
Where Shall We Go Today?
Planning Touristic Tours with TripBuilder

Igo Brilhante,
Jose Antonio Macedo

Federal University of Cearà, Fortaleza, Brazil
{igobrilhante,jose.macedo}@lia.ufc.br

Franco Maria Nardini,
Raffaele Perego, Chiara Renso

ISTI–CNR, Pisa, Italy
{name.surname}@isti.cnr.it

ABSTRACT
In this paper we propose TripBuilder, a new framework for
personalized touristic tour planning. We mine from Flickr
the information about the actual itineraries followed by a
multitude of different tourists, and we match these itinera-
ries on the touristic Point of Interests available from Wikipedia.
The task of planning personalized touristic tours is then
modeled as an instance of the Generalized Maximum Cover-
age problem. Wisdom-of-the-crowds information allows us
to derive touristic plans that maximize a measure of inter-
est for the tourist given her preferences and visiting time-
budget. Experimental results on three different touristic
cities show that our approach is effective and outperforms
strong baselines.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—|Information Filtering, Search
process

Keywords
Tourist Trip Recommendation, Trajectory Mining

1. INTRODUCTION
Planning a travel itinerary is a complex task for tourists

approaching their destination for the first time. Different
sources of information such as travel guides, maps, on-line
institutional sites and travel blogs are consulted in order
to devise the right blend of Points of Interest (PoIs) that
best covers the subjectively interesting attractions and can
be visited within the limited time planned for the travel.
Moreover, the tourist has to guess how much time is needed
to visit each attraction and to move from one PoI to the
next one.

These simple considerations motivate our proposal of Trip-
Builder, an unsupervised approach that possibly overcomes
the above limitations by exploiting the wisdom-of-the-crowds

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505643.

from past tourists to build a personalized plan of visit. Trip-
Builder takes as input the target destination, the time
available for the visit, the (explicit or implicit) user’s pro-
file, and builds a personalized tour crossing a selection of
the PoIs. The recommended tour maximizes user’s interests
and respect the visiting time constraint since it takes into
account both the time to enjoy the attractions and the time
needed for moving from one PoI to the next one. Moreover,
the knowledge used to feed the TripBuilder recommenda-
tion model is entirely extracted in an unsupervised way from
two publicly available collaborative services: Wikipedia and
Flickr. Thereinafter, we will consider touristic cities as the
destination targets of our users, although our technique is
general and scale-independent and could be applied even to
build travel itineraries crossing large regions or countries.

More in details, TripBuilder - our novel framework for
building trip plans - consists of the following contributions:

• we introduce an unsupervised method for mining common
patterns of movements of tourists in a given geographic
area. The method uses i) Flickr, to gather public photos
(and their metadata) from users all around the world, and
ii), Wikipedia to gather information regarding Points of
Interest (PoIs) in the given touristic city. The results of
our unsupervised method is a touristic database storing
PoIs, their popularity, visiting time, categorization, and
the patterns of movement of tourists that visited them in
the past;

• we define the TripCover problem as an instantiation of
the Generalized Maximum Coverage (GMC) problem. We
model each visiting pattern by means of the PoIs and the
associated Wikipedia categories, and the GMC profit func-
tion by considering PoIs popularity and the actual user
preferences over the same Wikipedia categories. The cost
function is instead built by considering the average visit-
ing time for the PoIs in the patterns plus the time needed
to move from one PoI to the next one. Our algorithm
is thus able to provide visiting plans made up of actual
touristic itineraries that are the most tailored to the spe-
cific preferences of the tourist;

• we build three real-world datasets from Wikipedia pages
and photos taken in three different cities of large touristic
interest. We made the three datasets available for down-
loading to favor reproducibility of our results and advances
in the field;

• we present detailed experiments showing that our solution
outperforms strong baselines.

2. RELATED WORK
Several works in the literature are proposing methods to

recommend list of PoIs based on the actual location of the
user [8, 15, 14, 7]. In this paper, instead of producing a
list of candidate PoIs based on the location of the user, we
investigate a method for suggesting “touristic trips” made
of time-budgeted itineraries followed by actual tourists that
cross PoIs matching the user preferences. Even if Trip-
Builder could be easily adapted to fit a Location-based
Service Model, in this paper we build precomputed itine-
raries that are recommended to the user before the visit,
at the planning stage. In this sense our approach can be
considered a step further the simple location-based PoI rec-
ommendation. The task of designing a trip for a tourist
approaching a new city has been investigated in the liter-
ature as we can see in the interesting survey on the topic
presented in [11].

