
Interactive and Context-Aware
Tag Spell Check and Correction

Francesco Bonchi
Yahoo! Research
Barcelona, Spain

bonchi@yahoo-inc.com

Ophir Frieder
Georgetown University
Washington DC, USA

ophir@cs.georgetown.edu

Franco Maria Nardini,
Fabrizio Silvestri,
Hossein Vahabi

ISTI-CNR
Pisa, Italy

{first.last}@isti.cnr.it

ABSTRACT
Collaborative content creation and annotation creates vast
repositories of all sorts of media, and user-defined tags play
a central role as they are a simple yet powerful tool for orga-
nizing, searching and exploring the available resources. We
observe that when a user annotates a resource with a set of
tags, those tags are introduced one at a time. Therefore,
when the fourth tag is introduced, a knowledge represented
by the previous three tags, i.e., the context in which the
fourth tag is produced, is available and exploitable for gen-
erating potential correction of the current tag. This context,
together with the “wisdom of the crowd” represented by the
co-occurrences of tags in all the resources of the repository,
can be exploited to provide interactive tag spell check and
correction. We develop this idea in a framework, based on a
weighted tag co-occurrence graph and on nodes relatedness
measures defined on weighted neighborhoods. We test our
proposal on a dataset coming from YouTube. The results
show that our framework is effective as it outperforms two
important baselines. We also show that it is efficient, thus
enabling its use in modern tagging services.

Categories and Subject Descriptors: H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Indexing
– Linguistic processing

Keywords: tag spell checking and correction; tag co-occur-
rence graph.

1. INTRODUCTION
Collaborative tagging services are one of the most distin-

guishing features of Web 2.0. Flickr, YouTube, del.icio.us,
Technorati, Last.fm, or CiteULike – just to mention a few
– as they allow their users to upload a photo, to publish a
video, to share an interesting URL or to bookmark a sci-
entific paper, and provide them the possibility to assign
tags, i.e., freely chosen keywords, to these resources. Such
a collaborative content creation and annotation effort cre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

ates vast repositories of all sort of media. User-defined tags
play a central role there as they are a simple yet powerful
tool for organizing, searching and exploring the resources.
Obviously, all these applications need to assume that tags
are “correct”. However, this assumption is not realistic in
the real world as tags are noisy, contain typos, and many
different spellings can be used for the same concept (e.g.,
the term “hip hop” and its variants “hip-hop”, “hiphop”, or
“hip hop”). It is thus important to develop systems to help
users to provide correct and well-established tags, so as to
improve the overall quality of annotations. For instance,
correcting “hip hop” as “hip-hop”, when the latter is more
frequent than the former, is useful because this keeps the
labeling of the concept uniform, allowing for an improved
findability and a better organization/exploration of the as-
sociated resources. More important, by correcting for exam-
ple, brittny with britney, we allow the given resource to be
found by means of the correct spelling of the word. This,
in turn, is not true if the correction is not provided and,
therefore, the resource can not be retrieved.

A similar problem is dealt with in the context of Web
search engines by exploiting query spell checkers. However,
while query correction exploits the position of words within
the query, in the case of tag systems, words position is not
meaningful, as an annotation is a set of tags and not a se-
quence. What is meaningful instead is the context in which
a tag is used, that is, the other tags in the annotation of
a resource. If we know that people tagging an object with
“apple” are more likely to tag “store” instead of “str”, then
we could suggest the former as a possible spell correction for
the latter.

Our working hypothesis is to spell check and correct within
the tagging process once a tag is completely written. The
process thus becomes to analyze each tag while the tagging
process of the user is still going on.

We model the “wisdom” of all the users of a collaborative
tagging system by means of a weighted co-occurrence graph
to develop a context-aware tag spell checker and corrector
able to interactively check and emend terms to the user.

