. Our methods, VSE and VSE-R, are among the
fastest in decoding with a number of mis (millions of integers

Compression gov2 wbr wt10g
Method bpi loss % bpi loss % bpi loss %

Interpolative 3.227 0.000 6.301 0.196 5.630 0.000
VSE-R 3.321 2.912 6.289 0.000 5.738 1.922
VSE 3.626 12.360 6.758 7.740 6.007 6.696
Entropy 3.768 16.764 6.578 4.593 6.048 7.418
OPT-P4D 4.232 31.143 7.373 17.220 6.314 12.149
δ 3.929 21.751 6.928 10.161 6.382 13.358
ζ3 4.117 27.564 7.648 21.608 6.814 21.029
γ 4.820 49.360 7.013 11.517 6.449 14.550
Simple9 4.561 41.338 8.267 31.451 7.181 21.549
Simple16 4.441 37.620 7.923 25.981 6.839 21.474
VBytes 8.665 168.473 9.817 56.106 9.331 65.722

Table 3: Compression achieved by the various en-
coders on our datasets expressed in bits per inte-
gers (bpi). In bold we report the best compressor.
For each compressor we also report its increase (in
percentage) with respect to the best compressor.

Method mis

Interpolative 75 ± 5
VSE-R 450 ± 20
VSE 835 ± 35
OPT-P4D 460 ± 20
δ 130 ± 10
ζ3 140 ± 10
γ 120 ± 10
Simple9 630 ± 30
Simple16 630 ± 30
VBytes 260 ± 10

Table 4: Average decompression speed on the vari-
ous compression methods on our datasets expressed
in millions of integers per second (mis). The value
after ± indicates how much the speed of various ex-
ecutions are different from the reported value.

per second) decoded ranging from 450 of VSE-R to 835 of
VSE both of them measured using the gov2 collection. It
is interesting to observe the better performance in terms
of decoding speed of VSE with respect to others, and in
particular with respect to OPT-P4D, Simple9 and Simple16
which are considered state-of-the-art as far as decompression
speed is concerned.

We would like to point the attention on the quite good
decompression performance of γ, δ and ζ3. In our imple-
mentations their decoders have been particularly optimized
for decoding speed using table lookups to quickly decode se-
quences of bits. We have measured the effect of such a table
and we observe that, by only using 216 = 65, 536 entries,
a single table lookup suffices to decode the codeword for
about 90% of the integers, so that only remaining integers
are decoded with the classic and slow algorithm.

From the experiments, Interpolative, VSE, and VSE-R, as
Figure 5 shows, dominate all the others we tested. In par-
ticular, what can be highlighted from the plot in Figure 5
is that our two methods optimize both decoding speed and
compression space at the same time. Obviously, in envi-
ronments like those typical of web search engines, where
one should aim at being both fast and space efficient, our
methods VSE and VSE-R result to be those of choice with a
preference for VSE if one care more about speed than space.
Encoders statistics. We report in this paragraph some
statistics on our encoders, VSE and VSE-R, that help in
understanding the correlation between the skewness of a
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Figure 5: A graphical comparison of the different en-
coders showing the trade-offs in time and space. On
the x-axis is represented the compress size (normal-
ized between −1 and 1), on the y-axis is represented
the decoding speed (normalized between −1 and 1,
as well.)

dataset and, the number of bits and length of blocks pro-
duced by the two methods.

As it can be observed in Figure 6 (above), using VSE we
do not have a large variation in terms of block lengths. This
means that VSE is able to adapt, correctly, to the underly-
ing distribution of integers. In addition, another important
aspect to point out is the large fraction of blocks encod-
ing their members using 0 bits. This can be seen in Figure 6
(below), where it is shown the distribution of number of bits
used to encode elements in each block using VSE. Interesting
to notice that still a large fraction of elements needs more
than 8 bits to be encoded, this is due, again, to the high
skewness of our datasets characterized by long runs of 1s.

The two bar charts in Figure 7, instead show the empirical
explanation for the reason why VSE-R appears to perform
better, in practice, than VSE for skewed datasets. First of
all, as in the previous case runs of ’1’s are frequent and
from this we have a large fraction of blocks encoded using 0
bits. The main difference, though, is observed in the case of
the number of blocks having a relatively large size. Blocks of
length 8 and 16 are the most frequent (with a total frequency
that is around the 40%). It is quite likely, then, that a large
fraction of long blocks can be encoded using 0 bits. This
is, again empirically, confirmed by the experiments shown
above.

6. CONCLUSION AND FUTURE WORK
We have described VSEncoding, a class of encoders that

through a dynamic programming algorithm are able to en-
code lists of integers beating the entropy of the gaps dis-
tribution. The assignment of codewords is done with the
goal of optimizing both the space taken by the codewords
themselves and the time needed to decode. We have shown,
through extensive experiments, that our methods constantly
outperform the others in terms of both space and time and,
in our opinion, should be the methods of choice for data
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Figure 6: Distribution of lengths of the blocks
(above) and the number of bits used to encode ele-
ments in the blocks (below) in VSE over our datasets.

management systems (e.g. web search engines) aiming at
very high performance and low space consumption.

Even if our methods are already among the fastest state-
of-the-art fast-encoders (e.g. those of the PForDelta family
or Simple9 like), we would like to more extensively experi-
ment other variations of our methods that could be obtained
by varying encodersM1 andM2 in order to further improve
either compression rate or decompression speed. Ideally, one
would like to have a scheme that has decompression speed
of VSE achieving compression rate of VSE-R.

We defer to a future work the study of the impact of list
skipping [6] on the effectiveness of our method. Apart from
the straightforward approach consisting in partitioning each
list according to the strategy by Chierichetti et al. [6]. The
challenge, anyway, is to find an optimal way of partitioning
the lists of integers also in light of how skips are placed.

As it has been shown in the discussion of the data lay-
out, the impact of the architecture is of fundamental im-
portance to the efficiency of the decoding method. We are
currently developing a very fast, and ad-hoc, VSE encod-
ing like method for GPUs [8]. Preliminary experiments are
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Figure 7: Distribution of lengths of the blocks
(above) and the number of bits used to encode
elements in the blocks (below) in VSE-R over our
datasets.

very encouraging showing a sharp improvement in decoding
speed.

Finally, we are aware that in Web Search Engines not all
the lists are accessed with the same frequency. We are cur-
rently studying strategies for the optimal encoding of post-
ing lists also considering access patterns. We are using infor-
mation available from query logs [16] to extract lists access
patterns.
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