An early work on this topic is [4]. Authors use the Travel-
ing Salesman Problem (TSP) as a starting problem to plan
trips. Shang et al. propose and investigate a problem called
User Oriented Trajectory Search (UOTS) for trip recom-
mendation [9]. Given a trajectory data set, the query input
contains a set of intended places given by the tourist and a
set of textual attributes describing the tourist preference. If
a trajectory is connecting/close to the specified query loca-
tions, and the textual attributes of the trajectory are simi-
lar to the tourist preference, it will be recommended to the
tourist for reference.

An interesting approach to the trip recommendation prob-
lem is the one proposed by Vansteenwegen et al., where
authors define the Tourist Trip Design Problems (TTDP)
[10, 13]. The orienteering problem, which originates in the
operational research literature, is used as a starting point for
modeling the TTDP. The problem involves a set of possible
locations having a score and the objective is to maximize
the total score of the visited locations, while keeping the
total time (or distance) below the available time budget.
The score of a location represents the interest of a tourist in
that location. Scores are calculated using the vector space
model and the TTDP is solved using a guided local search
meta-heuristic. Authors compare their technique versus a
competitor. Both algorithms are applied to a real data set
from the city of Ghent. Results show that the approach
turns out to be faster and produces solutions of better qual-
ity. Lately, they propose a tourist expert system, called the
“City Trip Planner” [12], that allows planning routes for five
cities in Belgium.

The orienteering problem is also employed in [2]. Here, De
Choudhury et al. construct intra-city travel itineraries auto-
matically by tapping a latent source reflecting geo-temporal
traces left by millions of tourists. To do so, as in our case
they firstly extract photo streams of individual users from
Flickr. In the second step, they aggregate all user photo
streams into a PoI graph. Itineraries are then automati-
cally constructed from the graph based on the popularity of
the PoIs and subject to the user’s time and destination con-
straints. The problem is modeled as an orienteering problem
and they propose a variation of a recursive greedy algorithm
to solve it. Some important limitations affect the paper: i)
the proposed orienteering problem does not model user pref-
erences, ii) it also does not model co-visitation of different
PoIs, iii) the greedy algorithm solving the orienteering prob-
lem explicitly needs a source PoI, a destination PoI, the total

number of PoIs to be visited in the trip and a possible set of
PoI to not be visited. However, this information could not
be implicitly available.

Lu et al. [6], propose a novel data mining-based approach,
namely“Trip-Mine”, to efficiently find the optimal trip which
satisfies the user’s travel time constraint based on the user’s
location. Kurashima et al. [5] propose a travel route recom-
mendation method that makes use of the photographers’ his-
tories as held by Flickr. Recommendations are performed by
means of a photographer behavior model, which estimates
the probability of a photographer visiting a landmark. Au-
thors demonstrate the effectiveness of the proposed method
using a real-life dataset in terms of the prediction accuracy
of the travel behavior.

Similar to the objective of the papers cited above, our
work intend to merge touristic data analysis and informa-
tion synthesis. To overcome some of the limitations listed
above, we propose to solve the trip planning problem in a
completely unsupervised way. We exploit PoIs and their cat-
egories from Wikipedia, and the tourist traces from photos
in Flickr to automatically build a dataset. This knowledge
base contains very rich information about the touristic city
and about the way in which tourists visited its attractions.
Finally, we model the planning of a trip as an instance of
the Generalized Maximum Coverage problem that composes
the trip from latent tourist-generated behaviors. As a con-
sequence, we naturally model co-visitation of different PoIs
as we directly compose traces performed by real tourists in a
city. Furthermore, user preferences are mapped to the cate-
gorization of PoIs automatically extracted from Wikipedia.
Our method is thus able to devise when a given PoI is ap-
pealing for a particular user by mapping both the user and
the PoI on a fixed categorization.