As an example, we extract a portion of the tag co-occurrence
graph of YouTube for the tag “brittny” in two different con-
texts. The first context is {Circus, Pop, Video}, while the
second one is {HappyFeet, Music}. The example shows how
the same tag can be corrected in two different ways depend-
ing on the context. In the first case, the user is clearly refer-
ring to Britney Spears, as one of the tag (“Circus”) is the title
of a Britney Spears song. While in the second case the user

is referring to the actress and singer Brittany Murphy, who
gave voice to one of the penguins in the computer-animated
movie “Happy Feet”, singing also two songs for the movie.
Note that, beyond correcting the misspelled tags, context-
awareness in a tag co-occurrence graph, might also be used
to suggest other meaningful tags, e.g., “Spears” in the first
context, and “Murphy” in the second.

2. RELATED WORK
We focus on two main research issues: spell checking and

the use of contextual information to support an interactive
tag spelling correction. Here, we briefly summarize the key
results in both the two fields.

Research on spell checking has focused either on non-word
errors or on real-word errors [5]. Non-word errors such as
ohuse for house can easily be detected by validating each
word against a lexicon, while real-world errors, e.g., out
in I am going our tonight, are difficult to detect. Cur-
rent context-sensitive spelling correctors that are required
for real-world errors mainly rely on two kinds of features:
collocation, and co-occurrence [4, 7]. Both approaches gen-
erate a high-dimensional feature space. They have been used
only for short lists of commonly confused words.

Cucerzan et al. [2] investigate the use of implicit and ex-
plicit information about language contained in query logs
for spelling correction of search queries. They present an
approach that uses an iterative transformation of the input
query string into sequence of more and more likely queries
according to statistics extracted from query logs. Chung
et al. [10] propose an approach to spelling correction based
on Aspell. The method re-ranks the output of Aspell and
then a discriminative model (Ranking SVM) is employed to
improve upon the initial ranking. Merhav et al. [8] use a
probabilistic approach to enrich descriptors with corrected
terms in a P2P application. To use as much information as
possible, they include features from character level, phonetic
level, word level, syntax level, and semantic level. These are
evaluated by a support vector machine to predict the correct
candidate. Authors test the correction capabilities of their
system by comparing it with others spelling correctors (i.e.,
Microsoft Word, Google, Hunspell, Aspell, FST) showing
that their system outperforms in recall by at least 3% even
if confined to non-word errors.

Recently, Gao et al. [3] focus on exploiting noisy Web
corpora and query logs for spelling correction purposes. In
particular, authors propose a distributed infrastructure for
training and applying Web scale n-gram language models,
and a phrase-based error model, where the probability of
transformations between multi-word phrases is estimated us-
ing query-correction pairs derived from search logs. Bao et
al. [1] present an algorithm that is based on statistics from
the corpus data (rather than the query log). More in detail,
authors propose a graph based spelling correction approach,
that can incorporate different types of data sources with dif-
ferent levels of reliability.

Nardini et al. [9] build a tag spell checker using a graph-
based model. In particular, the authors present a technique
based on the graph of tags associated with objects made
available by online sites such as Flickr and YouTube. Au-
thors show the effectiveness of the approach on the basis of
experimentation done on real-word data. The goal pursued
in [9] is to use the neighbors of the wrong tag to find the
correct version of the current tag. This is done by using a

tag co-occurrences graph and by exploiting a combination
of edit distance and some simple graph properties. We ap-
proach the problem from a different point of view. We build
a co-occurrence graph of only correct tags (easy to build
by using public data and by using techniques as presented
in [9]), and we match an incoming tag to the nodes in the
graph to understand if it is misspelled and, if so, what is its
correction to suggest to the user by exploiting link-prediction
measures. An important difference between our method and
the one proposed in [9] is that, while the model in [9] uses
only the current tag to devise possible correct versions of it,
our method is also able to exploit the “context”, i.e., other
tags that have been already assigned by the user, to carry
out the correction process. Furthermore, our method incre-
mentally updates the spell check and correction model.