3. PROBLEM DEFINITION
Let P = {p1, . . . , pN} be the set of PoIs in our touristic

city. Each PoI p is univocally identified by its geographic co-
ordinates, a name, a radius specifying its spatial extent, and
a relevance vector, ~vp ∈ [0, 1]|C|, measuring the normalized
relevance of p w.r.t a set of categories C. Without loss of
generality, we assume that the set C is predetermined and
fixed and that the relevance of every PoI for each category is
known. Symmetrically, let u be a user from the set U , and
~vu ∈ [0, 1]|C| the preference vector stating the normalized
interest of u for the categories in C. The preference vector
can be explicitly given by the user, or implicitly learned1.

Definition 1 (User-PoI Interest). Given a PoI p,
its relevance vector ~vp, a user u, and the associated prefer-
ence vector ~vu, we define the User-PoI Interest function as
a the following function Γ(p, u) : P × U → [0, 1]:

Γ(p, u) = α · sim(~vp, ~vu) + (1− α) · pop(p)

where sim(~vp, ~vu) =
~vp· ~vu

|| ~vp|| || ~vu|| is the cosine similarity be-

tween the user preference and the PoI relevance vectors,
pop(p) is a function measuring the popularity of p, and α ∈
[0, 1] is a parameter controlling how much user preference
and popularity of PoIs have to be taken into account.

1Without loss of generality, we assume to know the pref-
erence vectors of all the users in advance. A uniform dis-
tribution can be used for ~vu in the case the profile of u is
(initially) unavailable.

Definition 2 (PoI History). Giver a user u and the
PoIs P, the PoI history Hu of u is the temporally ordered
sequence of points of interest visited by u. Each PoI p of Hu

is annotated with the two timestamps indicating the start
time and the end time of the visit:

Hu =< (p1, [t11, t21]), . . . (pm, [t1m, t2m]) >

Note that having the start time and the end time we have
an implicit representation of the time the user u has spent
for the visit of p.

Definition 3 (Trajectory). Given a PoI History Hu

and a time threshold τ , we define a trajectory Tu any subse-
quence of Hu

< (pk, [t1k, t2k]), . . . , (pk+i, [t1(k+i), t2(k+i)]) >

such that:

i ≥ 1

t1k − t2(k−1) > τ, if k > 1

t1(k+i+1) − t2(k+i) > τ, if (k + i) < m

t1(k+j) − t2(k+j−1) ≤ τ, ∀j s.t. 1 ≥ j ≤ i.

Trajectories are thus sequences of PoIs visited consecu-
tively. They are obtained by cutting the user PoI history
where the time interval between the visit to two subsequent
PoIs is greater than a given threshold.

By applying the same temporal splitting criterium to all
the Poi histories of users U we obtain the set S = {s1, . . . , sM}
of relevant trajectories. Note that S results from a set-
union operation that disregards timestamps annotating ev-
ery tourist visit to a PoI. The temporal information can be
however exploited to compute estimates of the average time
required for visiting a given PoI, and for every PoI-to-PoI
movement. Thus, let ρ(p) : P → R be an estimate of the
time needed to visit p, and τ(pi, pj) : P×P → R an estimate
of the time needed to a user to move from pi to pj . Finally,
let ~z = (z1, . . . , zM) be the total traveling time associated
with the M trajectories in S, obtained by exploiting τ(·, ·).

We are now ready to formulate the TripCover prob-
lem, i.e., the problem of generating an optimal personal-
ized itinerary given tourist’s preferences and her budget in
term of available time to spend in the city. Without loss
of generality, we assume that the User-PoI Interest for all
the items in S is strictly positive. More formally, ∀s ∈ S,∑

p∈s Γ(p, u) > 0. In fact, if this would not hold for some
trajectory, these trajectories could be removed from S with-
out any consequence for the functionality of the system.

TripCover(B): Given a tourist u, PoIs P, a time budget
B, trajectories S, User-PoI Interest function Γ, cost function
ρ(p) and vector ~z. Find a subset of S that:

maximize

|S|∑
i=1

|P|∑
j=1

Γ(pj , u) yij (1)

such that

|S|∑
i=1

|P|∑
j=1

ρ(pj) yij +

|S|∑
i=1

zi xi ≤ B

|S|∑
i=1

yij ≤ 1, ∀j ∈ {1, . . . , |P|}

|S|∑
i=1

xi ≥
|S|∑
i=1

yij , ∀j ∈ {1, . . . , |P|}

where

yij =

{
1 if PoI j in trajectory i is selected;

0 otherwise.

xi =

{
1 if trajectory i is selected;

0 otherwise.

The TripCover(B) problem as formulated in (1) is an in-
stance of the Generalized Maximum Coverage (GMC) prob-
lem that is proven to be NP-hard [1]. In particular, given
a tourist u, TripCover(B) can be captured by the GMC
formulation by: i) the bins in GMC represent the trajec-
tories in S; ii) the profit Γ(p, u) and the cost ρ(p) depend
only on p and u and not from the bins. The TripCover(B)
problem is thus NP-hard. An efficient greedy approximation
algorithm for the GMC problem is known that achieves an
approximation ratio of e/(e − 1) + ε, ∀ε > 0 [1]. We used
this approximation algorithm (whose source was kindly pro-
vided us by the authors) after slightly modifying it to take
into account TripCover(B) specific constraints.

Scheduling the Trip on a Multi-Day Plan. Trip-
Builder needs to schedule the solution of the specific in-
stance of the TripCover problem on the (multi-)day plan
of the tourist. Recall that the solution of TripCover is a
set of trajectories maximizing tourist profit. These trajecto-
ries have then to be scheduled on the tourist’s agenda. For a
lack of space, we do not address the scheduling issue in this
paper. A possible solution could be to find the shortest path
crossing all the starting and ending PoIs of the trajectories
in the solution by means of a TSP algorithm. The TSP in-
stance to be solved is in our case very simple since it has to
devise short connections among the suggested trajectories
and not among all the PoIs. The resulting solution consist
in a unique path crossing all the relevant PoIs and joining
all the selected trajectories that could be easily scheduled
on the tourist’s agenda.

4. EXPERIMENTAL EVALUATION
In this section we discuss the process used to build our

touristic knowledge base from user-generated content. We
also introduce the metrics used to assess effectiveness and we
provide a detailed assessment of TripBuilder performance
vs. meaningful baselines.

Building the Knowledge base.
In order to assess TripBuilder we consider three case

studies, each with its particular characteristics. In partic-
ular, we generate - in a complete unsupervised process - a
knowledge base covering three Italian cities which are im-
portant from a touristic point of view and thus guarantee
variety and diversity: Pisa, Florence and Rome. The ratio-
nale of the choice is to propose a complete evaluation of our
techniques by varying the size of the cities and the richness
of public user-generated content available for download2.

PoIs. The first step is identifying the set of PoIs in the tar-
get geographical region. Given the bounding box BBcity

containing the city of interest, we download all the geo-
referenced Wikipedia pages falling within this region. We as-
sume each geo-referenced Wikipedia named entity, whose ge-
ographical coordinates falls into BBcity, to be a fine-grained
2Link to the dataset: https://github.com/igobrilhante/
TripBuilder.

Point of Interest. For each PoI, we retrieve its descriptive la-
bel, its geographic coordinates as reported in the Wikipedia
page, and the set of categories the PoI belongs to. Categories
are reported at the bottom of the Wikipedia page, and are
used to link articles under a common topic. They form a hi-
erarchy, although sub-categories may be a member of more
than one category. By considering the set C of categories
associated with all the PoIs, we generate the normalized rel-
evance vector of each PoI. We then perform a density-based
clustering to group in a single PoI touristic entities which
are very close one to each other. Clustering very close PoIs
is important since a tourist in a given place can enjoy all the
attractions in the surroundings even if she do not take pho-
tos to all of them. Moreover, it aims at reducing the sparsity
that might affect trajectory data. To cluster the PoIs we use
DBScan [3] by setting 1 as the minimum number of points
and 200 meters as ε. Finally, we obtain the relevance vector
for the clustered PoIs by considering the occurrences of each
category in the members of the clusters and by normalizing
the resulting vector. At the end of this first step we have
the set P = {p1, . . . , pN} of PoIs and the relevance vector

~vp ∈ [0, 1]|C| for each of these PoIs in a fully automatic way
by exploiting Wikipedia as an external source of knowledge.