3. MODEL
In this section we introduce our model, which is a weighted

co-occurrence graph model to capture relationships among
tags, and we describe how we exploit such relationship for
context-aware tag spell check and correction.

Weighted Tag Co-occurrence Graph: Let R be a set of
resources. Let Σ be a finite alphabet. Let T ⊆ Σ∗ be a set
of tags associated with each resource and let γ : R → T be
a function from resources to set of tags mapping a resource
with its associated set of tags. Furthermore, we define T ∗ =
∪ {γ(r), ∀r ∈ R} to be the union of all tags for all resources
in R.

Let G = (V,E) be an undirected graph. V is the set of
nodes where each node represents a tag t ∈ T ∗, and E is the
set of edges defined as E = V × V . Given two nodes, u, v,
they share an edge if they are associated at least once with
the same resource. More formally, E = {(u, v)|u, v ∈ V ,
and ∃r ∈ R|u, v ∈ γ(r)}. We denote N(v) the immediate
(distance 1) neighborhood of a node v, i.e., N(v) = {t ∈
V |(v, t) ∈ E}.

Both edges and nodes in the graph are weighted. Let
u, v ∈ V be two tags. Let we : V × V → R be a weight-
ing function for edges measuring the co-occurrence of the
two tags, namely, the number of times the two tags ap-
pear together for a resource. For convenience, we assume
we(u, v) = 0 when (u, v) /∈ E. For a given node v ∈ V ,
wv : V → R associates a tag with its weight. We will see
later that weights of nodes and edges can be used to rank
the results and to reduce the size of the graph G discarding
irrelevant edges and nodes, thus gaining in efficiency.

We assume that the graph does not contain misspelled
tags. This can be achieved by correcting the graph off-line
as in [9], and on-line, by incrementally updating the graph
with correctly spelled tags.

Tag and Tag-context: In collaborative tagging services,
users annotate a resource with a set of tags, not a sequence.
An observation behind our model is that, although we are
dealing with a set of annotations and not a sequence, the
user provides this set of annotations by introducing tags
one by one. Following this observation in our model, we
consider as input a sequence of tags 〈t1, . . . , tn−1, tn〉, in the
order as they are introduced by the user. In this setting
tn is the last tag introduced, which is going to be spell-
checked by our model, while the set {t1, . . . , tn−1} refers
to its context, that we denote also as C(tn). We assume
that the context is correct, as we correct tags one by one

while they are introduced. Moreover, we assume that at the
moment we process tn all tags in the context already belong
to the graph, i.e., C(tn) ⊆ V . This is indeed guaranteed by
our model as a correct tag t /∈ V is added to the graph as
shown later.

Tag Spell Check and Correction: We are given the
weighted tag co-occurrence graph G, the last introduced tag
tn and its context C(tn) = {t1, . . . , tn−1}.

All tags in the context C(tn) are present in the graph.
Therefore, we can define the set of candidate tags to be con-
sidered as a neighborhood of the nodes in C(tn). More for-
mally, we define N (C(tn)) =

⋃
t∈C(tn)N(t) and we consider

the subgraph of G induced by N (C(tn)). In this induced
subgraph we select the best node to be suggested as cor-
rection. This selection is done on the basis of relatedness
between a candidate tag u ∈ N (C(tn)) and the original tag
tn that we want to correct. It is important to note that
the tag tn is temporarily assumed to be linked to its con-
text, thus it belongs to N (C(tn)) and, consequently, to the
induced subgraphs.

For defining relatedness we adopt graph neighborhood-
based measures that have been successfully used, e.g., for
link prediction [6]. We report the ones we use in Table 1.

For sake of efficiency, the set of tags that we consider as
candidate spell corrections are a subset of N (C(tn)), gov-
erned by two system parameters r and δ. In particular, we
consider the subgraph induced by N (C(tn)). We sparsify it
by keeping only the top-r edges with respect to their weights
we. We then further sparsify the candidate nodes by keep-
ing only nodes with edit distance (Damerau-Levenshtein dis-
tance1) no more than a given threshold δ.