Users and PoI histories. As second step we need a
method for collecting users U and the long-term itinera-
ries crossing the discovered PoIs. We query Flickr to re-
trieve the metadata (user id, timestamp, tags, geographic
coordinates, etc.) of the photos taken in the given area
BBcity. The assumption we are making is that photo al-
bums made by Flickr users implicitly represent touristic iti-
neraries within the city. To strengthen the accuracy of our
method, we retrieve only the photos having the highest geo-
referenced precision. This process thus collects a large set
of geo-tagged photo albums taken by different users within
BBcity. We preliminary discard photo albums containing
only one photo. Then, we spatially match the remaining
photos against the set of PoIs previously collected. We as-
sociate a photo to a PoI when the photo was taken within
a circle having the PoI as its center and r = 100 meters as
radius. Note that in order to deal with clustered PoIs, we
consider the distance of the photo from all constituent mem-
bers: in the case the photo falls within the circular region of
at least one of the members, it is assigned to the clustered
PoI. Moreover, since several photos by the same user are
usually taken close to the same PoI, we consider the times-
tamps associated with the first and last of these photos as
the starting and ending time of the user visit to the PoI. Fi-
nally, the popularity of each PoI is computed as the number
of distinct users that take at least one photo in its circular
region. The above process allows us to generate the set of
users U , their PoI history, and estimates for the popularity
and visiting time of each PoI. Finally, the preference vector
for each user is built by summing up and normalizing the
relevance vectors of all the PoIs occurring in her PoI history.

Trajectories. In order to build the set S of trajectories
we split users’ PoI histories as detailed in Definition 2. To
choose the splitting threshold τ we try to understand users’
macroscopic behavior by carefully analyzing the inter-arrival
time of each pair of consecutive photos taken in different
PoIs. Therefore, for each city we compute the distribution
of probability of the inter-arrival time P (x ≤ τ) of pairs
of consecutive photos. Then we devise the time threshold

τ such that P (x ≤ τ) = 0.9. Results show that while for
Rome and Florence the resulting threshold is about 5 and 6
hours respectively, for the smallest city of Pisa it decreases
to about 3 hours.

Traveling time computation. An important aspect of
TripBuilder is that we recommend complete itineraries fit-
ting the available time budget and not just the set of PoIs to
be visited. The trip building step should therefore consider
not only PoI visiting time but also the time τ(pi, pj) needed
to move between consecutive PoIs in the itinerary. Since
measuring intra-PoI moving time from the photo albums re-
sulted to be inaccurate for not popular PoIs, we resort to
an external service. Given two PoIs in a city, we compute
function τ(·, ·) by querying for the Google Maps’ walking
distance. Naturally, this is an approximation since several
variations could happen: tourists may use a car, or use pub-
lic transportation, or take a taxi. However, our method is
parametric to these aspects, and the system can be easily
adapted to consider the different choices. Moreover, most
PoIs in our touristic cities are actually at walking distances.

Table 1 shows the main characteristics of the three datasets.
The second column reports the number of PoIs for each of
the three cities. Note that these numbers refer to the re-
sult of the clustering phase, while the number of entities
extracted from Wikipedia are 124, 1, 022, and 671 for Pisa,
Florence and Rome, respectively. Furthermore, columns “#
Users” and “# Photos” report the number of distinct users
and photos retrieved from Flickr. Finally, column “# Traj.”
reports the total number of trajectories extracted from the
dataset.

City # PoIs # Users # Photos # Traj.

Pisa 112 1825 18,170 3,430

Florence 891 7049 102,888 16,522

Rome 490 13772 234,616 35,522

Table 1: Statistics regarding the three datasets.

We assess the effectiveness of TripBuilder by compar-
ing its performance with those obtained by two baseline
methods on common evaluation metrics that consider the
actual behavior of users as mined from Flickr. In particular,
we conduct our experiments on the three cities by splitting
the three datasets in training and test sets, and by varying
the parameter α affecting the contributions of PoIs/user-
similarity and PoI-popularity to user profit. For every city,
we consider the 100 users with the longest PoI histories as
test set. Since users in the test set are the golden standard
used to compute effectiveness figures, we choose the users
having the longest PoI histories to be able to vary in a sig-
nificant range the time budgets (e.g., we can not evaluate a
personalized 4-days itinerary in Rome with test users that
actually visited only a pair of popular PoIs). The average
number of PoIs visited by our 100 test users is 12.2, 53.9,
51.2 for Pisa, Florence, and Rome, respectively. Note that
in the whole datasets the averages drop respectively to 2.7,
4.9, and 4.6. The preference vector of every one of the 100
test users in each city, along with a time budget varying in
the range 1, 2, and 4 days (1/2, 1 days in the case of the
small city of Pisa that can be visited even in less than one

day)3, are given in input to TripBuilder and the baseline
algorithms.