Now, what if the given tag tn is correct? If the tag is
correct, it is likely to have appeared before, thus it is al-
ready part of the graph. Moreover, it is also quite likely
that it appeared at least once with one other tag of the
current context. Our model is able to detect these cases
and decide when it is not needed to spell check. The spell
check mechanism comes into play if the tag is not part of the
graph-based model and it has never been seen before within
that context. If the user accepts the proposed correction,
the model is updated with the new information regarding
the last seen co-occurrences while, if the user does not ac-
cept the proposed correction, the tag is considered “correct”
and the method adds it to the graph updating the whole
model.

4. EXPERIMENTS
We assess the effectiveness and the efficiency of our spell

check and correction technique. We run our experiments
on a dataset of tags obtained by crawling 568,458 distinct
videos from YouTube. We obtain a total of 5,817,896 tags.
We preprocess the dataset by removing noisy tags (i.e., the
ones having a low frequency). After this preprocessing step,
the dataset contains 4, 357, 971 tags, 434, 156 of which are
unique2.

We build our tag spell check and correction model by using
the dataset described above, from which we also sample a
test set of 250 videos that we denote O = {o1, o2, . . . , o250}.
1
http://en.wikipedia.org/wiki/Damerau-Levenshtein_

distance
2The two versions of the datasets can be downloaded here:
http://hpc.isti.cnr.it/~vahabi/tag.tgz

For each video o ∈ O, let γ(o) be the set of tags associ-
ated with the video o. We evaluate the performance of our
proposed method on this test set of videos. In particular,
we preprocess the test set by checking, for each video o, the
presence of some misspelled tags in the set γ(o). We use two
methods: we first apply the technique proposed in [9], and
we also ask three assessors to assure by manually checking
that all tags are correctly-spelled. The test set is then split
in ten sets O1, . . . , O10 each containing 25 of the videos in
O. For each video in O1, . . . , O5, we randomly choose one
tag and we replace it with a wrong one having a Damerau-
Levenshtein distance lower or equal to a value δ with respect
to the original one. We use values of δ in the set {1, 2}. Fur-
thermore, for each video in O6, . . . , O10, we randomly choose
one of its tags, and we replace it with a new one listed in
the page of common misspelled tags3.

By exploiting the experimental framework described above,
we are going to answer the following research questions: 1)
How the proposed approach behaves in terms of effective-
ness?, 2) What is the link-prediction measure demonstrating
the best performances in solving the tag spell check and cor-
rection problem?, 3) Is the proposed approach efficient? Is it
possible to exploit it in modern real-world tagging services?

Effectiveness: Here, we are going to answer the first two
research questions. We do this by testing the precision ob-
tained by our approach using different link-prediction mea-
sures in the ranking of the candidate corrections. Let x be
the number of videos in O1, . . . , O5 and O6, . . . , O10 that
receives a “correct” tag spelling correction, and y be the to-
tal number of videos that receive at least one tag spelling
correction. We compute the precision (x/y) for each of the
ten sets: O1, . . . , O5 and O6, . . . , O10. As we are evaluating
the capabilities of the system in detecting and correcting
wrong tags, in this evaluation we consider only one (i.e.,
the top-1 ranked) correction proposed. Furthermore, we de-
fine a coverage measure for O1, . . . , O5 and O6, . . . , O10, as
the number of videos in the test set that receive a “correct”
tag spelling correction divided by the total number of video
composing each set (25) to obtain the percentage of the set
covered by “correct” tag spelling corrections. In Table 2, we
report for each proposed method and dataset used, both the
average precision (%) and the average coverage (%) together
with their variance.

We compare our results against two baselines: the first
one (i.e., “Damerau-Levenshtein”) is obtained by computing
the Damerau-Levenshtein distance between the wrong tag
and all the nodes at distance one from its context, while the
second one is obtained by using the technique proposed in
[9] (we refer to it with the name “graph pruning”).

The evaluation is performed by asking the different sys-
tems for possible corrections and we consider it as “correct”
if the output of the system consists of only one tag and it
is correct. We test our method with the proposed rank-
ing schemes on both the two group of sets O1, . . . , O5 and
O6, . . . , O10.

Our technique shows good performance when δ is equal
to 1 both in O1, . . . , O5 and O6, . . . , O10. In this case, the
method exploiting the common neighbors metric shows the
best performance in terms of average precision and average
coverage on the two groups of sets considered (O1, . . . , O5

3
http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_

misspellings

and O6, . . . , O10). Furthermore, while common neighbors
scores the best, three methods (i.e., weighted common neigh-
bors, preferential attachment, and weighted preferential at-
tachment) perform always as second, third and fourth (with
a small exception for weighted common neighbors where its
performance in terms of average coverage is equal to com-
mon neighbors). We explain this behavior by observing that
common neighbors and weighted common neighbors work by
exploiting how the current node and its possible corrections
are linked in the graph. Therefore, preferential attachment-
based metrics only take care of the importance of the cur-
rent node. Common neighbors-based metrics are thus able
to exploit the knowledge represented in the graph in a more
effective way.

A different behavior is exhibited for δ equal to 2. Here,
the weighted common neighbors metric shows the best per-
formances in terms of average precision and average cov-
erage on the two group of sets considered (O1, . . . , O5 and
O6, . . . , O10). Furthermore, the three methods (i.e., com-
mon neighbors, weighted preferential attachment, and pref-
erential attachment) perform always as second, third and
fourth. Differently from the case where δ is equal to 1, the
weighted versions of the common neighbors and preferential
attachment metrics work better than their unweighted ver-
sions. The rationale of this behavior could be explained by
observing that, when δ is equal to 2, the number of selected
nodes from the graph as candidate spelling corrections is
greater than in the previous case (δ = 1). The weighted
versions of the two metrics are thus more robust to possible
noise deriving from extending the set of spelling correction
candidates.
Jaccard-based metrics provide low scores in all the tests

conducted. In particular, the performances on the group
of sets O6, . . . , O10 for both the two values of δ are lower
than the two baselines. This behavior could be explained by
observing that Jaccard-based metrics take into account the
union of the neighborhood of the current node and its possi-
ble correction. Consequently, if the graph contains noise (in
the form of nodes with low-weight edges), this metric better
supports that phenomenon.

We also highlight that the variance associated to our met-
rics for all the tests conducted is low. In particular, it is
always lower than 1.2%. It reveals a high stability of results
with respect to variations of the dataset.

To conclude, the best performances on both the two group
of sets (O1, . . . , O5 and O6, . . . , O10) in terms of average pre-
cision and average coverage are obtained by using common
neighbors-based metrics with δ equal to 1.

Efficiency: We evaluate the response time of both the base-
line and our spell check and correction method. We measure
the time needed by the system to produce the list of correc-
tions for a given tag using the common neighbors metric,
which is the best scoring method when δ = 1 (see Table 2).
Tests are conducted using a PC with a 1.66GHz CPU and
4GB of RAM. All the algorithms are implemented in Java.

We analyze the response time of the system by varying the
value of a filtering threshold r that is used to prune edges
of the tag co-occurrence graph, G. For each node in G,
we preprocess the graph by keeping only the top-r scoring
edges and by removing the remaining ones. The pruning
of the tag co-occurrence graph speeds-up the spell check
and correction process degrading, though, its effectiveness.
Table 3 shows the average precision (%) and the average

coverage (%) – computed over all the sets, (O1, . . . , O10) –
for both our method and the baseline. When no pruning
is performed on the graph (r = ∞), our method corrects a
misspelled tag in 33 milliseconds while the same operation
is much faster when the graph G is pruned. In particular,
by setting r equal to 200, our method corrects a wrong tag
in about 2 milliseconds being 16 times faster than the basic
case (original graph) with only 10% precision and coverage
loss. The low response time of the entire tag spell check and
correction process allows the use of our proposed technique
within modern tagging services.