Baselines algorithms.
We compare the performance of TripBuilder against the

baselines detailed below.

Trajectory Popularity (Tpop). This baseline builds the
trip by taking into account the normalized popularity of the
trajectories in S computed as the sum of the popularity of
the constituent PoIs divided by the length of the trajectory.
It works by adding to the visiting plan once at a time the
most popular trajectories until the time budget is reached.

Trajectory Personalized Profit (Tppro). Given the
preference vector of a tourist, this baseline sorts the tra-
jectories in S by decreasing normalized user/PoI similarity.
Such trajectory score is computed as the sum of user/PoI
similarities of all the PoIs in the trajectory divided by trajec-
tory length. The baseline algorithm builds the personalized
itinerary by adding once at a time the trajectories having
the highest profit for the specific tourist until the total time
budget is reached.

Performance metrics.
The metrics used to evaluate and characterize the itinera-

ries are defined below.

Recall (on PoIs and Categories). This is the popular
recall metrics that in the Information Retrieval domain mea-
sures the fraction of the documents that are relevant to the
query that are successfully retrieved. In our case it is com-
puted for a user and a suggested itinerary as the fraction of
PoIs (or Categories) in the user PoI history which occurs in
the suggested itinerary.

Popularity Score. A popularity score Spop is computed
for an itinerary T by summing the popularity of the PoIs
covered by T . More formally,

Spop(T) =
∑
pi∈T

pop(pi)

where pop(p) is the number of distinct users who visited p.

Personal Profit Score. Given an itinerary T and a user
u, a profit score (Spro

u) for T can be computed as

Spro
u (T) =

∑
pi∈T

sim(~vp, ~vu)

where sim(~vp, ~vu) is the user/PoI similarity function over
PoI relevance user preference vectors given in Definition 1.

Visiting Time Score. This score assumes that the average
per-PoI visit time of an itinerary is related with its interest-
ingness. The higher the average per-PoI visit time computed
as the sum of the visiting times for the constituent PoIs, the
higher the interestingness. Given an itinerary T , its Visiting
Time Score (Svt) is

Svt(T) =

k∑
i=1

ρ(pi)

3We assume the normal daily activity of a tourist in a city
to be of twelve hours. Our solution is, however, completely
agnostic w.r.t. the daily agenda and works as well with
tourist-provided agenda defining different time slots.

where ρ(p) is the average visiting time (in seconds) for PoI
p. Note that this metrics is particularly meaningful for bud-
geted itineraries as the ones we deal with. In fact at parity
of total time budget an itinerary with higher Visiting Time
Score should be preferred over one having a lower score since
the former in principle involves more time to enjoy interest-
ing attractions and less time to move from one PoI to the
next one.

Experimental Results.
The results of the experiments conducted are reported in

Table 2. It is worth recalling that our approach aims at
maximizing the user’s total profit/interest over the PoIs fit-
ting her budget. In terms of Spro

u , our solution improves the
baselines up to 91% in Pisa (with an absolute improvement
∆Spro

u of 0.272), 173% in Florence (∆Spro
u = 0.249) and

130% in Rome (∆Spro
u = 0.403). In addition, it builds trips

that increase Svt up to 25 minutes in Pisa, about 4 hours
in Florence, and approximately 11 hours in Rome. There-
fore our algorithm suggests itineraries that better match user
preferences and involve lower intra-PoI movement time than
the baselines.

By observing the column Spro
u on Table 2, we can con-

clude that TripBuilder constantly outperforms the base-
lines and presents a behavior which is sensitive to α. It
is worth highlighting two situations: i) when α = 0, Trip-
Builder is comparable to Tpop (both considering only pop-
ularity), and we can see that our algorithm obtains higher
Spro
u ; ii) when α = 1, TripBuilder considers only user’s

interest, similarly to Tppro, but still it achieves higher Spro
u

values. Thus, we may conclude that α plays an important
role in TripBuilder to balance the contribution of user’s
profit/interest and PoI’s popularity.