5. CONCLUSIONS AND FUTURE WORK
We introduced a model for context-aware, interactive, tag

spell check and correction. Our described approach exploits
this context together with the available co-occurrences of
tags in all the resources of the repository to provide an in-
teractive tag spell correction. Experiments on a dataset of
tags coming from YouTube videos show that our method is
effective and outperforms two important baselines. Further-
more, we also prove that the method is efficient as it is able
to check and correct a tag in two milliseconds with a good
trade-off in terms of average precision and average coverage.

In our future investigation, we intend to increase the de-
gree of interactivity of the system by enabling “as-you-type”
tag spell check and correction.

6. ACKNOWLEDGMENTS
This research has been partially funded by the EU CIP-

ICT PSP 2011.4.1 InGeoCloudS Project (Grant Agreement
no. 297300), and by the EU FP7-ICT-2009-5 CONTRAIL
Project, (Grant Agreement no. 257438).

7. REFERENCES
[1] Z. Bao, B. Kimelfeld, and Y. Li. A graph approach to

spelling correction in domain-centric search. In Proc.
HLT’11, pages 905–914, Stroudsburg, PA, USA, 2011. ACL.

[2] S. Cucerzan and E. Brill. Spelling correction as an iterative
process that exploits the collective knowledge of web users.
In Proc. EMNLP, 2004.

[3] J. Gao, X. Li, D. Micol, C. Quirk, and X. Sun. A large
scale ranker-based system for search query spelling
correction. In Proc. COLING’10, pages 358–366,
Stroudsburg, PA, USA, 2010. ACL.

[4] A. R. Golding and D. Roth. A winnow-based approach to
context-sensitive spelling correction. Mach. Learn.,
34(1-3):107–130, 1999.

[5] K. Kukich. Techniques for automatically correcting words
in text. ACM Comput. Surv., 24(4):377–439, 1992.

[6] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. JASIST, 58(7):1019–1031,
2007.

[7] L. Mangu and E. Brill. Automatic rule acquisition for
spelling correction. In Proc. ICML’97, pages 187–194, San
Francisco, CA, USA, 1997. Morgan Kaufmann Publishers
Inc.

[8] Y. Merhav and O. Frieder. On multiword entity ranking in
peer-to-peer search. In Proc. SIGIR’08. ACM, 2008.

[9] F. M. Nardini, F. Silvestri, H. Vahabi, P. Vahabi, and
O. Frieder. On tag spell checking. In Proc. SPIRE’10,
SPIRE’10, pages 37–42. Springer-Verlag, 2010.

[10] C. Whitelaw, B. Hutchinson, G. Y. Chung, and G. Ellis.
Using the web for language independent spellchecking and
autocorrection. In Proc. EMNLP’09. ACL, 2009.

Metric Unweighted Version Weighted Version

preferential attachment |N(u)|
∑

z∈N(u) we(u, z)

common neighbors |N(u) ∩N(tn)|
∑

z∈N(u)∩N(tn) we(u, z) + we(tn, z)

jaccard of neighbors |N(u)∩N(tn)|
|N(u)∪N(tn)|

∑
z∈N(u)∩N(tn) we(u,z)+we(tn,z)∑
z∈N(u)∪N(tn) we(u,z)+we(tn,z)

Table 1: Metrics used in our model for ranking a candidate node u, given that the tag we want to correct is tn.

Test Set Ranking Method avg. Precision (Variance) avg. Coverage (Variance) δ

O1, . . . , O5

Damerau-Levenshtein 64.77 (1.59) 59.2 (0.91) 1
graph pruning 70.80 (1.43) 48.6 (0.77) 1
preferential attachment 81.77 (0.45) 75.2 (0.51) 1
weighted preferential attachment 80.90 (0.38) 74.4 (0.45) 1
common neighbors 85.22 (0.76) 78.4 (0.85) 1
weighted common neighbors 85.14 (0.70) 78.4 (0.93) 1
jaccard neighbors 68.83 (0.49) 63.2 (0.35) 1
weighted jaccard neighbors 73.14 (0.78) 67.2 (0.67) 1

O1, . . . , O5

Damerau-Levenshtein 35.04 (0.38) 33.6 (0.37) 2
graph pruning 50.32 (0.38) 48.2 (0.69) 2
preferential attachment 55.67 (0.80) 51.2 (0.75) 2
weighted preferential attachment 55.74 (0.90) 51.2 (0.75) 2
common neighbors 62.75 (0.26) 57.6 (0.13) 2
weighted common neighbors 66.12 (0.59) 60.8 (0.51) 2
jaccard neighbors 37.37 (0.18) 34.4 (0.21) 2
weighted jaccard neighbors 46.38 (0.31) 42.4 (0.21) 2

O6, . . . , O10

Damerau-Levenshtein 67.07 (0.75) 58.4 (0.69) 1
graph pruning 73.4 (0.32) 66.2 (0.48) 1
preferential attachment 83.44 (0.47) 72.8 (0.75) 1
weighted preferential attachment 83.44 (0.47) 72.8 (0.75) 1
common neighbors 87.22 (0.5) 76.0 (0.64) 1
weighted common neighbors 85.22 (0.45) 74.4 (0.85) 1
jaccard neighbors 63.34 (0.39) 55.2 (0.43) 1
weighted jaccard neighbors 76.99 (0.32) 67.2 (0.59) 1

O6, . . . , O10

Damerau-Levenshtein 27.94 (0.47) 28 (0.48) 2
graph pruning 32.04 (0.77) 31.05 (0.68) 2
preferential attachment 47.47 (0.61) 46.4 (0.69) 2
weighted preferential attachment 51.57 (0.86) 50.4 (0.93) 2
common neighbors 59.77 (0.9) 58.4 (1.01) 2
weighted common neighbors 65.47 (1.40) 64.0 (1.52) 2
jaccard neighbors 19.63 (1.14) 19.2 (1.07) 2
weighted jaccard neighbors 27.87 (0.98) 27.2 (0.91) 2

Table 2: Effectiveness of the proposed methods in terms of average precision (%) and average coverage (%) for the videos in
O1, . . . , O5 and O6, . . . , O10.

r Response time
common neighbors Damerau-Levenshtein

avg. Precision (Var.) avg. Coverage (Var.) avg. Precision (Var.) avg. Coverage (Var.)

10 0.30× 10−3 29.23 (1.02) 25.61 (1.19) 29.29 (1.69) 24.80 (0.96)

50 0.64× 10−3 42.33 (1.15) 36.84 (0.72) 32.05 (1.82) 28.00 (1.56)

100 0.76× 10−3 51.30 (0.91) 44.05 (0.83) 42.33 (2.11) 36.80 (1.34)

200 2.06× 10−3 77.72 (1.10) 67.27 (0.91) 53.98 (1.78) 44.10 (1.87)

∞ 33.22× 10−3 85.22 (0.76) 78.40 (0.85) 64.77 (1.59) 59.20 (0.91)

Table 3: Response time (sec.) and effectiveness in terms of average precision (%) and average coverage (%) of our method
(using the common neighbors metric) and the Damerau-Levenshtein baseline by varying the filtering threshold r over all the
sets, (O1, . . . , O10). A value of r equal to ∞ means that no pruning on the tag co-occurrence graph is performed before the
spell check and correction process.