Another important metric is the visit time reported in
column Svt. The higher the visit time, the more relevant
the recommended trip is to the user, since it is more ad-
vantageous to the user to spend time visiting the PoIs than
moving among them. As our GMC formulation takes this
factor into account (as a cost), it tends to exploit in the so-
lution trajectories that visit close PoIs and maximize user
profit. Consequently, TripBuilder is able to globally build
trips maximizing Svt. We can see from the results in the
table that TripBuilder uses more appropriately the time
budget. The difference in Svt becomes higher when bigger
cities and larger budgets are considered. In the case of Pisa,
the three algorithms have quite similar Visit Time Scores,
with slight gains for TripBuilder. In the case of the larger
cities of Florence and Rome, TripBuilder remarkably out-
performs the baselines. This could happen because PoIs in
small cities are close and concentrated in a small region,
while in bigger cities larger intra-PoI traveling time can im-
pact the Svt metric.

In terms of PoIs and categories recall (Recall-P and Recall-
C in Table 2), all algorithms get at least 75% of the relevant
PoIs and 96% of the categories for Pisa. As shown in Ta-
ble 2, TripBuilder cannot reach the 99% of category recall
of Tpop, but the 98% is still a signal that TripBuilder
chooses PoI of relevant categories for the users. Looking
at PoIs recall, on the other hand, TripBuilder gets better
results than the baselines: 87% compared to 83% of Tpop
and 79% of Tppro for the one-day time budget. When we
compare the results for Florence and Rome, we observe that
TripBuilder outperforms PoIs recall results as well as cat-

Pisa

Days Recall-P Recall-C Spro
u Svt Spop

Tpop
1/2 0.480 0.755 0.298 14443 0.548

1 0.833 0.990 0.609 28984 0.874

Tppro
1/2 0.560 0.803 0.391 14535 0.576

1 0.797 0.962 0.618 28272 0.821

TB, (0)
1/2 0.712 0.910 0.391 16086 0.798

1 0.822 0.988 0.601 28968 0.876

TB, (0.5)
1/2 0.725 0.904 0.565 16027 0.673

1 0.863 0.984 0.709 29452 0.890

TB, (1)
1/2 0.721 0.898 0.570 15931 0.648

1 0.871 0.984 0.715 29510 0.880

Florence

Days Recall-P Recall-C Spro
u Svt Spop

Tpop
1 0.303 0.791 0.085 30456 0.437

2 0.380 0.843 0.144 53523 0.505

4 0.545 0.931 0.299 104839 0.654

Tppro
1 0.276 0.751 0.102 29434 0.404

2 0.371 0.840 0.184 53589 0.489

4 0.545 0.926 0.322 104805 0.643

TB, (0)
1 0.529 0.886 0.183 33450 0.656

2 0.662 0.924 0.300 64021 0.761

4 0.767 0.965 0.449 118944 0.842

TB, (0.5)
1 0.444 0.836 0.269 30932 0.465

2 0.617 0.917 0.393 59683 0.668

4 0.764 0.960 0.519 120389 0.814

TB, (1)
1 0.441 0.832 0.269 30844 0.460

2 0.613 0.916 0.393 59607 0.664

4 0.762 0.959 0.519 120247 0.812

Rome

Days Recall-P Recall-C Spro
u Svt Spop

Tpop
1 0.386 0.783 0.161 19890 0.523

2 0.534 0.896 0.310 39277 0.665

4 0.620 0.934 0.431 76025 0.727

Tppro
1 0.316 0.783 0.174 17286 0.397

2 0.500 0.873 0.353 36135 0.596

4 0.618 0.932 0.486 69309 0.695

TB, (0)
1 0.652 0.886 0.337 33609 0.764

2 0.838 0.959 0.579 61644 0.891

4 0.910 0.991 0.729 109276 0.944

TB, (0.5)
1 0.566 0.750 0.512 31941 0.529

2 0.831 0.945 0.712 61994 0.802

4 0.936 0.989 0.818 108767 0.943

TB, (1)
1 0.561 0.740 0.512 31854 0.520

2 0.825 0.943 0.713 61874 0.795

4 0.935 0.989 0.820 107773 0.939

Table 2: Performance of TripBuilder (TB) by vary-
ing the parameter α and the baselines according to
various metrics.

egories recall results in all the experiments. This happens
mostly thanks to the capability of TripBuilder of build-
ing trips with an higher visit time within the time budgets,
consequently more PoIs are likely to be visited. Finally, we
can see that the α parameter allows to fit the expectations
of the user. For small values of α we have higher recall val-
ues because trajectories crossing popular PoIs are preferred.
When α is increased, recall figures decreases (although stay
always significantly over the baselines) because unexpected
trajectories fitting the user interests are suggested that may
constitute serendipitous recommendations.

5. CONCLUSIONS AND FUTURE WORK
In this paper we introduced TripBuilder, a unsupervised

framework for the recommendation of personalized touristic
itineraries that model the planning of a trip as a instance of
the Generalized Maximum Coverage problem. It works by

composing the itinerary that maximizes a measure of user
interest over the PoIs while globally respecting the user time
budget. We evaluate TripBuilder on datasets collected for
three cities differentiated by size and touristic interest. Re-
sults show that TripBuilder outperforms two strong base-
lines for all the metrics adopted in the assessment. Future
work includes a deeper investigation of how to schedule the
TripBuilder solution on the tourist agenda.

Acknowledgments. We acknowledge Liran Katzir and
all authors of [1] for providing us their GMC source code.
This work was partially supported by EU FP7 Marie Curie
project SEEK (no. 295179), CIP-PSP project E-CLOUD
(no. 325091), PRIN 2011 project ARS TECNOMEDIA,
CNPQ Scholarship (no. 306806/2012-6), CNPQ Casadinho/
PROCAD Project (no. 552578/2011-8), and CNPQ-CNR
Bilateral Project (no. 490459/2011-0).

References
[1] R. Cohen and L. Katzir. The generalized maximum

coverage problem. Information Processing Letters,
108(1):15–22, 2008.

[2] M. De Choudhury, M. Feldman, S. Amer-Yahia,
N. Golbandi, R. Lempel, and C. Yu. Automatic
construction of travel itineraries using social breadcrumbs.
In Proc. ACM HT, 2010.

[3] M. Ester, H.P. Kriegel, J. S, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. pages 226–231. AAAI Press, 1996.

[4] J.-M. Godart. Combinatorial optimisation based decision
support system for trip planning. In Information and
Communication Technologies in Tourism, pages 318–327.
Springer, 1999.

[5] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura. Travel
route recommendation using geotags in photo sharing sites.
In Proc. ACM CIKM, 2010.

[6] E. Lu, C. Lin, and V. Tseng. Trip-mine: An efficient trip
planning approach with travel time constraints. In Proc.
IEEE MDM, 2011.

[7] C. Lucchese, R. Perego, F. Silvestri, H. Vahabi, and
R. Venturini. How random walks can help tourism. In
Proc. ECIR. LNCS, 2012.

[8] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti.
Wherenext: a location predictor on trajectory pattern
mining. In Proc. ACM KDD, 2009.

[9] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and
P. Kalnis. User oriented trajectory search for trip
recommendation. In Proc. ACM EDBT, 2012.

[10] W. Souffriau, P. Vansteenwegen, J. Vertommen, G. Berghe,
and D. Van Oudheusden. A personalized tourist trip design
algorithm for mobile tourist guides. Applied Artificial
Intelligence, 22(10):964–985, 2008.

[11] P. Vansteenwegen and W. Souffriau. Trip planning
functionalities: state of the art and future. Information
Technology & Tourism, 12(4):305–315, 2010.

[12] P. Vansteenwegen, W. Souffriau, G. Berghe, and
D. Oudheusden. The city trip planner: an expert system
for tourists. Expert Systems with Applications,
38(6):6540–6546, 2011.

[13] P. Vansteenwegen and D. Van Oudheusden. The mobile
tourist guide: an or opportunity. OR Insight, 20(3):21–27,
2007.

[14] H. Yoon, Y. Zheng, X. Xie, and W. Woo. Smart itinerary
recommendation based on user-generated gps trajectories.
Proc. IEEE UIC, LNCS, 2010.

[15] H. Yoon, Y. Zheng, X. Xie, and W. Woo. Social itinerary
recommendation from user-generated digital trails.
Personal and Ubiquitous Computing, 16(5):469–484, 2012.

